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basis in/-/1 
P. Wojtaszczyk 

It was an open question i f / / 1  has an unconditional basis (cf. [6], [9] p. 75). 
The positive answer was recently provided by B. Maurey [10], but his proof does 
not indicate how to construct such a basis. Later L. Carleson [2] constructed an 
explicite sequence in BMO whose biorthogonal functionals form an unconditional 
basis in H1. In the present note we apply Carleson's proof to the Franklin system. 
In this way we provide a new unconditional basis for/-/1 and we obtain new informa- 
tion about the Franklin system. 

Our proof is a minor modification of Carleson's but orthonormality of Franklin 
functions permits us to replace the most delicate part of Carleson's considerations 
by much simpler argument. 

The Franklin system is an orthonormal set of piecewise linear functions on 
interval [0, 1]. We will index those functions with dyadic intervals. If  _v= 
( j2  -k, ( j + l ) 2  -k) k = 0 ,  1, 2 . . . . .  j = 0 ,  1, ..., 2 k - l ,  then ~ is a piecewise linear 
function having nodes at points 

and 

i2 -(k+l) ,  i = O, 1, ..., 2 j+2  

i2 -k, i = i + 2  . . . . .  2 k. 

The first two Franklin functions, i.e. the constant function and the function 

21/3 (x-1 /2)  are not covered by this notation, but it does not matter. The letter 
v, _w, z will always stand for dyadic intervals. 

The Franklin system was investigated in detail by Z. Ciesielski [3] and [4]. 
In particular he proved the estimates (1) and (2) (cf. [4] Th. 1) which are basic for 
our work. Let us introduce the following notation: 
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If  t is a point or I is an interval in [0, 1] and _v is a dyadic interval then 

r(t, v) = d(t, V)pV[ -~ 

r(I, v) = d(I, _v)l_v1-1 

where d is the usual distance and l_v[ denotes the length of  _v. 
The estimates of  Ciesielski are: there exist a constant q, 0 < q <  1 and a con- 

stant C such that 

(1) IfAt)l < C--C--qr(t,-~) 
- = I_vl  

(2) If~_(q)-~(t~)t <- C Iv l-a/2)l-t2lq(tq, t~l,, . 

We will work with the space BMO of functions of bounded mean oscillation 
on interval [0, 1]. Let us recall that f E B M O  if 

1 1 . f  sup L f - - ~ J  <co. Ic[O, 11 ~ I 
It is known that 

sup (~/~ f /  f--' "fir2) 1/2 

is an equivalent norm on BMO. 
Our Ha is an atomic Ha. Let us recall that an atom is a func t ionfwi th  s u p p f c I  

such that [f(t)l<=lI[ -1 and f~ f=O.  We say that fCH1 if and only if J - - Z a , f ~  
where fi are atoms and ~ lail<~. The norm is defined as infimum over all such 
representations of ~ [ai[. The Fefferman--Stein theorem asserts that such //1 
coincides with the space of  functions integrable together with its Hilbert transform 
and that H ~ = B M O .  Moreover if VMO denotes the BMO closure of  continuous 
functions we have VMO*=H1.  The excellent reference for all this is [5]. 

Our main result is the following 

Theorem. The BMO norm of  f = ~  ( f  f~) f ,_  is equivalent to 

(l@ ~ )112 
sup w 

In particular the Franklin system is an unconditional basis in VMO and 1-11. 
The proof  of the above Theorem is contained in the following three lemmas. 

Lemma 1. I f  a sequence {a(_v)} satisfies 

(3) ~,e~_~ ]a(-v)[ 2 ~ Al-w[ for all _w 

then f = ~  a(v_)~EBMO and IIflIBMo~C=C(A). 
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Proof. Let us fix an arbitrary interval Ic [0 ,  1] and take two adjacent dyadic 
intervals _Wl and !_v2 such that Iw~l=/w~.l, _Wx, _w2c4I and W=_WlWW~2I. Let us 
decompose 

f =  Z ~ w + Z ~ n w = ~  +Z~:I~_I>I,I a(_v)~ = Z l + Z 2 +  Z~. 
[Vl~til 

�9 a _ _ _ If  we write ~ 1 =  (W_)fw+Z~=~, a(v_')~+~z_,~_=~_~a(~)f~ (the first summand does 
not appear if W is not a dyadic interval) we infer from (3) 

(4) f, IZ,?<__ f [z2<= A(2+]/2) !I]. 

