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Introduction 

We consider spaces BMO,p,p of  functions defined using mean oscillation over 
cubes in R n, which include the Morrey spaces L (p' a~, the John--Nirenberg space 
BMO and the Lipschitz spaces A~. It  is our purpose to give equivalent charac- 
terizations of  the spaces BMOr and to apply these characterizations to an exten- 
sion problem for BMO~,.p (G), for certain open subsets G of  R n. We prove that 
the spaces BMO,p,1 , are characterized by a property of  the mean oscillation over 
a class of  sets more general than the class of  cubes used in their definition. 

Although we are mainly interested in the case 1 <_p-<~o, which include BMO 
(~o(r)= 1 , p =  1) and the Morrey spaces, we state some of  our results in the more 
general situation 0 < p < ~  and ~0(r) satisfying certain growth conditions. See the 
remark following Theorem 2.2 in section 2.1. 

Let E be a bounded set in R ~ with positive Lebesgue measure. Then the mean 
oscillation o f f  over E (in LP-sense, 0 < p N ~ )  is defined by 

Qp(f, E) = icnf {IEI-~ L I f(x)-Cl" dx) '/', (0.1) 

whenever it is finite. For  any such set E there is C=  CE for which the infimum 
in (0.1) is attained and C e is from now on defined in this way. Note that C E is not 
uniquely defined, cf. J-O. Str6mberg [15]. 

The set function s E) is a local best approximation of  order zero o f f  
in L p in the sense of Ju. A. Brudnyi [l, p. 75]. 

The class of  sets we consider is defined by 

K, = {xER"; dist (x, K) --<_ r}, r > 0 ,  (02) 

where K ranges over all compact sets K with Lebesgue measure zero. 
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The spaces BMO,,p, 0<p<~o,  are defined in section 1. We prove in Theo- 
rem 2.1 that if tp(r) satisfies a mild growth condition and fEBMO,,p then for all 
sets K, in (0.2) it holds that 

Op(f,, K,) <= N. fktp(t)/tdt, r > 0 ,  (0.3) 

where N=c(q~, n,p). I[fl[,,p and k depends on r and the diameter of K. 
We show by examples that (0.3) is in general best possible (section 7.1). 
The conclusion of Theorem 2.1 is rather strong since the class of sets defined 

by (0.2) is very large. In particular, all dosed balls B(a, r) are of this type and 
(0.3) is simplified considerably in this case with a suitable growth condition on ~0 (r). 

The converse of Theorem 2.1 now follows easily. Assume that there is N<oo 
such that f satisfies (0.3) for all set K, in (0.2) then f~BMO,,p and [{fll,.p_ -< 
c((o, n, p). N(f) ,  where N(f )  is the best constant N in (0.3) (Theorem 2.2). 

This means that N(f)  is an equivalent norm on BMO,,p, l<=p<o~. Special 
cases are BMOp (Theorem 2.3). 

The spaces BMO,,p (G), where G is an open subset of R n, are defined in sec- 
tion 2.2. We consider the problem to decide when a function fEBMO,,p (G) has 
an extension f i n  BMO~.p (R")=BMO,,p. In particular when R", ,G has measure 
zero we find necessary and sufficient conditions o n f o f  the type (0.3) in Theorem 2.4. 

This result also gives a method to generate equivalent norms on BMO,,~ that 
are in a sense intermediate between l] fl[, ,p and N(f)  above (Theorem 2.5). 

Let K be a compact subset of R" and consider the problem to extend every 
continuous function fo on K to a function f w h i c h  is continuous in R" and has arbi- 
trary small norm in BMO. We use a construction in BMO by J. B. Garnett and 
P. W. Jones [4] to prove that this is possible if and only if  K has Lebesgue measure 
zero (Theorem 2.6). 

The plan of  the paper is as follows. Section 1 contains notations, definitions 
and some preliminary results. We state our theorems in section 2 and prove them 
in sections 4, 5 and 6. We prove a number of lemmas in section 3 and give some 
examples in section 7. 

1. Preliminaries 

We consider the n-dimensional Euclidean space R " with points x = (xl, x2, ..., xn). 
All sets are subsets of  R n. Open, dosed and compact sets are denoted by G, F and 
K respectively. Measure always means Lebesgue measure and is denoted by I E I  . 

Functions are real or complex valued and Lebesgue measurable in R n. Integration 
with respect to Lebesgue measure is denoted by fEf(x)dx. 
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When no set of integration is indicated it is understood that integration is over 
the whole space and all the variables. We let L p denote the usual Lebesgue space 
o fp- th  power integrable functions in R n and II fllv--(f If]Vdx) x/p, 0 < P  <--~~ Func- 
tions f are usually assumed to be locally in a suitable class L p. All cubes have sides 
parallel to the axes. The cube I=I(a, r) has its centre at a and side length l(I)=r. 
We define 2. I(a, r)=I(a, 2. r), 2 > 0 .  

