Schatten classes and commutators of singular integral operators

Svante Janson and Thomas H. Wolff*

Let T be a Calderon-Zygmund transform - a singular integral operator with kernel $K(x-y)$, where K is homogeneous of degree $-n$ with mean value zero on spheres centered at the origin. We assume K is C^{∞} except at the origin and not identically zero. If $f \in L_{\text {loc }}^{1}\left(R^{n}\right)$ let M_{f} be pointwise multiplication by f and consider the commutator $C_{f}=M_{f} T-T M_{f}$. Explicitly this is

$$
C_{f} \varphi(x)=\int_{R^{n}} K(x-y)(f(x)-f(y)) \varphi(y) d y
$$

It follows from the Calderon-Zygmund theory ([13], Ch. 2) that the (principalvalue) integral converges a.e. if φ is a bounded function with compact support. Uchiyama [14] proved that C_{f} extends to a bounded operator on $L^{2}\left(R^{n}\right)$ precisely when $f \in \operatorname{BMO}\left(R^{n}\right)$, sharpening a result by Coifman, Rochberg and Weiss [3].

We will characterize functions f for which C_{f} belongs to the Schatten class S^{p} in the case $n \geqq 2$ as those in a certain Besov space. We recall the definition of S^{p}. If R is any compact operator on Hilbert space then $R^{*} R$ is compact, positive and therefore diagonalizable. Let $\left\{S_{n}(R)\right\}$ be the sequence of square roots of eigenvalues of $R^{*} R$, counted according to multiplicity. For $0<p<\infty$ one says that $R \in S^{p}$ if $\left\{S_{n}(R)\right\} \in l^{p}$. In this paper, the endpoint class S^{∞} is the class of bounded operators. For the theory of S^{p} classes, see [12]. We will require the following facts.
(1) If $p \geqq 1$, then $R \in S^{p}$ if and only if $\sum\left|\left\langle\operatorname{Re}_{n} \mid f_{n}\right\rangle\right|^{p}<\infty$ for all choices of orthonormal bases $\left\{e_{n}\right\},\left\{f_{n}\right\}$.
(2) If $p \geqq 2$ and $R \in S^{p}$ then $\sum\left\|\mathrm{Re}_{n}\right\|^{p}<\infty$ for all choices of orthonormal basis $\left\{e_{n}\right\}$.
(3) If $0<p<\infty, 0<q \leqq \infty$ let $S^{p q}=\left\{R \in B(H) \mid S_{n}(R) \in l^{p q}\right\}$ where $l^{p q}$ is the Lorentz space [1]. We take $S^{\infty \infty}=S^{\infty}=B(H)$ but do not define $S^{\infty q}$ if $q<\infty$.

[^0]The classes $S^{p q}$ may then be interpolated by the real method; in fact $\left[S^{p_{1} q_{1}}, S^{p_{2} q_{2}}\right]_{\theta_{q}}=$ $S^{p q}$ if $p_{1} \neq p_{2}$ and $\frac{1}{p}=\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{2}}$ ([1], [12]). Note $S^{p p}=S^{p}$.
(4) For $p \geqq 2$ there is a sufficient condition due to Russo [11] for an integral operator to belong to S^{p}. If $G: M \times M \rightarrow C$ for some measure space (M, μ), let $G^{*}(x, y)=\overline{G(y, x)}$. Let $L^{p}\left(L^{q}\right)$ be the mixed norm space

$$
\left\{G \mid\left(\int|G(x, y)|^{q} d \mu(y)\right)^{p / q} d \mu(x)<\infty\right\}
$$

and define

$$
L^{p}\left(L^{q}\right)^{\text {symm }}=L^{p}\left(L^{q}\right) \cap L^{p}\left(L^{q}\right)^{*}, \text { i.e. } G \in L^{p}\left(L^{q}\right)^{\text {symm }} \text { iff } G, G^{*} \in L^{p}\left(L^{q}\right)
$$

We have then
Theorem A (Russo). If $G \in L^{p}\left(L^{p^{\prime}}\right)^{\text {symm }}$ with $2 \leqq p \leqq \infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and if $R \varphi(x)=\int G(x, y) \varphi(y) d \mu(y)$ for $\varphi \in L^{2}$, then $R \in S^{p}$.

For $p=2$ (Hilbert-Schmidt operators) or $p=\infty$ this is classical.
The Besov spaces we use are the homogeneous ones. We give the definition of these spaces and refer to [4], [7], [13] for further discussion. Note that [13] only treats the analogous non-homogeneous spaces.