Observe that (3) implies la(_v)12=<Alvt. For x~I we have by (1) 

(5) [Ze(X)[ <-- Z ]a (_v)[ I/~_(x)l <-- A ZI,_,I~_I,I I-v[ I/2 Zenw=o  [f~(x)l ~ CA. 
[_v] =const 

If we fix Xo~I we obtain using (2) 

]Z3 (x)-- Z3(Xo)l <= Z_~: !_~l->l,I ]a (_v) I tA(x)--f_~ (Xo)] 

(6) <_- A ZIEI>iI] [_Vl 1/2 Z [s IV1-3/'9 I l lq r(l'v) ~ CAIII Z l v l > J l  !-UI-1 ~ CA. 

Clearly (4), (5) and (6) implies 

T h i s  completes the proof of the Lemma. 

Lemma 2. II/~ll.l~Cl_vl 1/2. 

Proof Let us consider the space of all mean zero step functions constant 
on intervals (k2 -~, (k+  1)2 -N) k=0 ,  1, ..., 2 N-  l, where IPi=2-N- 

There exists a system of functions in this space {Z~} j = l ,  2 . . . . .  2 N-k, 

k = 1, 2 . . . . .  N -  1 satisfying the following conditions: 
.k, 2--N+k k [0, 1], in particular supports (i) lsupp Zjl = and for every k, Uj supp Zj = 

of zk and g ] are disjoint for s e j  
(ii) Z~ takes only the values O, + 1 and - 1  

.k+l k (iii) Zj is constant on supports of all Z~. 
By zko we denote such Z~ that supp Z~ D _v. 

k (v) for each k the supports of Zj are intervals, except for at most one function 
k ~  k Z~ Z~. For this function k _ Z~= 1 is an interval adjacent from the left to supp Z~ 

and Z ~ = -  1 is an interval adjacent from the right to supp Z~. 
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Remark, Condition (iv) is the crucial one. The rest is to ensure that we get 
the orthogonal, Haar-like system. 

We present only the construction of our system. It is obvious that conditions 
(i)----(v) will be satisfied. 

To start the inductive proof we define 

! for 2 j 2 - N < t < ( 2 j + l ) 2  -N 
z}(t) = - for (2j+1)2 - s  < t <  (2j+2)2 -N 

otherwise. 

Having constructed k, .k+l Xj S we define zj as follows: 
a) If  supp zk is an interval adjacent to an endpoint of [0, 1] we put 

{ i f~ t ' suppxkj  -1 
(*)  x k + l ( t ) = -  for tCsuppzkj 

otherwise. 

b) If  supp X k is not adjacent to an endpoint of [0, 1] we consider two cases: 
b.1. There exists X k, the function with disjoint support. We define 

1 for tEsuppz k 

~ + l ( t ) =  - 1  for /~suppz k 
0 otherwise. 

The rest of Xk.+~'S j we define as in ( . )  whenever it is possible (i.e. we have to keep 
the supports disjoint from the support of X TM). The union of supports of xk.+I'sj 
SO defined is either [0, 1], in this case the construction is finished, or we have left 

k k4-1 supp Z k and supp Xi+3, adjacent from the left and from the right to the supp Z_~' �9 
In this case we define 

1 for t~suppx k 
xk+l(t) = - 1  for t~supp ~j+3k 

0 otherwise. 

k ~  k k b.2. There is no X k. We pick Xj Ze with supp Zj closest to _v. We define 

1 for tEsuppx k 

~ + l ( t ) =  - 1  for tEsupp~  
0 otherwise. 

"l~le rest of the construction is done as in b.1. 
Now we are ready to estimate H fElln 1- By h~_ we will denote the Haar func- 

tion such that supp h~=w,  normalised in L~ .  Since k _ _ I_ 1 u {xAj ,  {1 } is  

a complete orthogonal system and each X~ and h~_ when normalised in L1 is a sum 



The Franklin system is an unconditional basis in Hx 297 

of  at  most  two atoms, we have to show 

Z~_.,~_.<z, f f,_h~ + Z~,j f 4z~ <= C[-/)[I/g" 

We will estimate each sum separately. Since f_o is linear on each _w with l w]<t_v] 
we have 

<- Zi_~l<i_~l Zz:l_~l=l_< Z ~ c ~  [-wl ~ l-v[ -3/2 q'~'-~) 

--< Zl~_l<l~l Zz:lzl=/_~l q'(-~'m I_wl 1~1 -a!2 

<= czj~l<~_~ l_w] l_vr - ' /2  --< cl_vl 1/~. 