As usual B(a, r) denotes a closed ball. We let tp(r) denote functions such that 

~0: ]0, oo[ _~ ]0, oo[. 

For all such functions q~(r) and O<p<=~, BMO,,p denotes the space of  func- 
tions f for which 

IJfll~,p = sup Qv(f, I)/tp(r) 

is finite, where supremum is over all cubes I=I(a, r), and all r>0 .  
For computational reasons we often consider the quantity 

(IE f -a f~z If(x) - f (E)  f dx) x/p, f (E) = [E [ -~ f E f(x) dx 

when E is a bounded set with positive measure, cf. Lemma 1.1 (a) and (b). We 
make the usual modifications when p = ~ .  We usually drop p from the notation 
when p----- 1. 

In the case when ~o(r)=l we use the notation BMOp and Ilflt,,v. BMO~,v, 
1 <=p<~o, modulo constants is a Banach space, which we also denote by BMO,, p. 
The verification of  this is left to the reader. Compare U. Neri [10]. 

Let A~, 0<~t <- 1, be the space of  functions f for which 

Ilfll~ = sup ]f(x)- f (y) l / lx-y!  ~ <oo. 
x ~ y  

A, modulo constants is a Banach space. 
When tp ( r )=r  ~-", 0 < 2 < n ,  and l< -p<  oo, the spaces BMO~,,p coincide with 

the Morrey spaces, cf. [3]. Two other cases are also well known. If  2=n ,  0 < p < o o ,  
2 - n  

then BMOr and if n<),<=n+p, l<_-p<*o, then BMO,,p=A,, ~ t = ~ ,  
P 

S. Campanato [2] and N. G. Meyers [9]. A survey of  these and related spaces is 
found in J. Peetre [11] and Ju. A. Brudnyi [1]. 

We often use unspecified constants only depending on certain numbers 
ct, t ,  ? . . . . .  Such constants are denoted by c(~t, t ,  ? . . . .  ). Constants which only 
depend on n are denoted by c. The same notation may denote different constants 
at different occurences. 
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In all our theorems the function r is such that 

A.  inf r (t) _-> q~ (r), r > 0  ( . )  
r~t~_2r 

holds for some real number A independent of r, A-> 1. 
We also need the following property for r We say that q~(r) has property 

( . ,  . )  if 
sup ~o(O<=B.q~(r), r > 0 ,  ( . ,  . )  

r ~ t ~ 2 r  

holds for some real number B independent of r, B=>I. 
From now on the numbers A and B are always defined as in ( . )  and ( . ,  . )  

respectively. 
I f  r is non-decreasing, then ( . )  holds trivially and ( . ,  . )  is equivalent to 

a As-condition [1, p. 79]. 
A positive function g (x) on R 1 is called almost decreasing if there is M, 0 < M<o% 

such that 
g (x) <- M.  g(y), for all x => y. 

Basic properties of BMO~o are found in S. Spanne [14]. See also [5] and [10]. We 
collect some of them, generalized to l<_-p<~o or 0<p<oo,  in a lemma. 

Lemma 1.1, Assume that E is a bounded set with positive measure, 1 <=p<oo 
and let f be a funetion. 

(a) ~v(f,  E) <_- (IEl-lfE [f(x)-f(E)lP dx) lip <= 2. ~2p(f, E) 

(b) ~2v(f E) <= ([El - z f E f r  [f(x)-f(Y)l" dx dy) 'Iv <= 2. ~2v( f E). 

(c) Let I and J be two cubes with side lengths r and s respectively. Then if  I cY ,  
s<=2. r, fE BMO~,,v , and q~(r) satisfies ( . )  we get for 0<p<oo 

n + l  

[C , -  Csl <= Z--T- �9 Ilfll~,p. (~0(r)+~0(s)). 

(d) Let F: R ~ R  1 be such that IF(x)--F(y)l<=M.}x-y], all x, yER 1. Then 
for 0<p<oo ,  

I[Fo flf,,p <= M.  riffle,p, 
where Fo f(x) = F( f(x)). 

(e) Let ~o(r) be non-decreasing and ~o(r)/r almost decreasing. Then 

f l  g(x) = Ixl q~(t)/tdt 
belongs to BMO~,. 

