
Schatten classes and commutators of singular 
integral operators 

Svante Janson and Thomas H. Wolff* 

Let T be a Caideron---Zygmund transform - -  a singular integral operator 
with kernel K(x-y ) ,  where K is homogeneous of degree - n  with mean value 
zero on spheres centered at the origin. We assume K is C = except at the origin 
and not identically zero. I f  jrCL 1 , .  Joc',rR"~, let M I be pointwise multiplication by f 
and consider the commutator C I =  M e T - T M  I. Explicitly this is 

C s ,;o(x) = fR .K(x -y ) ( f ( x ) - f ( y ) )q~(y )dy .  

It follows from the Calderon--Zygmund theory ([13], Ch. 2) that the (priacipal- 
value) integral converges a.e. if ~o is a bounded function with compact support. 
Uchiyama [14] proved that C I extends to a bounded operator on L2(R ") precisely 
when fEBMO (R"), sharpening a result by Coifman, Rochberg and Weiss [3]. 

We will characterize functions f for which C~, belongs to the Schatten class 
S ~ in the case n ~ 2  as those in a certain Besov space. We recall the definition 
of S ~. If  R is any compact operator on Hilbert space then R* R is compact, positive 
and therefore diagonalizable. Let {S,(R)} be the sequence of square roots of eigen- 
values of R'R ,  counted according to multiplicity. For 0 < p < ~  one says that 
RCS p if {S,(R)}EI p. In this paper, the endpoint class S = is the class of bounded 
operators. For the theory of S ~ classes, see [12]. We will require the following 
facts. 

(1) If  p=>l, then RCS*' if and only if ~ l (Ren[ f . ) lP<~  for all choices of 
orthonormal bases {e,}, {f,}. 

(2) If  p=>2 and RES p then ~'l[Re, l[P<o~ for all choices of orthonormal 
basis {e,}. 

(3) If  0 < p < ~ ,  0 < q ~ o  let SPq={REB(H)IS,,(R)EI pq} where I pq is the 
Lorentz space [1]. We take S===S==B(H) but do not define S =q if q<o~. 
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The classes S pq may then be interpolated by the real method; in fact [S plq~, sP~q,]o~= 
1 1 - 0  0 

S pq if Pa#P2 and - ~--- ([1], [12]). Note SPP=S t'. 
P Pl P2 

(4) For p-->2 there is a sufficient condition due to Russo [1 I] for an integral 
operator to belong to SL If G: M• for some measure space (M, #), let 

G*(x, y)=G(y,x) .  Let LI'(L q) be the mixed norm space 

and define 

LP(Lq) symm = LP(Lq)r~LP(Lq) *, i.e. G~LP(Lq) symm iff G, G*QLP(Lq). 

We have then 

1 1 
< <co - I and Theorem A (Russo). I f  G~LP(LP') ~ymm with 2=p_- and ~ + ~ - 7 -  

/ ' / /  

if R~o(x)=f G(x,y)cp(y)d#(y) for ~o~L 2, then RCSP. l 

For p = 2  (Hilbert--Schmidt operators) or p=o~ this is classical. 
The Besov spaces we use are the homogeneous ones. We give the definition of 

these spaces and refer to [4], [7], [13] for further discussion. Note that [13] only 
treats the analogous non-homogeneous spaces, 

Definition. Suppose l<-_p,q<=~o and 0 < ~ < 1 .  Let 1 , fCLloe(R ). Then fbelongs 
to the Besov space A~ q i f  and only i f  

I l f (x+ t)-f(x)ll[p(R, a~) dt < ~o. 
f R, ltln+qa 

When q=~o this becomes IIf(x+t)--f(x)llL,(R,,ax)---O(lt]'). One makes 
analogous definitions for c~->l with the first difference f ( x + t ) - f ( x )  replaced by 
a difference of order [c~] + 1. We will need to interpolate Besov spaces by the real 
method. This is discussed in [1] and [7]. 

In case n =  1, the question of when the commutator operators C~ belong to 
S p has been considered by Howland [5], Peller [8], Coifman--Rochberg [2] and 
Roehberg [10]. In the one-dimensional case the Hilbert transform is the only Calde- 
ron--Zygmund operator and the commutators are 

Ci~o(x ) = P.V. f R f ( x ) - f  (y) q~(y)dy. 
x - y  

Because of the characterization of Hilbert--Schmidt operators in terms of their 
kernels it is immediate that C ~  S ~ if and only if ~ f~ Aa/~. For others values of p 
the answer is due to Peller [8] who proved the following. 
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T h e o r e m B  (Peller). I f  n = l  and l<=p<~ then CIES p if  and only i f  
fCA pp J, 1/., 1 

Peller actually worked on the circle. Coifinan and Rochberg [2] (when p =  1) 
and Rochberg [10] (for arbitrary p :> 1) gave another proof  on the line based on a 

PP molecular decomposition of  A1/p. Peller [8] and Rochberg [10] also showed that 
f~AlP/~ implies CyES p when p < l ,  but it is not known whether the converse 
is true. 