Definition. Suppose $1 \leqq p, q \leqq \infty$ and $0<\alpha<1$. Let $f \in L_{\mathrm{loc}}^{1}\left(R^{n}\right)$. Then f belongs to the Besov space $\Lambda_{\alpha}^{p q}$ if and only if

$$
\int_{R^{n}} \frac{\|f(x+t)-f(x)\|_{L^{p}\left(R^{n}, d x\right)}^{q}}{|t|^{n+q^{x}}} d t<\infty .
$$

When $q=\infty$ this becomes $\|f(x+t)-f(x)\|_{L^{p}\left(R^{n}, d x\right)}=O\left(|t|^{\alpha}\right)$. One makes analogous definitions for $\alpha \geqq 1$ with the first difference $f(x+t)-f(x)$ replaced by a difference of order $[\alpha]+1$. We will need to interpolate Besov spaces by the real method. This is discussed in [1] and [7].

In case $n=1$, the question of when the commutator operators C_{f} belong to S^{p} has been considered by Howland [5], Peller [8], Coifman-Rochberg [2] and Rochberg [10]. In the one-dimensional case the Hilbert transform is the only Calde-ron-Zygmund operator and the commutators are

$$
C_{f} \varphi(x)=\text { P.V. } \int_{R} \frac{f(x)-f(y)}{x-y} \varphi(y) d y .
$$

Because of the characterization of Hilbert-Schmidt operators in terms of their kernels it is immediate that $C_{f} \in S^{2}$ if and only if $f \in \Lambda_{1 / 2}^{22}$. For others values of p the answer is due to Peller [8] who proved the following.

Theorem B (Peller). If $n=1$ and $1 \leqq p<\infty$ then $C_{f} \in S^{p}$ if and only if $f \in \Lambda_{1 / p}^{p p}$.

Peller actually worked on the circle. Coifman and Rochberg [2] (when $p=1$) and Rochberg [10] (for arbitrary $p \geqq 1$) gave another proof on the line based on a molecular decomposition of $\Lambda_{1 / p}^{p p}$. Peller [8] and Rochberg [10] also showed that $f \in \Lambda_{1 / p}^{p p}$ implies $C_{f} \in S^{p}$ when $p<1$, but it is not known whether the converse is true.

Rochberg asked whether there is an n-dimensional version of Theorem B. The result of this paper is the following.

Theorem 1. Suppose $n \geqq 2,0<p<\infty$ and $f \in L_{\mathrm{loc}}^{1}\left(R^{n}\right)$. Then necessary and sufficient conditions for $C_{f} \in S^{p}$ are

$$
\begin{aligned}
& f \text { constant, if } p \leqq n \\
& f \in \Lambda_{n / p}^{p p}, \quad \text { if } p>n .
\end{aligned}
$$

Our methods do not work when $n=1$ and in fact our result differs somewhat from Peller's and Rochberg's. If $n=1$ and $f \in C_{0}^{\infty}, C_{f}$ will belong to all S^{p} classes, $p>0$, while if $n>1, C_{f}$ will belong to S^{p} only when $p>n$. To see why this is so consider the somewhat simpler periodic case and let $f(t)=e^{i k \cdot t}$. Then $C_{f} e^{i j t}=$ $(m(j)-m(k+j)) e^{i(k+j) \cdot t}$ with $m=\hat{K}$ and thus $\left\{S_{j}\left(C_{f}\right)\right\}=\{|m(j)-m(k+j)|\}_{j_{\in} Z^{n}}$. If $n=1, m(j)=c \operatorname{sign}(j)$ and only finitely many $S_{j}\left(C_{f}\right)$ are non-zero, but if $n \geqq 2$, $|m(j)-m(k+j)|$ is usually about $|j|^{-1}$, and $\sum|j|^{-p}=\infty$ for $p \leqq n$.

In Section 1 we prove that $p>n$ and $f \in \Lambda_{n / p}^{p p}$ imply $C_{f} \in S^{p}$. In Section 2 we prove the converse for $p>n$. The case $p \leqq n$ requires an additional argument (based on the preceding example) which we give in Section 3.

1.

If X_{0} and X_{1} are (compatible) Banach spaces, then $\left(X_{0}, X_{1}\right)_{\theta q}$ is the interpolation space obtained by the real method as described in [1]. $L^{q r}$ is the Lorentz space, $L^{p}\left(L^{q r}\right)$ the corresponding mixed norm space. $L^{p}\left(L^{q r}\right)^{\text {symm }}=L^{p}\left(L^{q r}\right) \cap L^{p}\left(L^{q r}\right)^{*}$. The letter C will denote a constant.

Since we are assuming $p>n \supseteqq 2$ it is natural to use Russo's Theorem A to prove sufficiency in Theorem 1. In fact we don't use Theorem A as it stands but rather a variant involving weak type spaces. Russo proved Theorem A by complex interpolation and we use the analogous real interpolation argument.