Proof of Lemma 1.1. The statements (a) and (b) follow from Minkowski 
inequality and a proof of (d) only uses the definitions. The parts (c), 1 ~ p <  ~o 
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and (e) are proved in S. Spanne [14]. We prove (c) for 0 < p <  1. Integrating the 
inequality 

I G -  Cs[ ~ <-- If(x) - G[~+ I f ( x ) -  Cs[ p 
over I we get 

IG-GI" <= 111 f ,  t f (x)-Gl" ax 

+2" .  I J l - l f j  I f ( x ) - C s  i" dx 

Ilfllg,," (q~ ( r ) '+2"  �9 q~ (s)9 

<= 2"+1-"" Ilfll•,.. (~0 (r) + ~0(s))" 

which completes the proof of  Lemma 1.1. 
Let 26R 1 and F ( x ) = m a x ( x ,  2), xER 1, then 

r o y ( x )  = max ( f (x) ,  2), 

for any real valued f u n c t i o n f  By Lemma 1.1 (d) we get for 0<p<oo 

[Iro/[l~,,, <_- Ilfll~,,. 

The function r o y  is f truncated from below at the level 2. Truncation from 
above gives an analogous result. 

Combining this with Lemma 1.1 (e), we get that ln[x I and In + Ixl = 
max (In Ix], 0) are functions in BMO. These facts are used in some of our examples 
in section 7, 

2. Statements of the theorems 

In this section we state our main results and some of their consequences. The 
proofs are found in sections 4, 5 and 6. 

2.1. We start with our basic estimate of  Dp(f, Kr), when Kr is of the type (0.2). 

Theorem 2.1. Let 0<p<oo and let q~(r) satisfy (*) .  Let K be a compact set 
with measure zero. Then i f  fEBMO~,, p we have 

f2p( f  K,) <= N .  f, qg(t)/t dt (2.1) 
1 

1 + -  
where  N =  c P . A . Ilfll~,p, k =  a . ( d + 2r( lf~ + l ) ) and d is the diameter of  K. 

Corollary. Let fEBMOp, 0<p<oo,  then 

t2p(f  K,) <- N .  ln (2 + d ) ,  r > 0  (2.2) 

1 

where N = c  1+7. [Ifll,,p- 
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The corollary follows by taking r 1 in Theorem 2.1. We show by exam- 
ples in section 7.1. that in general (2.1) is best possible when p =  1. In particular 
(2.2) is best possible in the sense that there is f t B M O  and K such that 

f2(f, K,) >= c . l j f l l . . l n ( 2 + d ) ,  r > O ,  

where d = d i a m  K. 

This raises the question for which sets K, Igl=0, there is fEBMO such 
that (2.2) holds with the inequality reversed. It  is dearly necessary that K has at 
least two points. It is an open question if this is a sufficient condition. We give 
some examples in section 7.1. 

Theorem 2.1 is also a theorem on the best local approximation of  order zero 
in the LP-norm over r-neighbourhoods K, of  compact sets K with measure zero. 
See [1] for definitions and a survey of  results on local approximation. 

Remark. Theorems 2.1--2.5 can be proved also for p=oo by simple argu- 
ments from measure theory. Let f~BMO~,,p, p=~o, and let ~0(r)be non-decreas- 
ing, then 

I f (x)- f (y)[  <- c. Ilfll~,p" ~o(}x- yl), 

for a.e. x, yER". This implies that BMO~,,=cA,,  with continuous imbedding. 
The converse inclusion holds if ep (r) satisfies ( . . ) ,  cf. S. Jansson [5]. We do not 
go any further into this case. 

The converse of  Theorem 2.1 is easily proved when ~0(r) satisfies a suitable 
growth condition. 

Theorem 2.2. Let 0 < p < o o  and let r satisfy ( . . ) .  Assume that there is 
N<oo, only depending on f ,  ep, p and n such that 

f~p(f, K,) <- N.  f k  q~(t)/tdt, r > 0, (2.3) 

for all compact sets K of measure zero, where k= c (r + d), c > 1, and d is the diameter 
of  K. Then fCBMO~o,, and 

1 

Ilfll~,p =< c7. c(B, n). N. 

Remark. Actually we only need to assume that (2.3) holds for d = 0  and 
r > 0 .  Theorem 2.2 becomes the easy part of  our next theorem which gives a new 
characterization of  BMO~,. v. 

Remark. Here we want to make a general remark on the case 0 < p < l .  In 
the following, we state and prove our theorems (Theorems 2.3--2.5) only for 1 <_-- 
p<r  since we are mainly interested in the case when Ilfll~,p is a norm on the 
Banach space BMO~,, v. However, Theorems 2.3--2.5 hold also for 0 < p <  1, with 
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only minor changes in their statements ([]fllo, p is no longer a norm) and proof. 
We leave the details to the interested reader. See also J-O. Str6mberg [15] about  
results for BMOp, 0 < p < l ,  and related spaces. 