Rochberg asked whether there is an n-dimensional version of Theorem B. The 
result of  this paper is the following. 

Theorem 1. Suppose n>=2, 0 < p < ~  and fCL~oe(R" ). Then necessary and suffi- 
cient conditions for CyC S p are 

f constant, i f  p ~ n 

lEA pp, i f  p > n .  II J' n/p 

Our methods do not work when n = l  and in fact our result differs somewhat 
from Pellet's and Rochberg's. If n :  1 and f~ Co, Cy will belong to all S ~ classes, 
p > 0 ,  while if n > l ,  Cy will belong to S ~ only when p > n .  To see why this is so 
consider the somewhat simpler periodic case and let f ( t ) = e  ~k't. Then Cye~Jt= 
(m(j)-m(k+j))e i(k+j)'t with m=/~ and thus {S j (Cf ) }  ~ - { [ m ( j ) - m ( k + j ) [ } j e z . .  

If  n = l ,  r n ( j ) = c  sign ( j )  and only finitely many Sj(Cy) are non-zero, but if n>=2, 
t m ( j ) - m ( k + j ) [  is usually about ]j1-1, and ~Y Ijl - p = ~  for p<=n. 

In Section 1 we prove that p > n  and fCA,P/~ imply CyES p. In Section 2 
we prove the converse for p > n .  The case p<-n requires an additional argument 
(based on the preceding example) which we give in Section 3. 

1~ 

If  X 0 and X1 are (compatible) Banach spaces, then (X0, X1)oq is the inter- 
polation space obtained by the real method as described in [1]. L ~" is the Lorentz 
space, L ~ (L q') the corresponding mixed norm space. L p (L~') ~ymm = L p (Lq')caL p (Lq') *. 
The letter C will denote a constant. 

Since we are assuming p > n ~ 2  it is natural to use Russo's Theorem A to 
prove sufficiency in Theorem 1. In fact we don' t  use Theorem A as it stands but 
rather a variant involving weak type spaces. Russo proved Theorem A by complex 
interpolation and we use the analogous real interpolation argument. 

1 1 
Lemma 1. I f  p > 2  and p + ) - - ; = l  then 

L p (L p'**)sy~ c (L** (L~) sy~'~, L ~ (LZ))o=, where 0 = 2]p. 
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Proof. Fix fCLP(LP'**) symm. For t > 0  let 

K(O = inf (ll b/IL~(L')~ymm+ t IlgllL'(r'): b+ g = f ) .  

We must show to2/PK(t) is bounded as t varies. Let f ,=f(x ,  .) etc., and take 
g(x, y)=sign f(x,  y). rain (If(x, Y)I, ~) where 

1 = t-2/"max(ilf, lif.~,~, Ilfyll[~,~), and b = f - - g .  

To estimate b, fix x and let Ex be the distribution function of  If ,  I; then 

IIb~llL, <= f .>,-2~.. ll~'xllL,| E.(s) as 

p' 
<= llf~llL~.~ f,..,_,,,, z ~, s-P'ds 

�9 1 t ~Ip 
}lf~}}~;" ~ ( t-2/," }lf~l}~,'@-" -- p' -- 1 p" -- 1 " 

One obviously has the same estimate for I[br[IL1 SO I[bllL~(Lx)symm__C't . 
As to g, 

f f  lgl2dxdy <= f f~<t-2/,,,ll.rxH~,,,=2sE~,(s)dsdx+f f~<,-=,~,, i,f/,s 

and 

f fs<,_2,,..,~sx,,L. 2s E,(s)dsdx <= 2 f t f f . f f ; .  = SI--P" dsdx 

By symmetry 

2 2 

2 m p ~ 

2 2 
f f  lgl2axaY <= 2-p' t-7'2-"(f  Iif.llf.,,=ax+ ftlf, tlf ,, ay) 

2 
----1 

so that  ]IglIL=(L=) C t  p P12 <= [Ifllz,,(L,,, ~)symm' completing the proof of the lemma. II 

The following version of Russo's theorem now follows immediately by inter- 
polation between p = 2  and p=oo. 