The second sum we write as 

Z, ff_.~ + Z' ff_oz~ 
To estimate it we note that  f rom (1) follows 

(7) ./'to, 1]~w ILl  ~ C ]_/3]1/2 q .(to, 1]\_~,. 

Since fe is orthogonal  to constant  we obtain 

f~ { I }141 f ') = k k "<: Z k  I-l) 1112 q ~ -  " ~  C I 1 ) l l / 2  < Z k 0,1]~ Z v=x v v  = = -  - " 

The last term is estimated as follows 

* k -< Z k Z fLzj l= .f[o,~,\,....oILI 
C [_/3[ 1/2 Z k q(~-2) _< C [_/)t 1/2. 

L e m m a 3 .  There exists a constant K such that for f6BMO,  I lf l lnMo=l,  
f = ~ e  a(v_)~ we have 

~_~c_~]a(_v)] 2 <= Kl_w I for all _w. 

Proof. For  fixed w we write 

f =  Ze<_~ + Z_~:lzl~_lw_l + Z~_:I',>[_~I a (_v)f~ = Z I + Z 2 + Z a  
vCw 

We will establish the following estimates 

(8) f ~  Z~ <= c I_wl 
1 "X1/2 

i (9) iZ~ = 
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For Xo and x in _w 

(10) ]Z3(xo)- Z~(x)[ <= c. 
To prove (8) we use (7) and Lemma 2 to obtain 

f~ Zlf  <- Z~_c~_[a(v-)[lf~_~ = Z~_=~_f.(-~)Ift0,1~\wf_~[ 
C Z]v[~l~,v] 1_/3] 1/2 ZvcE ]_v]l/2q'(t~ ~,~-) 

Iv_[ = e o n s t  

< cZ]_~ Ipl < Cl_wl = < [ w  I = . 

To prove (9) we observe that for I_vl<lw I 

(11) fw 1413 <- C q,(~_,o_) 

s o  

(]-~ /) I/2 f"~l f [fv[2} 1/2 1 ~ 1Z212)1/2 ~ C Zv:[-vl-~lw[- tlw[ jw 
_yew 

-<- CZL~:_=~k lvl 1/~ I-w[ -1/~ Zz:l_~=oonst q,(~,~/2 <= C. 
_vCw 

To prove (10) we use Lemma 2 and argue exactly as in (6). Using (8), (9) and 
(10) we infer that for fixed xo~_w 

1 
) < c. 3 ( X o  - -  

This and the definition of  the B M O norm yields 

I w aI/2 
(12) ~ f_~ I f -  Z~(xo)l=J <-- c. 

From (9), (10) and (12) we obtain 

f_~ [Zll 2<= CI-w]" 

Since ~ec,,-la(v-)12--f~o IZll in order to finish the proof we have to show that 
f~0:r~ IZll~c!-wl. Using (11) we have 

(fto,11\~_lZ112) 1/2 <= Z,cw_ _ a(v-)l(fto 1]\va__ [fv]2) 1/2_ 
<- C ~_=~ [v_[1/2q'(t~ <= C [_w[ 1/2. 

This finishes the proof of the Lemma and of the Theorem. 

Remark 1. Our theorem readily yields an unconditional basis in H~(D), the 
space of analytic functions in the unit disc, such that 

1 r2~ 
sup --x---Jo [f(reit)[ dt  < oo. 
r < l  L ~  
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One has to take the system G, defined by S. V. Bo6kariov [1] as a basis for the disc 
algebra. We also obtain that the natural predual of Hi(D), namely C(T)/A, has 
an unconditional basis. This space can be identified (cf. [12]) with the space of 
compact Hankel operators. 

The following Proposition shows the non-isometric nature of this result (for 
relevant definitions and concepts cf. [8]). 

Proposition 1. There exist~ a constant c~1.15 such that i f  the space HI(D) 
is isometric to a subspace of a Banach space X with an unconditional basis (e,), then 
ubc (en)-> c. 

Pro@ Since (z"+z 2") tends weakly to zero in Hi(D), the standard gliding 
hump argument shows that ubc(e,) is at least the ratio between ]ll+z"+z2"][ 
and ]l 1--z"-z~"H. Those norms are routinely estimated and the numerical calcula- 
tion yields the estimate for c. 

The fact that there is an orthonormal system which is an unconditional basis 
for H~(D) allows us to conclude by interpolation that there exists a constant C such 
that ubc (Hp(D))<=C for l<_-p~2. This contrasts the situation for Lp and allows 
us to give a partial answer to Problem 4.1 of [6]. 

