On the regularity of difference schemes
 Part II. Regularity estimates for linear and nonlinear problems

Wolfgang Hackbusch

1. Preliminaries

1.1. Discrete regularity estimate

Let L be an elliptic differential operator of second order. Usually, the differentiability of the solution u of

$$
\begin{equation*}
L u=f \quad(\Omega),\left.\quad u\right|_{\Gamma}=0 \tag{1.1}
\end{equation*}
$$

is two orders larger than the order of differentiability of f. This property can be expressed in terms of Sobolev spaces,

$$
\begin{equation*}
\left\|L^{-1}\right\|_{H^{s}(\Omega) \rightarrow H^{2+s}(\Omega)} \leqq C \tag{1.2a}
\end{equation*}
$$

or in terms of Hölder spaces,

$$
\begin{equation*}
\left\|L^{-1}\right\|_{C^{s}(\Omega) \rightarrow C^{2+s}(\Omega)} \leqq C \quad(s>0, \quad s \neq \text { integer }) \tag{1.2b}
\end{equation*}
$$

For the notation of the various spaces and of the norm, see Section 1.3.
The discretization of the boundary value problem is written as

$$
\begin{equation*}
L_{h} u_{h}=f_{h} \tag{1.3}
\end{equation*}
$$

where h denotes the discretization parameter (usually: grid size). Let $H_{h}^{s}\left(\Omega_{h}\right)$ be the discrete analogue of $H^{s}(\Omega)$ (derivatives replaced by differences). Then we want to prove the counterpart of (1.2a):

$$
\begin{equation*}
\left\|L_{h}^{-1}\right\|_{H_{h}^{s}\left(\Omega_{h}\right) \rightarrow H_{h}^{2+s}\left(\Omega_{h}\right)} \leqq C \quad \text { uniformly in } h . \tag{1.4}
\end{equation*}
$$

This inequality is called the discrete regularity estimate. It differs from usual stability conditions. For example, the l_{2}-stability of L_{h} is expressed by

$$
\begin{equation*}
\left\|L_{h}^{-1}\right\|_{H_{h}^{0}\left(\Omega_{h}\right) \rightarrow H_{h}^{0}\left(\Omega_{h}\right)} \leqq C \quad \text { uniformly in } h, \tag{1.5}
\end{equation*}
$$

since $l_{2}=H_{h}^{0}\left(\Omega_{h}\right)$. Note that (1.4) implies stability with respect to $H_{h}^{s}\left(\Omega_{h}\right)$.

1.2. Results of this paper

In the recent paper [6] we proved (1.4) for $s \in(-3 / 2,-1 / 2)$. Section 2 contains quite a different technique for proving the regularity estimate (1.4) also for larger orders s. While [6] makes no use of (1.2a), the new approach does. The following general statement is proved: If the discrete regularity (1.4) holds for some s_{0}, if the continuous regularity estimate (1.2) is satisfied for $s \in\left[s_{0}, t\right]$ and if an additional consistency condition is fulfilled, then the discrete regularity (1.4) holds for $s \in\left[s_{0}, t\right]$, too. This theorem is not restricted to Sobolev spaces.

In Section 2.1 we consider the special case of a square $\Omega=(0,1) \times(0,1)$. The square (or rectangle) is easier to treat since the boundary condition $\left.u\right|_{\Gamma}=0$ requires no irregular discretization. There are some papers proving (1.4) with $s=0$ for a square (cf. Guilinger [5]) or for a similar situation (cf. Dryja [4]). Here we show H_{h}^{4}-regularity:

$$
\begin{equation*}
\left\|L_{h}^{-1}\right\|_{A_{h}^{2}\left(\Omega_{h}\right) \rightarrow H_{h}^{4}\left(\Omega_{h}\right)} \leqq C, \tag{1.6}
\end{equation*}
$$

where \hat{H}_{h}^{2} differs from H_{h}^{2} only slightly.
There are several papers on interior regularity, i.e. estimates of u_{h} in an interior region (cf. Thomée [16], Thomée and Westergren [17], Shreve [14]). [16] contains an interior Schauder estimate. But there is no paper known to the author considering the (global) discrete Hölder regularity for a square. For this reason we show $C_{h}^{2+\alpha}\left(\Omega_{h}\right)$-regularity ($0<\alpha<2, \alpha \neq 1$):

$$
\begin{equation*}
\left\|L_{h}^{-1}\right\|_{C_{h}^{\alpha}\left(\Omega_{h}\right) \rightarrow C_{h}^{2+\alpha}\left(\Omega_{h}\right)} \leqq C, \tag{1.7}
\end{equation*}
$$

where \hat{C}_{h}^{α} is a modification of $C_{h}^{\alpha}\left(\Omega_{h}\right)$.
An arbitrary region Ω requires irregular discretizations of the boundary condition. In Section 2.4 we analyse the Shortley-Weller scheme and the difference method with composed meshes.