Lemma 1. If $p>2$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ then

$$
L^{p}\left(L^{p^{\prime \infty}}\right)^{\mathrm{symm}} \subset\left(L^{\infty}\left(L^{1}\right)^{\mathrm{symm}}, L^{2}\left(L^{2}\right)\right)_{\theta \infty}, \text { where } \theta=2 / p
$$

Proof. Fix $f \in L^{p}\left(L^{p / \infty}\right)^{\text {symm }}$. For $t>0$ let

$$
K(t)=\inf \left(\|b\|_{L^{\infty}(L 1)^{\mathrm{symm}}}+t\|g\|_{L^{2}\left(L^{2}\right)}: b+g=f\right)
$$

We must show $t^{-2 / p} K(t)$ is bounded as t varies. Let $f_{x}=f(x, \cdot)$ etc., and take $g(x, y)=\operatorname{sign} f(x, y) \cdot \min (|f(x, y)|, \lambda)$ where

$$
\lambda=t^{-2 / p^{\prime}} \max \left(\left\|f_{x}\right\|_{L^{p^{\prime}}}^{p},\left\|f_{y}\right\|_{L^{p^{\prime}}}^{p}\right), \text { and } b=f-g .
$$

To estimate b, fix x and let E_{x} be the distribution function of $\left|f_{x}\right|$; then

$$
\begin{aligned}
& \left\|b_{x}\right\|_{L^{1}} \leqq \int_{s>t-t^{-2 / p^{\prime}}\left\|f_{x}\right\|_{L^{p^{\prime}}}^{p}} E_{x}(s) d s \\
& \leqq\left\|f_{x}\right\|_{L^{p^{\prime}}}^{p^{\prime}} \int_{s>t^{-2 / p^{\prime}}}\left\|f_{x}\right\|_{L^{p^{\prime}}}^{p} s^{-p^{\prime}} d s \\
& \leqq \frac{1}{p^{\prime}-1}\left\|f_{x}\right\|_{L^{p^{\prime}} \infty}^{p^{\prime}}\left(t^{-2 / p^{\prime}}\left\|f_{x}\right\|_{L^{p^{\prime} \infty}}^{p}\right)^{1-p^{\prime}}=\frac{t^{2 / p}}{p^{\prime}-1}
\end{aligned}
$$

One obviously has the same estimate for $\left\|b_{y}\right\|_{L^{1}}$ so $\|b\|_{L^{\infty}\left(L_{1}\right)}$ symm $\leqq C t^{2 / p}$. As to g,
$\iint|g|^{2} d x d y \leqq \iint_{s<t^{-2 / p},\left\|\mid f_{x}\right\|_{\mathcal{L}^{\prime}, \infty}^{p}} 2 s E_{x}(s) d s d x+\iint_{s<t^{-2 / p^{\prime}}\left\|f_{\boldsymbol{y}}\right\|_{L^{p}, \infty}^{p}} 2 s E_{y}(s) d s d y$ and

$$
\begin{gathered}
\iint_{s<t-2 / p^{\prime}\left\|f_{x}\right\|_{L p^{\prime}+\infty}^{p}} 2 s E_{x}(s) d s d x \leqq 2 \int\left\|f_{x}\right\|_{L^{p^{\prime} \infty}}^{p^{\prime}} \int_{s<t^{-2 / p^{\prime}}\left\|f_{x^{\prime}}\right\|_{L^{p^{\prime}}}^{p}} s^{1-p^{\prime}} d s d x \\
=\frac{2}{2-p^{\prime}} t^{-\frac{2}{p^{\prime}}\left(2-p^{\prime}\right)} \int\left\|f_{x}\right\|_{L^{p^{\prime} \infty}}^{p} d x .
\end{gathered}
$$

By symmetry

$$
\iint|g|^{2} d x d y \leqq \frac{2}{2-p^{\prime}} t-\frac{2}{p^{\prime}}\left(2-p^{\prime}\right)\left(\int\left\|f_{x}\right\|_{L^{p^{\prime} \infty}}^{p} d x+\int\left\|f_{y}\right\|_{L^{p^{\prime}}}^{p} d y\right)
$$

so that $\|g\|_{L^{2}\left(L^{2}\right)} \leqq C t^{\frac{2}{p}-1}\|f\|_{L_{p}\left(L^{p, \infty}\right)}^{p \text { symm }}$, completing the proof of the lemma.
The following version of Russo's theorem now follows immediately by interpolation between $p=2$ and $p=\infty$.

Lemma 2. Suppose (M, μ) is a measure space, $2<p<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1$, and $G: M \times M \rightarrow C$ belongs to $L^{p}\left(L^{p \prime \infty}\right)^{\text {symm }}$. Then the integral operator on $L^{2}(\mu)$ with kernel G belongs to $S^{p \infty}$.