Let N ( f )  be the best constant N in (2.3), 1 _<_p<~o. I t  is easily seen that  N ( f )  
is a seminorm on the space of  functions f for which N ( f ) < ~ o  and that N ( f ) = 0  
if  and only i f f i s  constant a.e. Theorems 2.1 and 2.2 now show that N ( f )  is a norm 
on BMO~,p equivalent to Ilfll~,p, l<-p <~ 

Theorem 2.3. Let 1 ~p<o~ and assume that q)(r) satisfies ( . )  and ( ,  . ) .  Let 
f b e  a function defined in R" and let N ( f )  be the best constant N in (2.3). Then N ( f )  
is a norm on BMO~,,p equivalent to I I f l l~ ,p  and 

c(A, n). Ilfl[~,p <= N ( f )  <- c(B, n). Ilfll~,p. 

Theorem 2.3 is an immediate consequence of  the Theorems 2.1 and 2.2. We 
have the following special case of  Theorem 2.3. 

Corollary. A function f belongs to BMOp, 1 ~p<o~, if  and only if (2.2) holds 
for some real number N only depending on f, p and n. Then 

c1" ILflI.,p <- N ( f )  <-_ c2. IIfll.,p, 

where N ( f )  is the best constant N in (2.2). 
2.2. Let G be an open subset of  R" and 0 < p < ~ .  We define BMO~,,p(G) 

as the space of  functions f for which 

Ilfl[~,p,G = sup I2p(f, l)/qg(r) 

is finite, where supremum is over all cubes I=I(a, r ) c  G. We write BMO~,,p instead 
of  BMO~,,e(G), when G=R" .  When ~0(r)=l  we adopt  a notation analogous to 
the case G = R "  in section 1. We consider BMO~,,p (G), 1 N p < ~ ,  as linear spaces 
with semi-norms ][fllo, p,~- I f  G is a connected set then BMO~,p(G), l=<p<~o, 
is a Banach space modulo constants. 

We study the problem when a function fEBMO~,,p (G) can be extended to a 
function./~ in BMO~,,p. When R " \ G  has measure zero we must have f (x)=f(x)  
a.e. In this case we can apply Theorems 2.1 and 2.2 to get necessary and sufficient 
conditions on f~BMOo, p (G) so that f=f~BMO~,,p. 

Theorem 2.4. Let 1 <=p<~o and let G be an open connected set in R" whose 
complement F=R'., .G is a non-empty set of  measure zero Let ~o(r) satisfy ( . )  
and (* , )  and let f be a function defined in R". Then fEBMOq,,~ if  and only if 
fEBMO~,,p (G) and there is N < ~ ,  only depending on f ,  q~, p and n, such that 

f2t,(f K,) ~ N. f*~o(t)/tdt, r > 0 (2.4) 
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holds for every compact set K c F ,  where k=c(r+d) ,  c > l ,  and d is the diameter 
of K. 

Let N ( f )  be the best constant N in (2.4), then 

c(B, n). Hfll~,v <- []fH~,v,o+ N ( f )  <= c(A, n). [I fLl~,,p. (2.5) 

Corollary. Let G and F be as in the theorem. Then f~ BMOp if and only if 
fEBMOv(G) and (2.2) holds for every compact set K c F .  I f  N ( f )  is the best con- 
stant in (2.2), then 

el" Ilf{I.,, --< [If[I.,v,~+ N ( f )  <= c2" I[f[[.,p. 

To prove the corollary take go ( r ) - I  in Theorem 2.4. 
The necessity and sufficiency parts of Theorem 2.4 are proved using Theorems 

2.1 and 2.2 respectively, Thus the sufficiency part is rather easy and therefore Theo- 
rem 2.4 is mainly a necessary condition for a function fEBMO~,p (G) to belong 
to BMO~,, p. In section 7.2 we give an example where Theorem 2.4 is used for this 
purpose in the BMO-case. 

2.3. For general open sets our methods only give necessary conditions on f .  
Assume that G is an open set and f~BMOe, p (G), 1 <=p<~.  Then i f f h a s  an exten- 
sion f i n  BMO~, v it is necessary that (2.1) holds for all compact sets K of measure 
zero, K c G  and 0<t-<r0,  where r0=dist  (K, OG). This follows immediately from 
Theorem 2.1. We do not go any further into this case. 

Remark. P. W. Jones has studied the problem to extend every function 
fEBMO(G) to a function f~BMO, when G is connected. He solved it in terms 
of the Whitney decomposition of G [7, Theorem 1]. It  is for example well known 
that when G is the open unit ball in R", then every f (BMO(G)  has an extension f 
in BMO. 