1 1 
Lemma 2. Suppose (M, #) is a measure space, 2 < p < ~ ,  p+)--;  =1,  and 

G: M X M - * C  belongs to L P ( L I " ~ )  symm. Then the integral operator on L ~ )  with 
kernel G belongs to S p~176 



Schatten classes and commutators of singular integral operators 305 

Proof o f  sufficiency in Theorem 1. Fix p > n  and fEA ~ By definition of 3'  n/p" 

v, If(x) - f ( y ) [  2, 1 2 
A./., ix_y[~./~ EL~(LV), and clearly [x-Yl--i--"6L~(L q~) w h e r e - - = l - - - . q  P 

f ( x )  --f(y) _ .  p . .  v, ='. 
For any functions g and h, ]lgh[[v,=<=Cllgllpl[hltq=. So ~ - - ~  ~L (L ). 

Hence ( f ( x ) - f ( y ) ) K ( x - y ) E L V ( L  v'=) and by Lemma 2, CyES w'. 
We use another interpolation argument to prove CIE S p. Given p > n  choose 

1 - 0  0 1 
Pl, P2 with n<pl<p<p2<o~ and let 0 satisfy -~ - Then 

Pl P2 P 
(S v*~, SV~)ov=S v ([1], [12])and [ A P x P l  AP2Pz'I -- APP "~*"/Vl' "*,/v, Jov--"-,/t, ([1]) so the map f,.--..Cf, 
which is bounded from AV~ "/Ps to SVs - ( j =  1, 2) is also bounded from A,P/~ to S v. 1 

. 

Assume that CfES v and p>n .  We will adapt the proof  in [6] and esti- 
mate the mean oscillation on all cubes simultaneously. For any v ( R  n and kEZ  
let Jk ~ be the dyadic partition of R" into cubes with vertices at {v+2-km, mEZn}. 
Let f~ (x )=2  "k f a f ( y ) d y ,  if x~QCJ~. For QEJk ~, choose s o among the func- 
tions that are O off Q, + 1 on exactly 2 "-1 of  the 2n subcubes of Q belonging to 
J~+l,  and - 1  on the others such that Ifef(x)so-(x)dx I is maximal. Then 

2"f  o- [f~--f~+ll v <: C(2"kmax {Iff l:s as above}) v =  C{2  "k f o- fso- },', 

where C depends only on ; and , ,  since 2 "k maxs Iffsl and (2 "k fo- Sk+, c~ _r VV/V, 
are norms on the same 2"-1-dimensional  vector space. 

Choose z, 0 <  Iz]<l, such that K(z)~O. There exists a neighborhood i x - z [ <  

61/-n where 1/K(x) can be expressed as an absolutely convergent Fourier series 
~uc e iv,,,'x for some vectors v,,. 

m 

E For  Q J~ ,  let te(x)=zo-(x+2 -kS-~z),  where go- is the characteristic func- 
tion. Then, since f se(x)dx=O, 

f fso- = 2 "k f f  (f(x)--f(y))sQ (x)to- (y) dx dy 

= f f  ( f (x)  --f(y)) 6 -" 2-'a' K(x -- y) K(b2k(x_y))  SQ(X) to.(y ) dx dy 

= C f f  ( f(x)  - f ( y ) )  K(x--  y ) ~ m  C,, e i~2~ ~'~'(x-r)SQ (X) to- (y) dx dy. 

Let gem(X) = 2"k/2eia2~"'XSo(X) and ho-m(y ) = 2"k/2e-lmko~'Yto-(y). Then 

2 "t' f f s  e = c f f  ( f(x)  - - f (y) )K(x--  y) .~,,, c mgO-,,, (x) ho-,,, (y) dx dy 

C ~m C~,~ (g~lCf hQm}. 
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For each m,  {gQm} and {hQm } are orthonormal sequences as Q ranges over 
The condition CyE S p and Minkowski's inequality give 

(Za~4] 2~ f fsal"):" <= c , ~ . [ C m l ( . ~ Q l ( g Q m l C  f ham>],) : / ,  ~ C.  

Thus 

2"kf IfW+:-ff, f = ZQ~ty,2 "k fQ [f:+:--fk ~ I" --< c,  

i.e. IIf{+:-f{]lp <= C2 -"kIp. 

Since f ~ f  a.e. as k - ~ ,  summation of  the geometric series yields 

(1) IIf -A~ll < p = C 2  -nk / ' .  