Section 3 contains some results for the nonlinear problem $\mathscr{L}(u)=0$. Let $\mathscr{L}_{h}\left(u_{h}\right)=0$ be its discretization. We show that $u \in H^{t}(\Omega)$ [or $u \in C^{t}(\bar{\Omega})$] implies that u_{h} is bounded in $H_{h}^{t}\left(\Omega_{h}\right)$ [or $C_{h}^{t}(\bar{\Omega})$, respectively] uniformly with respect to h, provided certain discrete regularity estimates hold for the linearized scheme. Our
approach is different from D'jakonov's method [3], but similar to the technique of Lapin [9]. Two examples are discussed. The first one contains a Schauder estimate of the discrete solution. The second one is Lapin's problem. We show the same results under weaker assumptions.

1.3. Notation

$W^{m, p}(\Omega)$ ($m \geqq 0$ integer, $1 \leqq p \leqq \infty, \Omega \subset \mathbf{R}^{d}$) denotes the space of functions on Ω with all derivatives of order $\leqq m$ in $L^{p}(\Omega)$. Its norm is $\sum_{|\alpha| \leqq m}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}$, where α is a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right), \alpha_{j} \geqq 0$, and

$$
|\alpha|=\alpha_{1}+\ldots+\alpha_{d}, \quad D^{\alpha}=\partial^{|\alpha|} /\left(\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}\right)
$$

For $p=2$ we write $H^{m}(\Omega)$ instead of $W^{m, 2}(\Omega) . H^{s}(\Omega)$ for real $s \geqq 0$ is introduced, e.g., in [10]. $H_{0}^{s}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm of $H^{s}(\Omega)$.
$C^{\lambda}(\bar{\Omega})(0<\lambda<1)$ is the space of functions that are Hölder continuous with exponent λ. Its norm is $\|u\|_{0}+|u|_{\lambda}$, where

$$
\begin{aligned}
& \|u\|_{0}=\sup \{|u(x)|: x \in \Omega\} \\
& |u|_{\lambda}=\sup \left\{\left|u(x)-u\left(x^{\prime}\right)\right| /\left\|x-x^{\prime}\right\|^{\lambda}: x, x^{\prime} \in \Omega, x \neq x^{\prime}\right\} .
\end{aligned}
$$

$C^{m+\lambda}(\bar{\Omega}) \quad(m=0,1,2, \ldots, 0<\lambda<1)$ contains Hölder continuously differentiable functions with finite norm $\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{0}+\sum_{|\alpha|=m}\left|D^{\alpha} u\right|_{\lambda}$.

The norm of a Banach space X is always denoted by $\|\cdot\|_{X}$ (e.g. $\|\cdot\|_{H^{m}(\Omega)}$). If X and Y are two Banach spaces, the canonical norm of operators $A: X \rightarrow Y$ is

$$
\|A\|_{X \rightarrow Y}=\sup \left\{\|A x\|_{Y} /\|x\|_{X}: 0 \neq x \in X\right\}
$$

Difference schemes are described by means of the translation operator T. We consider only the two dimensional case. T_{x} and T_{y} are defined by

$$
\left(T_{x} u\right)(\xi, \eta)=u(\xi+h, \eta), \quad\left(T_{y} u\right)(\xi, \eta)=u(\xi, \eta+h)
$$

$((\xi, \eta)$: grid points, h : grid size $) . T^{\alpha}\left(\alpha=\left(\alpha_{x}, \alpha_{y}\right):\right.$ multi-index $)$ denotes

$$
T^{\alpha}=T_{x}^{\alpha} T_{y}^{\alpha_{y}}
$$

The differences with respect to the x - and y-directions are

$$
\partial_{x}=h^{-1}\left(T_{x}-I\right), \quad \partial_{y}=h^{-1}\left(T_{y}-I\right) \quad(I: \text { identity })
$$

Differences of higher order are

$$
\partial^{\alpha}=\partial_{x}^{\alpha_{x}} \partial_{y}^{\alpha_{y}} \quad\left(\alpha=\left(\alpha_{x}, \alpha_{y}\right)\right)
$$

The set of grid points is Ω_{h}, e.g., $\Omega_{h}=\{(x, y) \in \Omega: x / h, y / h \in \mathbf{Z}\} . \mathscr{F}\left(\Omega_{h}\right)$ consists of all grid functions defined on Ω_{h}. In Section 2.2 we also define $\bar{\Omega}_{h} \supset \Omega_{h}, \mathscr{F}_{0}\left(\bar{\Omega}_{h}\right)$ is the set of grid functions u_{h} defined on $\bar{\Omega}_{h}$ with $u_{h}(x, y)=0$ for $(x, y) \in \bar{\Omega}_{h} \backslash \Omega_{h}$.