Proof of sufficiency in Theorem 1. Fix $p>n$ and $f \in \Lambda_{n / p}^{p p}$. By definition of $\Lambda_{n / p}^{p p}, \quad \frac{|f(x)-f(y)|}{|x-y|^{2 n / p}} \in L^{p}\left(L^{p}\right), \quad$ and clearly $\quad|x-y|^{\frac{2 n}{p}-n} \in L^{\infty}\left(L^{q \infty}\right)$ where $\frac{1}{q}=1-\frac{2}{p}$. For any functions g and $h,\|g h\|_{p \prime \infty} \leqq C\|g\|_{p}\|h\|_{q \infty}$. So $\frac{f(x)-f(y)}{|x-y|^{n}} \in L^{p}\left(L^{p, \infty}\right)$. Hence $(f(x)-f(y)) K(x-y) \in L^{p}\left(L^{p^{\infty} \infty}\right)$ and by Lemma 2, $C_{f} \in S^{p \infty}$.

We use another interpolation argument to prove $C_{f} \in S^{p}$. Given $p>n$ choose p_{1}, p_{2} with $n<p_{1}<p<p_{2}<\infty \quad$ and let θ satisfy $\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{2}}=\frac{1}{p}$. Then $\left(S^{p_{1} \infty}, S^{p_{2} \infty}\right)_{\theta p}=S^{p}$ ([1], [12]) and $\left(\Lambda_{n / p_{1}}^{p_{1} p_{1}}, \Lambda_{n / p_{2}}^{p_{2} p_{2}}\right)_{\theta p}=\Lambda_{n / p}^{p p}$ ([1]) so the map $f \mapsto C_{f}$, which is bounded from $\Lambda_{n j p_{j}}^{p_{j} p_{j}}$ to $S^{p_{j}}(j=1,2)$ is also bounded from $\Lambda_{n / p}^{p p}$ to S^{p}.

2.

Assume that $C_{f} \in S^{p}$ and $p>n$. We will adapt the proof in [6] and estimate the mean oscillation on all cubes simultaneously. For any $v \in R^{n}$ and $k \in Z$ let \mathscr{F}_{k}^{v} be the dyadic partition of R^{n} into cubes with vertices at $\left\{v+2^{-k} m, m \in Z^{n}\right\}$. Let $f_{k}^{v}(x)=2^{n k} \int_{Q} f(y) d y$, if $x \in Q \in \mathscr{J}_{k}^{v}$. For $Q \in \mathscr{J}_{k}^{v}$, choose s_{Q} among the functions that are O off $Q,+1$ on exactly 2^{n-1} of the 2^{n} subcubes of Q belonging to \mathscr{J}_{k+1}^{v}, and -1 on the others such that $\left|\int_{Q} f(x) s_{Q}(x) d x\right|$ is maximal. Then

$$
2^{n k} \int_{Q}\left|f_{k}^{v}-f_{k+1}^{v}\right|^{p} \leqq C\left(2^{n k} \max \left\{\left|\int f_{s}\right|: s \text { as above }\right\}\right)^{p}=C\left(2^{n k}\left|\int_{Q} f_{S}\right|\right)^{p}
$$

where C depends only on p and n, since $2^{n k} \max _{s}\left|\int f s\right|$ and $\left(2^{n k} \int_{Q}\left|f_{k+1}^{v}-f_{k}^{v}\right|^{p}\right)^{1 / p}$ are norms on the same $2^{n}-1$-dimensional vector space.

Choose $z, 0<|z|<1$, such that $K(z) \neq 0$. There exists a neighborhood $|x-z|<$ $\delta \sqrt{n}$ where $1 / K(x)$ can be expressed as an absolutely convergent Fourier series $\sum c_{m} e^{i v_{m} \cdot x}$ for some vectors v_{m}.

For $Q \in \mathscr{J}_{k}^{v}$, let $t_{Q}(x)=\chi_{Q}\left(x+2^{-k} \delta^{-1} z\right)$, where χ_{Q} is the characteristic function. Then, since $\int s_{Q}(x) d x=0$,

$$
\begin{gathered}
\int f_{s_{Q}}=2^{n k} \iint(f(x)-f(y)) s_{Q}(x) t_{Q}(y) d x d y \\
=2^{n k} \iint(f(x)-f(y)) \frac{\delta^{-n} 2^{-n k} K(x-y)}{K\left(\delta 2^{k}(x-y)\right)} s_{Q}(x) t_{Q}(y) d x d y \\
=C \iint(f(x)-f(y)) K(x-y) \sum_{m} c_{m} e^{i \delta 2^{k} v_{m} \cdot(x-y)} s_{Q}(x) t_{Q}(y) d x d y .
\end{gathered}
$$