This estimate only implies that fE A~/~. (Cf. the final step below of  the proof  
that PP fE A./p.) To improve it we use the S p property once more. Let N be a large 
number to be chosen later. For any cube QEJk ~, let aQ=(2"kfQ [f--fkV]P) :/p 
(the L p mean oscillation) and let ga (x)= 2"k/2 sa (x ) and ha (y) = 2nk/2 Za (Y + 2 N--k z ). 
Also, for j = 0  . . . .  , N - 1 ,  let Qj=2JQ-(2 j -  1)2-gz and Q~=2JQ-(2N-2J+ 1)2-kz, 
where 2JQ has the same center as Q and side 2 j-k. Then 

I f  Cfga(x)ha(x) ax + I~(z) 2 "`k-N, f f(x)sa(x ) dx I 

= [ff( f(x)--f(y))(K(x--y)--K(2N-kz))ga(y)ha(x)dxdy] 

<---- C2-("+:)(N-t) f f  [x--y--2N-kz[ [f(x)--f(y)[ Iga(Y) ha(x)] dx dy 

< c2--k2("+X)(k--N)2"kf fa = Q o [f(x)--f(y)[ dr dy 

~z C 2 - ( n + a ) N  ZNo-:(aQ7 +aoj) 

where the last inequality follows from standard arguments with the mean oscilla- 
tion. Hence 

2"k f f m  <-- C2 ~N [(Cyga[ha)[+C2 -N ZNo -: (aQj+aQ~). 

Fix L, M and v and let Q range over J ~  for L<=k~M. {go} is an orthonormal 
sequence. {ha} is not, but Ilhall = 1 and thus 

.~ [(C.rgQ[hQ)]P ~ Ilff  gall" <- C. 

(Here we use p->2). Taking the l" norms over these Q we obtain by Minkowski's 
inequality 

M nk V v p a/p : (Ze2.~fa (ZL 2 I IS+: - f~ l l , )  Ifr :/~ 

C ( Z a l 2 n k  f f s a f )  1/p 

< G + c 2 -  Z ; S  M 
= = k=L ZQ~J aQj  -I- @Qj); �9 
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As Q ranges over ,/{, {Q j} and {QS} cover R" 2 "j times each (for fixed j, k), 
and there exist v{... v2.j j +~ translates of v by fixed vectors) such that Qj and Q~. 

range over (J J2,'_~.. Hence we obtain 

(2) 
(•'M•,k = Ilf--f~+lllp) + ( ~ L  2"k ~.."L -- Ilf--f~[]~) 1/p < ( ~  2"k' ~ p lip M ilf~+x_f~llpp)i/p 

<= ,;,N-I[ s,M ~2"J+~ .~ a~)l/p" ( Z ~  2"k [lf--f:+~ll~) I/p +Cu+C2-Nz . . j="  t~--k=Z Z,=x z~O~lk{ . 
- - J  

The next step is to average over all dyadic partitions. Define 

4 = llI -~ f ,  IIf-Y~ tl f, dv = Ill -~ f ,  2 -  "~ (ZQ,j,~ a~ d,,) 

for any dyadic cube I of side =>2 -k. Ak is independent of the choice of L since 
ofk~'=J~ ' if v - - w c 2 - k z  ". Choose I large enough and take the L p norms with 
respect to ]I]-~Zz(v)dv in (2): 

( ~ t 2 " k A k )  lit' <= (~t2"kAk+I)I /P+CN+C2-N ~ ' = ~  (~K=LM 2,J+12,(k_.i)Ak_j)l/t, 

~- \-~aL+I(s'M+I 2n(k-1) Ak)l/"+CNq-C2-~" ZNo -1 ( 2"j ~L-jM-J 2,gAg)lip 

"<= 2 - "/p ( ~ + 1  2"k Ak) lip + (2"MA~t + 1) 1/p ~- CN 

+ C2-u  ~ 0  N-1 2 " J / P ( ( ~  -i2"kA kJ'~x/P~-tx'L-t, t ~ L - j  2"kAk) l/p} 

(2-"/0 + C2- u 2,m,) ( ~ t  2,kAk)t/, + CN, 

since 2"kAk<=C by (1). I f  N is chosen large enough then 2-"/P+C2 -uO-"/p) <1. 
(Here we use p>n.)  Consequently ~ 2"kAk<=C, C independent of L and M -  
i.e., ~ =  2"kAk<~. 

Finally we show that this condition on the mean oscillation of f over cubes 
implies vp fE.A,,/p. A similar characterization of Lipschitz spaces has been given by 
Ricci and Taibleson [9]. 