2.4. The results in Theorem 2.4 can be considered as a method to generate 
equivalent norms on BMOv, v, 1 <_-p<~. Let F be any non-empty closed set with 
measure zero Let G = R " ~ F  and define 

[Ifli~,v,v = Ilfll~,p,G+ N ( f ) ,  

where N(.f)  is as in Theorem 2.4. Then we have the following theorem 

Theorem 2.5. Let 1 ~p  < o~ and let go (r) satisfy ( . )  and ( .  *). Then II fl[ ~, p, F 
is an equh~alent norm on BMO~, p and 

c(B, n). [Ifll~,p <= Ilfli~,v,r ~ c(A, n). [Ifll~,p. (2.6) 

Note that the constants in (2.6) are independent of  F. Theorem 2.5 follows 
easily from Theorem 2.4 and its proof. 
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2.5. Our next theorem is an extension theorem for continuous functions of  a 
type studied by H. Wallin [16] and the author [13, 14]. Similar extension problems 
for H61der continuous functions have been studied by A. Jonsson [8]. Let C(K) 
denote the space of  continuous functions on K. 

Theorem 2.6. Let K be a compact set in R". Then every foEC(K ) has an exten- 
sion f which is continuous in R" and has arbitrary small norm in BMO, i f  and only i f  
K has measure zero. 

Theorem 2.6 is proved by a method to build up continuous Riesz potentials 
due to H. Wallin [16] and used by the author for non-linear potentials [13]. The 
building blocks are formed from a lemma by J. B. Garnett  and P. W. Jones [4, 
Lemma 2.2]. Since both these results are known we only indicate how the pieces are 
put together (Section 6). 

3. Lemmas 

Let {Eiff be a class of  pairwise disjoint, bounded sets with positive measure, 
E= U~ Ei and let f be a function. Let c i= CE, be such that 

(IE, 1-1 f ~ lf(x)-cf '  dx} ~/" = ~2,(f, ED, 

Lemma 3.1. 

(a) Let 

and 

This proves Lemma 3.1 when 0<p<= l. 
and the proof  is therefore omitted. 

l<=i<=N. 

0 < p ~ l ,  then 

(2p(f  E)P < max ~p(f ,  El)V+ max [ci-c~f 
~,J 

(b) Let l ~ p < o o ,  then 

C2p(f, E) <= max -Qp(f E / )+max lc,-cyt. 
i i , j  

Proof of  Lemma 3.1. We give the proof  for the case 0<p<= 1. Let ~=lEil/[EI 
e = , ~  ~ .  % then using Minkowski's Inequality we get 

~.(f, E). <= ]EJ-l fE I f ( x ) - c f  dx 

= Z~,=I ~, .IE,[-if~, [f(x)-cfdx 

ZL1 ~i.(IE, JT~ fE, ]f(x)-c, f dx+ [c,--cf) 
<= max Op(f, Ei)P+ max Ici- cjl p. 

i i, j 

The case 1 < p - < ~  is treated analogously 
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Lerama 3.2. Let E be a bounded measurable set in R n, r > 0  and k>=l. Then 

[Ek.,l <-- k". [E,I. 

Lemma 3.2 is a measure-theoretical consequence of the following purely geomet- 
rical lemma. 

Lemma3.3. Let k>=l and r>0,  then 
N N 

]i~1 B ( x l ,  k. r)] <= kn. li~= 1 B(xi, r)!. (3.1) 

where B stands for balls in R". 

Proof. If we use the formula IDI=SD l d x  with D = U ~  B(xi, k.r) ,  then a 
simple change of variables shows that (3.1) is equivalent to 

1 --~, r <= B(xi, r) . (3.2) 
1 

We prove (3 2) by induction over N. For N =  1 there is nothing to prove. Assume 
that (3.2) holds for any collection of N balls and that we are given (N+ 1) balls. 

It follows from the equivalence between (3.1) and (3.2) that we may assume 
xN+l=0. Then we get 

r): r/§ r)) I 
By the induction hypothesis we have 

]~,[x,  r)[ ~ i~'(x,, OI 
i t k '  i 

We complete the proof by showing that 

B(O,r)n(UB(xi ,  r))cB(0, r)n B _~L, r . (3.3) 
1 

It suffices to prove (3.3) when N =  1, i.e. 

B(O,r)nB(xa, r)cB(O,r)nB[--~,r} .  (3.4) 

Now (3.4) follows from the inequality 

IZ- -k t= ( 1 - - 1 } . z + l . ( z - - a )  

<__ [ 1)1__ .Izl+--k-l.lz-a[, zER" and k > l ,  with a = x  1 . =  
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Lemma 3.4. Let I and J be two cubes with side lengths r and s respectively, 
I c J .  Then i f  tp(r) satisfies ( . ) ,  0 < p < o ,  and fEBMOe,  p we have 

1 

ICi -C~l  <= c~+7 �9 A .  IIfllo,," f2~o( t ) / t  dt. 