Let $g_{Q m}(x)=2^{n k / 2} e^{i \delta 2^{k} v_{m} \cdot x} s_{Q}(x)$ and $h_{Q_{m}}(y)=2^{n k / 2} e^{-i \delta 2^{k} v_{m} \cdot y} t_{Q}(y)$. Then

$$
\begin{gathered}
2^{n k} \int f s_{Q}=C \iint(f(x)-f(y)) K(x-y) \sum_{m} c_{m} g_{Q_{m}}(x) h_{Q_{m}}(y) d x d y \\
=C \sum_{m} c_{Q_{m}}\left\langle g_{m} \mid C_{f} h_{Q_{m}}\right\rangle
\end{gathered}
$$

For each $m,\left\{g_{Q m}\right\}$ and $\left\{h_{Q_{m}}\right\}$ are orthonormal sequences as Q ranges over \mathscr{J}_{k}^{v} The condition $C_{f} \in S^{p}$ and Minkowski's inequality give

$$
\left(\left.\left.\sum Q_{\delta} \mathcal{F}_{k}^{v}\right|^{n k} \int f_{S_{Q}}\right|^{p}\right)^{1 / p} \leqq C \sum_{m}\left|c_{m}\right|\left(\sum Q\left|\left\langle g_{Q_{m}} \mid C_{f} h_{Q m}\right\rangle\right|^{p}\right)^{1 / p} \leqq C .
$$

Thus

$$
\begin{gathered}
2^{n k} \int\left|f_{k+1}^{v}-f_{k}^{v}\right|^{p}=\sum Q_{\varepsilon} f_{k}^{v} 2^{n k} \int_{Q}\left|f_{k+1}^{v}-f_{k}^{v}\right|^{p} \leqq C, \\
\text { i.e. }\left\|f_{k+1}^{v}-f_{k}^{v}\right\|_{p} \leqq C 2^{-n k / p}
\end{gathered}
$$

Since $f_{k}^{v} \rightarrow f$ a.e. as $k \rightarrow \infty$, summation of the geometric series yields

$$
\begin{equation*}
\left\|f-f_{k}^{v}\right\|_{p} \leqq C 2^{-n k / p} \tag{1}
\end{equation*}
$$

This estimate only implies that $f \in \Lambda_{n / p}^{p^{\infty}}$. (Cf. the final step below of the proof that $f \in \Lambda_{n / p}^{p p}$.) To improve it we use the S^{p} property once more. Let N be a large number to be chosen later. For any cube $Q \in \mathscr{J}_{k}^{v}$, let $a_{Q}=\left(2^{n k} \int_{Q}\left|f-f_{k}^{v}\right|^{p}\right)^{1 / p}$ (the L^{p} mean oscillation) and let $g_{Q}(x)=2^{n k / 2} s_{Q}(x)$ and $h_{Q}(y)=2^{n k / 2} \chi_{Q}\left(y+2^{N-k} z\right.$). Also, for $j=0, \ldots, N-1$, let $Q_{j}=2^{j} Q-\left(2^{j}-1\right) 2^{-k} z$ and $Q_{j}^{\prime}=2^{j} Q-\left(2^{N}-2^{j}+1\right) 2^{-k} z$, where $2^{j} Q$ has the same center as Q and side 2^{j-k}. Then

$$
\begin{aligned}
&\left|\int C_{f} g_{Q}(x) h_{Q}(x) d x+K(z) 2^{n(k-N)} \int f(x) s_{Q}(x) d x\right| \\
&=\left|\iint(f(x)-f(y))\left(K(x-y)-K\left(2^{N-k} z\right)\right) g_{Q}(y) h_{Q}(x) d x d y\right| \\
& \leqq C 2^{-(n+1)(N-k)} \iint\left|x-y-2^{N-k} z\right||f(x)-f(y)|\left|g_{Q}(y) h_{Q}(x)\right| d x d y \\
& \leqq C 2^{-k} 2^{(n+1)(k-N)} 2^{n k} \int_{Q} \int_{Q_{0}^{\prime}}|f(x)-f(y)| d x d y \\
& \leqq C 2^{-(n+1) N} \sum_{0}^{N-1}\left(a_{Q_{j}}+a_{Q_{j}^{\prime}}\right)
\end{aligned}
$$

where the last inequality follows from standard arguments with the mean oscillation. Hence

$$
\left|2^{n k} \int f_{Q}\right| \leqq C 2^{n N}\left|\left\langle C_{f} g_{Q} \mid h_{Q}\right\rangle\right|+C 2^{-N} \sum_{0}^{N-1}\left(a_{Q_{j}}+a_{Q_{j}^{\prime}}\right)
$$

Fix L, M and v and let Q range over \mathscr{F}_{k}^{v} for $L \leqq k \leqq M .\left\{g_{Q}\right\}$ is an orthonormal sequence. $\left\{h_{Q}\right\}$ is not, but $\left\|h_{Q}\right\|=1$ and thus

$$
\sum\left|\left\langle C_{f} g_{\boldsymbol{Q}} \mid h_{Q}\right\rangle\right|^{p} \leqq\left\|C_{f} g_{\boldsymbol{Q}}\right\|^{p} \leqq C
$$