Again, let I be a large dyadic cube. If  ] x - y l < 2  -k-~, the probability that 
x and y belong to the same cube in J ~  (for random v) is at least 2-".  Hence 

ffl,,-rl<2-~-~ I f (x ) - f (Y)[  p dx dy <= 2" Exl-, f , ~ , ~  f ~ f ~ l f ( x ) - f ( y ) l  p dx dy dv 

<- c tiI -~ f ,  2Jg fa  fQ (If(x)-f~ (x)]~ + Tf~ (y ) - f (y )  ?) dx dy dv 

= c2-"k l l l -* f~  f.~ [ f ( x ) - f~ (x )?  dx dv 

= C2-"kAk . 
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Therefore 

f f [f(x)~--f(y)I p , , axay <-- c f f  z~"-:l~-yi-~ 2 2"~ [f(x)-f(y)lP dxdy 

= C Z  2~"kfflxLrl<~-~ [f(x)-f(y)f dx dy 

<= C ~ 2"kAk <~.  

This completes the proof that fE A,/p.PP 

. 

We need to prove that CyES p only when f is constant. Suppose f i s  not 
constant. Since non-constant polynomials do not belong to BMO there is a point 
z0r in the support of the Fourier transformf. For some constants k, M<~o we 
will have ]@lf)[<-M[l~ol[o, whenever q~ is atestfunctionsupported in {Yl lY-zo] < 1}. 

I _ l -  

Choose 0 ~ e < m i n  [ + ,  ~ / .  Let I// be a test function with [[~bl[ck=l, supp ~bc 
X ~  

{Y:I ry-z0[<e}, and ( ~ l f ) = B > 0 .  Let 6 be some number to be chosen later, but 
B 

small enough so that Izl<6 implies z+supp ~9 ~ {lY-Z0[<e} and @(y+z)]f(y)) >-~. 

Let m=/~. Then m is homogeneous of degree zero and nonconstant so the 
derivative Dzm is not identically zero. Let V be an open cone with vertex at the 
origin, such that the real part (say) of Dzom is bounded away from zero on Vc~(unit 
ball). Let {x j} be the set of all lattice points whose distance to the complement of 

A 
V is at least 21z0[. Then ]Xj--Xk[~=I (./~k), lm(xj)-m(xj--Zo)[> [xj'-~[ for 

some constant A, and ~ i  ]xjl-"=~~ Define Schwartz functions ~oj by ~bj(y)= 
@(xj - y )  

Ixjl-1 m(y) -m(x j )"  These ~oj are orthogonal since the supports of the @i are dis- 

joint, and if e is small enough they will satisfy []q~j][2_<-l. 

(* )  

Claim. If 6 is small enough and Ix-xi[-<6 then I(Cfq~j) ̂  ( x ) l > - ~  

In fact, 

m ( x -  y ) -  m (x j) 

= Ixjl-~<O(y+x~-x)lf(y)) 

@(y+xj -x )  f (y)  

C 

Ixjl 



Schatten classes and commutators of singular integral operators 309 

N o w  ~ b ( y + x j - x )  is s u p p o r t e d  on  l y - z o ] < e + 6  and  on  this set, all y -der iva-  

1 
rives o f  are  b o u n d e d  by  cons tants  t imes [xi[. So 

m (xi)  - m (x --  y)  

~ b ( y + x i - x  ) ) ~ b ( y + x j - x )  c~ ~ CMIxjl. m(xi)_m(x_y )If(y) <- M m ( x j ) - m ( x - y )  

This proves  the  second  te rm in ( . )  is b o u n d e d  by  B/4lxi] prov ided  6 is small .  

The  first t e rm is a t  least  B/2 [xj[, which  proves  the  claim. 

I t  follows that Zl tCs~oj l l2=Zl l (C/p  ;) 112=cZlxj l  - -~ ,  so ores". I 

Remarks .  The  above  a rgumen t  shows tha t  even i f  f E C o  the  best  one can  

hope  is t ha t  C I C S  n~. F o r  n=>3, one can  show using L e m m a  2 tha t  fCA"~ 1 implies  

C;E S "=. W e  do  no t  k n o w  whether  this  resul t  is t rue  for  n =  2 because  L e m m a  2 

is false for  p---2.  

A col league o f  the referee po in ted  ou t  t ha t  a pseudodi f fe ren t ia l  ope ra to r  ( ~  0) 

o f  symbol  class S -1 is never o f  Schat ten  class S", and  tha t  the  case p<=n of  Theo-  

rem 1 fol lows f rom this. 
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