The proof is by repeated use of Lemma 1.1 (c). 
See S. Spanne [14] for the case p =  1. The general case is proved analogously. 
Compare also [7, Lemma 1.1]. 

Lemma 3.5. Let E and F be bounded sets with positive measure, E c  F. Then 
for  0<p<~o,  

Q,( f ,  E) <= (IFI/IE}) 1/, �9 ~p(f,, F). 

Proof o f  Lemma 3.5. By definition we have 

f2, (f, E) = ([E[-1 fE  I f ( x ) -  CEI p dx) 1/" 

<-- (IE l-irE I f ( x ) -  Crt p dx) a/p <- (IF t/[E 1)~/~. f2p(f, F), 

and the lemma is proved. 

4. Proof of  Theorem 2.1 

Let K be a compact set with measure zero and let fEBMOr 0 < p < ~ .  We 
are going to prove that 

1 

Op(f, Kr) <~ c1+7 -A.  Ilfl[~,p" f~q)( t ) / td t ,  r > O, 

where k - - 4 .  (d+ 2r(l  + 1/-n)). 
Let M be a net of congruent cubes of side length r and let M0 = {Ik}~ be the 

collection of  those cubes in M which intersect K,, E =  L)~ Ik, K F E .  
Let c k be such that 

(likl-lf, rf(x)-cklPdx) lip = f2p(f, I+), 1 <= k <- N. 
k 

Then we have by Lemma 3.2 and Lemma 3.5 

= t IKd) �9 Qp(f, E) <- c l/v. s f ,  E), 

since E c K ,  and IK, I<_-(I+I/n)".IK, I, for u = r ( l + l / n ) .  
For every Ik we have Op(f, Ik)<=llfH~,p.q)(r) and Lemma 3.1 (a) gives for 

l<_-p<~o, 
1 

12,(f, K,) ~ c1+-~. (l[fll~,,-cp(r)+ max Ici--cj]). 
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Assume theft K has diameter d, then diam E<-d+2r(l + 1/n). There is a cube 

I 0 with side length ro=2(d+2r(1 + I/n)) containing E. Lemma 3.4 gives 

1 

g2.(f, g.) ~ c1+7. (llfll~,p-cp(r)q- maxlc,-col) 
1 

cX+7. A-[Ifll~,p �9 f~'o ~o(t)/t dt, 
where c o is such that 

I2t,(f, Io) : (ISot-~f,o If(x)-Col" dx) ~ip. 

(4.1) 

Using Lemma 3.1 (b) we can analogously prove (4.1) for 0 < p < l .  
k = 2 . r 0  we get 

1 

I2p(f, g,) <_- c1+7-A.  Ilfllr fk , q)(t)lt dt 

Now putting 

and thereby Theorem 2.1 is proved. 

5. Proof of  Theorems 2.2 and 2.4 

5.1. Proof of Theorem 2.2. Let I=I(a, r) be a cube and put K--{a}, s=ri/n. 
Then by Lemma 3.5 and (2.3) we get for 0<p<o~ 

(2 . ( f ,  I )  ~ [" IK:I )~i. 
t I I I  ) �9 c~.(f, K:) <_- ~1/. .  C2.(f, X:J 

<= cllp. N" fi.~ __q~(t)t <= clip" c(B, n). N.q)(r). 

It follows that II flt~,, v <=clip" c(B, n). N, which completes the proof of Theorem 2.2. 
5.2. Proof of Theorem 2.4. Let 1 _-<p<~, G is an open set and F=R"\G 

is a non-empty set with measure zero. Let f be a function in R". If  f6 BMO~,p, 
then fEBMO~,,p (G) and Ilfl[~,p,G<_-[Ifll~,~. Theorem 2.1 gives that (2.4) holds and 

1 

[lfll~,p,~+ N( f )  ~= c1+7 �9 A . [[fll~o,p. (5.2) 

Conversely, assume that fCBMO~,,p (G) and (2.4) holds for every compact set 
KcF.  Let I be a cube I f  IcG,  then Op(f, I)<=q~(r).llfJJ~,~,~. Suppose that I 
intersects F and define K=Ic~F. Then if s=rl/n we get 

IcKsc(1 + 2J/n). I, (5.3) 
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Then by Lemma 3.5, (2.4) and (5.3) we have 

f ~ ( f ,  I )  <= c ~/p . ~2p(f, Ks) <- c(B, n) . N .  ~o(r), 

since diam K ~ r .  fin. 
It  follows that 

Ilfl[~,p --< c(B, n) . ([[fll~,p,a+ N( f ) ) ,  (5.4) 

where N ( f )  is the best constant N in (2.4). Combining (5.2) and (5.4) we have proved 
Theorem 2.4. 