(Here we use $p \geqq 2$). Taking the l^{p} norms over these Q we obtain by Minkowski's inequality

$$
\begin{gathered}
\left(\sum_{L}^{M} 2^{n k}\left\|f_{k+1}^{v}-f_{k}^{v}\right\|_{p}^{p}\right)^{1 / p}=\left(\sum_{Q} 2^{n k} \int_{Q}\left|f_{k+1}^{v}-f_{k}^{v}\right|^{p}\right)^{1 / p} \\
\leqq C\left(\sum_{Q}\left|2^{n k} \int f_{S_{Q}}\right|^{p}\right)^{1 / p} \\
\quad \leqq C_{N}+C 2^{-N} \sum_{j=0}^{N-1}\left(\sum_{k=L}^{M} \sum_{Q_{\varepsilon} \mathcal{F}_{k}^{v}}\left(a_{Q_{j}}^{p}+a_{Q_{j}^{\prime}}^{p}\right)^{1 / p}\right.
\end{gathered}
$$

As Q ranges over $\mathscr{F}_{k}^{v},\left\{Q_{j}\right\}$ and $\left\{Q_{j}^{\prime}\right\}$ cover $R^{n} 2^{n j}$ times each (for fixed j, k), and there exist $v_{1}^{j} \ldots v_{2^{n j+1}}^{j}$ translates of v by fixed vectors) such that Q_{j} and Q_{j}^{\prime} range over $\cup \mathscr{J}_{k-j}^{v i}$. Hence we obtain

$$
\left(\sum_{L}^{M} 2^{n k}\left\|f-f_{k}^{v}\right\|_{p}^{p}\right)^{1 / p} \leqq\left(\sum_{L}^{M} 2^{n k}\left\|f-f_{k+1}^{v}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{L}^{M} 2^{n k}\left\|f_{k+1}^{v}-f_{k}^{v}\right\|_{p}^{p}\right)^{1 / p}
$$

$$
\begin{equation*}
\leqq\left(\sum_{L}^{M} 2^{n k}\left\|f-f_{k+1}^{v}\right\|_{p}^{p}\right)^{1 / p}+C_{N}+C 2^{-N} \sum_{j=0}^{N-1}\left(\sum_{k=L}^{M} \sum_{i=1}^{2^{n j+1}} \sum_{Q_{\varepsilon} \mathcal{f}_{k-j}^{v_{i}^{j}}} a_{Q}^{p}\right)^{1 / p} \tag{2}
\end{equation*}
$$

The next step is to average over all dyadic partitions. Define

$$
A_{k}=|I|^{-1} \int_{I}\left\|f-f_{k}^{v}\right\|_{p}^{p} d v=|I|^{-1} \int_{I} 2^{-n k}\left(\sum_{Q_{\varepsilon} \mathcal{F}_{k}^{v}} a_{Q}^{p} d v\right)
$$

for any dyadic cube I of side $\geqq 2^{-k}$. A_{k} is independent of the choice of I, since $\mathscr{J}_{k}^{v}=\mathscr{J}_{k}^{w}$ if $v-w \in 2^{-k} Z^{n}$. Choose I large enough and take the L^{p} norms with respect to $|I|^{-1} \chi_{I}(v) d v$ in (2):

$$
\begin{aligned}
&\left(\sum_{L}^{M} 2^{n k} A_{k}\right)^{1 / p} \leqq\left(\sum_{L}^{M} 2^{n k} A_{k+1}\right)^{1 / p}+C_{N}+C 2^{-N} \sum_{j=0}^{N-1}\left(\sum_{K=L}^{M} 2^{n j+1} 2^{n(k-j)} A_{k-j}\right)^{1 / p} \\
&=\left(\sum_{L+1}^{M+1} 2^{n(k-1)} A_{k}\right)^{1 / p}+C_{N}+C 2^{-N} \sum_{0}^{N-1}\left(2^{n j} \sum_{L-j}^{M-j} 2^{n k} A_{k}\right)^{1 / p} \\
& \leqq 2^{-n / p}\left(\sum_{L+1}^{M} 2^{n k} A_{k}\right)^{1 / p}+\left(2^{n M} A_{M+1}\right)^{1 / p}+C_{N} \\
&+C 2^{-N} \sum_{0}^{N-1} 2^{n j / p}\left(\left(\sum_{L}^{M-j} 2^{n k} A_{k}\right)^{1 / p}+\left(\sum_{L-j}^{L-1} 2^{n k} A_{k}\right)^{1 / p}\right) \\
& \leqq\left(2^{-n / p}+C 2^{-N} 2^{n N / p}\right)\left(\sum_{L}^{M} 2^{n k} A_{k}\right)^{1 / p}+C_{N}
\end{aligned}
$$

since $2^{n k} A_{k} \leqq C$ by (1). If N is chosen large enough then $2^{-n / p}+C 2^{-N(1-n / p)}<1$. (Here we use $p>n$.) Consequently $\sum_{L}^{M} 2^{n k} A_{k} \leqq C, C$ independent of L and $M-$ i.e., $\sum_{-\infty}^{\infty} 2^{n k} A_{k}<\infty$.