Proposition 2, The Banach--Mazur distance between any subspace of Hp(D) 
and Lp is at least C/(p-1)  for l<p<=2. 

Proof. Use the fact that the Haar basis is precisely reproducible in Lp ([7] 
Th. 4.1) and the fact that the unconditionality constant of this basis in Lp is of order 
1 / ( p - l )  for l<p-<2.  

Actually, in the above proof we need only that Hp(D) 1 _<-pN2 embeds with 
uniform constants into a space with unconditionally monotone basis. This fact 
follows from Stein's theorem (cf. [13] or [5] Th. 1.20), Theorem 1.1 of [11] and 
Theorem 1.g.5 of [8]. 

Remark 2. Since we can interpolate between HI and L2 obtaining Lp (cf. [5] 
Th. D) we infer that the Franklin system is an unconditional basis for Lp, 1 <p<~o.  
This fact was first proved by Bo6kariov [1]. 

Let us now consider the space HI&), the martingale Hi-space connected with 
the canonical dyadic martingale (cf. [10]). The Haar system is obviously an uncon- 
ditional basis in Hx(o-) and if we express the norm of a function in BMO (a) in 
terms of its Fourier--Haar coefficients we see that the Franklin system in //1 i~ 
equivalent to the Haar system in Hi(a). The system constructed by Carleson [2] 
also enjoys this property. So we obtain an explicite isomorphism between Hx(a) 
and/-/1. 
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Added in p r o o f  (Aug.  3, 1982). M u c h  s impler  p roof s  o f  L e m m a  2 are  known  

now. Some can  be found  in S-Y. A.  Chang- - -Z .  Ciesielski  "Sp l ine  charac te r i sa t ions  

o f  H 1 ' '  and  in the  pape r  by  the au tho r  "Hp- spaces ,  p<_--1, and  spline systems".  

This  pape r  by the  au thor  con ta ins  results  for  splines o f  h igher  o rde r  a n d  p<_- 1 as 

well as the references to fu r the r  results  a long  this lines by  S. Sj61in, J-O. S t romberg  

and  others.  

References 

I. BOCKARIOV, S. V., Existence of a basis in the space of functions analytic in the disc and 
some properties of the Franklin system, Mat. Sb. N.S. 95 (137) (1974) pp. 3--18 - 
Math. USSR Sbornik 24 (1974) pp. 1--16. 

2. CARLESON, L., An explicit unconditional basis in 1tl, Bull. des Sciences Mathematiques, 
104 (1980) pp. 405~16.  

3. CIESIELSKI, Z., Properties of the orthonormal Franklin system, Studia Math. 23 (1963) 
pp. 141--157. 

4. CIESIELSKI, Z., Properties of the orthonormal Franklin system II, Studia Math. 27 (1966), 
pp. 289--323. 

5. COIFMAN R. R. and WEiss, G., Extensions of Hardy spaces and their use in analysis, Bull. 
Amer. Math. Soc. 83 (1977) pp. 569--645. 

6. KWAPIEI~, S. and PEtCZYr~SKI, A., Some linear topological properties of the Hardy spaces 
l ip,  Compositio Math. 33 (1976) pp. 261--288. 

7. LINDENSTRAUSS, J. and PELCZYI~ISKI, A., Contributions to the theory of the classical Banach 
spaces, J. Funct. Anal. 8 (1971) pp. 225--249. 

8. LINDENSTRAUSS, J. and TZAFRIRI, L., Classical Banach spaces I, Springer-Verlag 1977. 
9. Mathematical developments arising from Hilbert problems, Proc. of Syrup. in pure math. 

XXVIII, Rhode Island 1976. 
10. MAUREY, B. Isomorphismes entre espaces Ha, Acta Math. 145 (1980) pp. 79--120. 
11. PE~CZYI~SKI, A. and WOJTASZCZYK, P., Banach spaces with finite dimensional expansions 

of identity and universal bases of finite dimensional subspaces, Studia Math. 50 
(1971) pp, 91--108. 

12. SARASON, D., Function theory on the unite circle, Notes from conference in Blacksburg, 
Virginia, 1978. 

13. STEIN, E., Classes Hv, multiplicateurs et fonctions de Littlewood--Paley, C. R. Acad. Sci. 
Paris Serie A--B,  263 (1966) A716--719. 

ReceivedFebruary 10, 1980 Institute of Mathematics 
Polish Academy of Sciences 
U1. Sniadeckich 8 
WARSAW 
Poland 