6. Proof of  Theorem 2.6 

Assume that K has the extension property and JK[ > 0. Then for every ./rE C(K) 
there is a sequence {J;}~" of continuous extensions converging to zero in BMO. 
Let I be a large cube containing K in its interior. Then there is a constant 0t(I) and 
a subsequence converging to ~(1) pointwise a.e. in 1 [10, p. 67]. It  follows t h a t f  
is constant a.e. on K. This can hold for every J'~ C(K) only if K has measure zero 
and thus we have proved the necessity part  of  the theorem. 

As we stated in the introduction we only sketch the proof  of  the sufficiency 
part  of  the theorem. We start  with the following construction in BMO due to 
J. B. Garnett  and P. W. Jones [4, Lemma 2.2]. For any c u b e / i n  R" we let [~-3 .L  

Lemma 6.1. Let m be a positive integer, ~ > 0  and 2 = m . ~ .  Let Q be a dyadic 
cube and let {Qi}l be a class o f  pairwixe disjoint dyadic subeubes o f  Q. I f  

~ IQd <= 4 . . . .  "IQ[, 

g continuous i f  {Qi} is finite, such that 

0 <- g (x) ~ 2, 

then there is gC BMO, 

(a) supp g c Q ,  (b) 

(c) g(x) - ~. on ~ Q,, (d) 
1 

(e) [supp gr <= 3,. 4,..,. ~ [Qil. 

The constant C only depends on n. 

K. 

I} gl), = < C �9 ~, 

Let K be a compact  set in R" with measure zero and V an open set containing 
We cover K with congruent dyadic cubes Iv, such that L c v ,  l<=v~N, i.e. 

N 

K c  U~v.  
1 

Let Q in Lemma 6.1 be one of the cubes Iv and cover I vnK with a finite set of  
dyadic subcubes of  Q = I  v, whose total measure is so small that the function g = g ,  
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constructed in Lemma 6.1 with 2 = 1 satisfies 

(6.1) IIg~ll, <~-~- ,  1 <= v <= N.  

Now define 
( 

g(x) = Z ~  gv(x), f ( x )  = 2 .  rain [g(x), 2 J "  

Lemma 6.2. Let K be a compact set with measure zero contained in an open 
set V. Then for every ~ 0  there is a continuous function fEBMO such that 

(a) O~f(x)-<l ,  (b) f(x)=-I in a neighbourhood of  K, (c) s u p p f c V ,  and 
(d) 11 f l l , < s .  

Proof of Lemma 6.2. The properties (a), (b) and (c) are obvious, since the set 
1 

where g ( x ) > ~ -  is open. Part (d) now follows from (6.1) and the text following 

Lemma 1.1. This proves the lemma. 
The proof  of  Theorem 2.6 is now by means of  Lemma 6.2 and the method used 

by H. Wallin in [16]. We omit the details since they are easily found there. We note 
that our Lemma 6.2 corresponds to [16, Lemma 1]. 

7. S o m e  Examples  

We start with some examples to show that the estimate (2.1) in Theorem 2.1 
is in general best possible when p = 1. 

7.1. Example 1. Assume that cp(r) is non-decreasing and concave and that 
~o (r)/r is almost decreasing. Let K =  { -  l, l } be a two-point set in R 1 with diameter 
d = 2 1 > 0 .  We put  

[ q,(O/t dt, o) gl(x) = max Jix-tl 

g2(x) = [q~(x-3/),  x _-> 3I 
(0, x < 31 

and define g(x)=gx(x)+g~(x), f ( x ) = g ( x ) - g ( - x ) ,  xER 1. We can now prove that 
fE BMO~ and 

4 

(7.1) f2(f, g,)  -> c(~0). Ilfll~ "f~('+a)~o(O/tdt, r > O. 

We only give a short sketch of  the proof. Clearly Llgxll~,~c(~o) by Lemma 1.1 (d) 
and (e), and Ilg~[[,<-2 by Lemma 1.1 (b) and the concavity of  q~(r). It is easily 
seen that f (Kr)=0,  and IKrl<=c.r, r>0 .  A direct calculation now gives (7.1) and 
completes the example. 
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Our next example is of  the same type, but  with an infinite set K. 

Example2.  Let K = { + 2  -v, v = 0 , 1  . . . .  }w{0} be a set in R 1. Define for 
k = 0 ,  1 . . . . .  lk=2 -k-2, gk(X)=ln + (lk/[X[) and fk(x)=gk(X--2--k). 