Finally we show that this condition on the mean oscillation of f over cubes implies $f \in \Lambda_{n / p}^{p p}$. A similar characterization of Lipschitz spaces has been given by Ricci and Taibleson [9].

Again, let I be a large dyadic cube. If $|x-y|<2^{-k-1}$, the probability that x and y belong to the same cube in \mathscr{J}_{k}^{v} (for random v) is at least 2^{-n}. Hence

$$
\begin{aligned}
& \iint_{|x-y|<2^{-k-1}}|f(x)-f(y)|^{p} d x d y \leqq 2^{n}|I|^{-1} \int_{I} \sum_{Q \varepsilon \mathscr{f}_{k}^{v}} \int_{Q} \int_{Q}|f(x)-f(y)|^{p} d x d y d v \\
& \leqq C|I|^{-1} \int_{I} \sum_{\mathscr{F}_{k}^{v}} \int_{Q} \int_{Q}\left(\left|f(x)-f_{k}^{v}(x)\right|^{p}+\left|f_{k}^{v}(y)-f(y)\right|^{p}\right) d x d y d v \\
&=C 2^{-n k}|I|^{-1} \int_{I} \int_{R^{n}}\left|f(x)-f_{k}^{v}(x)\right|^{p} d x d v \\
&=C 2^{-n k} A_{k} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \iint \frac{|f(x)-f(y)|^{p}}{|x-y|^{2 n}} d x d y \leqq C \iint \sum_{2^{k}<|x-y|^{-1}} 2^{2 n k}|f(x)-f(y)|^{p} d x d y \\
&=C \sum 2^{2 n k} \iint_{|x-y|<2^{-k}}|f(x)-f(y)|^{p} d x d y \\
& \leqq C \sum 2^{n k} A_{k}<\infty
\end{aligned}
$$

This completes the proof that $f \in \Lambda_{n / p}^{p p}$.

3.

We need to prove that $C_{f} \in S^{p}$ only when f is constant. Suppose f is not constant. Since non-constant polynomials do not belong to BMO there is a point $z_{0} \neq 0$ in the support of the Fourier transform \hat{f}. For some constants $k, M<\infty$ we will have $|\langle\varphi \mid \hat{f}\rangle| \leqq M\|\varphi\|_{C^{k}}$ whenever φ is a test function supported in $\left\{y\left|\mid y-z_{0}{ }_{0}<1\right\}\right.$. Choose $0<\varepsilon<\min \left(\frac{1}{2}, \frac{\left|z_{0}\right|}{2}\right)$. Let ψ be a test function with $\|\psi\|_{C^{k}}=1, \operatorname{supp} \psi \subset$ $\left\{y\left|\left|y-z_{0}\right|<\varepsilon\right\}\right.$, and $\langle\psi \mid \hat{f}\rangle \doteq B>0$. Let δ be some number to be chosen later, but small enough so that $|z|<\delta$ implies $z+\operatorname{supp} \psi \subset\left\{\left|y-z_{0}\right|<\varepsilon\right\}$ and $\langle\psi(y+z) \mid \hat{f}(y)\rangle>\frac{B}{2}$.

Let $m=\hat{K}$. Then m is homogeneous of degree zero and nonconstant so the derivative $D_{z_{0}} m$ is not identically zero. Let V be an open cone with vertex at the origin, such that the real part (say) of $D_{z_{0}} m$ is bounded away from zero on $V \cap$ (unit ball). Let $\left\{x_{j}\right\}$ be the set of all lattice points whose distance to the complement of V is at least $2\left|z_{0}\right|$. Then $\left|x_{j}-x_{k}\right| \geqq 1(j \neq k), \quad\left|m\left(x_{j}\right)-m\left(x_{j}-z_{0}\right)\right|>\frac{A}{\left|x_{j}\right|}$ for some constant A, and $\sum_{j}\left|x_{j}\right|^{-n}=\infty$. Define Schwartz functions φ_{j} by $\hat{\varphi}_{j}(y)=$ $\left|x_{j}\right|^{-1} \frac{\psi\left(x_{j}-y\right)}{m(y)-m\left(x_{j}\right)}$. These φ_{j} are orthogonal since the supports of the $\hat{\varphi}_{j}$ are disjoint, and if ε is small enough they will satisfy $\left\|\varphi_{j}\right\|_{2} \leqq 1$.