Then let f = ~ f k ( x ) ,  O<=x<=2,f(x)=l, for x_-->2 and f ( - x ) = - f ( x ) ,  x ~ R  1. 
We are going to prove that  f ~ B M O  and 

(7.2) f2( f ,K, )  >= c . ln (2+2/r ) ,  r >0 .  

We prove that  f C B M O  in a lemma which is of  interest in itself. I t  is a variant of  
[4, Lemma 2.1] with the same method of  proof. 

Lemma 7.1. Let {Ij}~ be a class of  pairwise disjoint cubes in R" and let {f j} l  
be functions such that 

suppf j  c Ij ,  Ilfjlll -<- a .  IIj], Ilfjll, <= b, for  j = 1, 2 . . . . .  

Then f = ~ f j  is in BMO and [rf]l.<=c(a+b). 

Proof o f  Lemma 7.1. Let I be a cube in R" and define 

A = {j; 6c~I  r  and l(Ij) <= l(I)}, 

g(x) = Z a f j ( x ) ,  f ( x ) =  g(x)+h(x) .  
Then 

f2(g, I )  -<_ 2. t l I - I . a . Z A  Iljl <= 2 . 3 " . a  

since ~11 cubes l j ,  jEA, are contained in the cube 3. L Let 

B = {j; Ijc~I ~ 0  and l(Ij) > 1(I)}, 
then CardB<=3" and 

f2 (h, 1) =< ~ ' ,  f2 ( f j ,  I )  --<_ 3". b. 

Thus Ilfll,<-c,(a+b) and Lemma 7.1 is proved. 
I t  is easy to check that  Lemma 7.1 applies to f = , ~ f k  and hence fEBMO.  

1 
In view of  the fact that  [K,]<=c. r. In l/r, 0 < r < - - ,  we must prove that 

4 

L . [ f ( x ) l  dx >= c .  r .  (In 1 / r )  2, 0 < r < ~ .  

Let 2 - 2 - m < : r < 2  - l -m,  m=>l, then 

f ]fldx >- 2. 5 " -  ~ f "  gk (x) dx 
- j o 

- 1  
= > 2 - r .  In > = c . r . m  2 

>--c.r. In 1 2 O < r < - - .  
- -  ' 4 
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1 
I t  is easily seen that f2(f ,  Kr)>=e, when r =  > -  . This completes the proof  of  (7.2). 

4 
We can construct similar examples in higher dimensions in the following way. 
Consider 

R T M  with points (x, y), x ~R  m, yER". 

Let gEBMO~,,p (Rm), 0 < p < ~ ,  and define 

f ( x ,  y) = g(x), (x, y)ER TM. 

Then ]lfll~o,p=llgll~o,p, where the norms are taken in the respective spaces. Let E 
and F b e  compact  sets in R m and R" and define K = E •  F. Assume that Ehas  measure 
zero in R m and let E,, F, and K, be defined with respect to the respective distance 
functions. Then K has measure zero in R ~+" and 

m n 

o , ( f ,  K~) =~ 2 2, 2 , .  o ,  (g, E _ 0 ,  r > 0. 

Our Examples 1 and 2 above can be generalized to higher dimensions in this way. 
7.2. Our next example illustrates the situation in the corollary of  Theorem 2.4. 

Example 3. We let (x, y) denote points in R 2 and define 

F - -  {(x, y); lYl -- e-1/lxl, x r 0}u{(0, 0)}, 

We let 

G = RZ'.xF, g (r) = f l  ea/t dt, r > O. 

f ( x ,  y) = 

1 

g(Ixl), lYt < e-qT?, x > 0 
1 

- g ( [x l ) ,  [Yl < e Ixl, x < 0 
0, elsewhere. 

We are going to prove that  f E B M O ( G )  but that t?(f ,  Kr) grows much faster to 
infinity than In 1/r, as r ~ 0 . ,  when K=Fn{lx[~=l}. Hence by the corollary of  
Theorem 2.4 it follows that f ~  BMO. 

Let I=[a, a+r]• b+r], a > 0  be a cube in G such that f ~ 0  on I. Then 
r<=2. e -1/" and 

1 ~ + r f a a + r  
~?(f, I )  <= 7 "  [g(Xl)--g(x2) Idxx dx~ <= r.  e x/" <-- 2, 

Hence fEBMO(G)  and [[fll,,a<=2. Let K =  F n  {[x] <-- l }, then f ( K r ) = 0  and 
IIr r > 0 .  
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T h u s  we  ge t  w i t h  c~= , O < r < e  -2,  

Q ( f ,  Kr) >~ c .  t _ ~ ) e l l ,  d t  >= __.c In , 

a n d  h e n c e  Q ( f ,  K , ) / l n  1 / r ~ ,  r->O. T h i s  c o m p l e t e s  t h e  e x a m p l e .  
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