Claim. If δ is small enough and $\left|x-x_{j}\right|<\delta$ then $\left|\left(C_{f} \varphi_{j}\right)^{\wedge}(x)\right|>\frac{C}{\left|x_{j}\right|}$.
In fact,
(*)

$$
\begin{gathered}
\left(C_{f} \varphi_{j}\right)^{\wedge}(x)=\left|x_{j}\right|^{-1}\left\langle\left.\frac{m(x-y)-m(x)}{m(x-y)-m\left(x_{j}\right)} \psi\left(x_{j}-x+y\right) \right\rvert\, \hat{f}(y)\right\rangle \\
=\left|x_{j}\right|^{-1}\left\langle\psi\left(y+x_{j}-x\right) \mid \hat{f}(y)\right\rangle
\end{gathered}
$$

$$
+\left|x_{j}\right|^{-1}\left(m(x)-m\left(x_{j}\right)\right)\left\langle\left.\frac{\psi\left(y+x_{j}-x\right)}{m\left(x_{j}\right)-m(x-y)} \right\rvert\, \hat{f}(y)\right\rangle .
$$

Now $\psi\left(y+x_{j}-x\right)$ is supported on $\left|y-z_{0}\right|<\varepsilon+\delta$ and on this set, all y-derivatives of $\frac{1}{m\left(x_{j}\right)-m(x-y)}$ are bounded by constants times $\left|x_{j}\right|$. So

$$
\left|\left\langle\left.\frac{\psi\left(y+x_{j}-x\right)}{m\left(x_{j}\right)-m(x-y)} \right\rvert\, \hat{f}(y)\right\rangle\right| \leqq M\left\|\frac{\psi\left(y+x_{j}-x\right)}{m\left(x_{j}\right)-m(x-y)}\right\|_{C^{k}} \leqq C M\left|x_{j}\right|
$$

This proves the second term in (*) is bounded by $B / 4\left|x_{j}\right|$ provided δ is small. The first term is at least $B / 2\left|x_{j}\right|$, which proves the claim.

It follows that $\sum\left\|C_{f} \varphi_{j}\right\|_{2}^{n}=\sum\left\|\left(C_{f} \varphi_{j}\right)^{\wedge}\right\|_{2}^{n} \geqq C \sum\left|x_{j}\right|^{-n}=\infty$, so $C_{f} \notin S^{n}$.
Remarks. The above argument shows that even if $f \in C_{0}^{\infty}$ the best one can hope is that $C_{f} \in S^{n \infty}$. For $n \geqq 3$, one can show using Lemma 2 that $f \in \Lambda_{1}^{n 1}$ implies $C_{f} \in S^{n \infty}$. We do not know whether this result is true for $n=2$ because Lemma 2 is false for $p=2$.

A colleague of the referee pointed out that a pseudodifferential operator ($\not \equiv 0$) of symbol class S^{-1} is never of Schatten class S^{n}, and that the case $p \leqq n$ of Theorem 1 follows from this.

References

1. Bergh, J. and Löfström, J., Interpolation spaces, an introduction, Springer-Verlag, Berlin..., 1976.
2. CoIfman, R. R. and Rochberg, R., Representation theorems for holomorphic and harmonic functions in L^{p}, Astérisque, 77 (1980), 11—66.
3. Coifman, R. R., Rochberg, R. and Weiss, G., Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635.
4. Herz, C. S., Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1969), 283--. 323.
5. Howland, J. S., Trace class Hankel operators, Quart. J. Math., Oxford 2, 22 (1971), 147--159.
6. JANSON, S., Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978), 263-270.
7. Peetre, J. New thoughts on Besov spaces, Duke University press, Durham, 1976.
8. Peller, V. V., Nuclearity of Hankel operators, Mat. Sbornik 113 (1980), 538-581 (russian).
9. Ricci, F. and Taibleson, M. H., Boundary values of harmonic functions in mixed norm spaces and their atomic structure, preprint 1980.
10. Rochberg, R., Trace ideal criteria for Hankel operators and commutators, preprint 1981.
11. Russo, B., On the Hausdorff-Young theorem for integral operators, Pac. J. Math. 68 (1977), 241-253.
12. Simon, B., Trace ideals and their applications, Cambridge Univ. Press, Cambridge, 1979.
13. Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
14. Uchiyama, A., On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978), 163-171.

Received July 9, 1981

Uppsala University Dept. of Math.
Thunbergsvägen 3 S-752 28 Uppsala SWEDEN
Dept of Math.
University of Chicago
CHICAGO, Ill. 60637
USA

[^0]: * NSF postdoctoral fellow