2. Regularity of discrete linear boundary value problems

2.1. A general theorem

Let

$$
\begin{equation*}
L u=f \quad\left(u \in X^{0}, f \in Y^{0}\right) \tag{2.1}
\end{equation*}
$$

be a boundary value problem. Either L is a differential operator and the homogeneous boundary condition of u is incorporated into the definition of the Banach space (cf. (1.1)), or (2.1) represents the differential equation $L^{\Omega} u=f^{\Omega}$ and the boundary condition $L^{\Gamma} u=f^{\Gamma}$.

Usually, there exists a scale of Banach spaces $X^{s}, Y^{s}(s \in I)$ with $X^{t} \subset X^{s}$, $Y^{t} \subset Y^{s}$ for $t \geqq s$ so that

$$
\begin{equation*}
L: X^{s} \rightarrow Y^{s} \text { is bounded for } s \in I \tag{2.2a}
\end{equation*}
$$

Under suitable conditions L maps X^{s} onto Y^{s} :

$$
\begin{equation*}
L^{-1}: Y^{s} \rightarrow X^{s} \text { is bounded for } s \in I . \tag{2.2b}
\end{equation*}
$$

This is the continuous regularity. Special examples are (1.2a, b): $X^{s}=H^{s+2}(\Omega) \cap$ $H_{0}^{1}(\Omega), Y^{s}=H^{s}(\Omega)$ and $X^{s}=C^{2+s}(\bar{\Omega}) \cap H_{0}^{1}(\Omega), \quad Y^{s}=C^{s}(\bar{\Omega})$, respectively. In the second case the index set I must contain no integers. For a proof of $(1.2 \mathrm{a}, \mathrm{b})$ see Lions and Magenes [10] and Schauder [13] or Miranda [12].

Discretize the boundary value problem (2.1) by

$$
\begin{equation*}
L_{h} u_{h}=f_{h} \quad(h \in H), \tag{2.3}
\end{equation*}
$$

where the discretization parameter h varies in the set $H \subset(0, \infty)$ with $0 \in \bar{H}$. Eq. (2.3) may be a difference scheme or a finite element discretization. The discrete functions u_{h} and f_{h} of (2.3) belong to some vector spaces (e.g., $u_{h} \in \mathscr{F}_{0}\left(\bar{\Omega}_{h}\right), f_{h} \in \mathscr{F}\left(\Omega_{h}\right)$, cf. Section 1.3). Endowing these vector spaces with discrete counterparts of the norm of X^{s} and Y^{s}, respectively, we obtain two scales of discrete function spaces X_{h}^{s}, Y_{h}^{s} with

$$
\|\cdot\|_{X_{h}^{s}} \leqq C\|\cdot\|_{X_{h}^{t}}, \quad\|\cdot\|_{Y_{h}^{s}} \leqq C\|\cdot\|_{Y_{h}^{t}} \quad(s, t \in I, \quad s \leqq t, h \in H) .
$$

The discrete regularity estimate is

$$
\begin{equation*}
\left\|L_{h}^{-1}\right\|_{Y_{h}^{s} \rightarrow X_{h}^{s}} \leqq C \quad \text { for all } h \in H \tag{2.4}
\end{equation*}
$$

where C is a generic constant independent of h.
The inverse estimate allows us to estimate finer norms by means of coarser norms:

$$
\begin{equation*}
\|\cdot\|_{X_{h}^{t}} \leqq C h^{s-t}\|\cdot\|_{X_{h}^{s}} \quad(s \leqq t, \quad h \in H) \tag{2.5}
\end{equation*}
$$

This condition implies that the sets of elements of X_{h}^{t} and X_{h}^{s} coincide.
In order to compare functions $u \in X^{s}$ and discrete functions $u_{h} \in X_{h}^{s}$ we have to introduce restrictions R_{h} and \tilde{R}_{h} and a prolongation P_{h} :

$$
R_{h}: X^{s} \rightarrow X_{h}^{s}, \quad \tilde{R}_{h}: Y^{s} \rightarrow Y_{h}^{s}, \quad P_{h}: Y_{h}^{s} \rightarrow Y^{s}
$$

Assume that R_{h} and P_{h} are bounded (uniformly with respect to $h \in H$):

$$
\begin{equation*}
\left\|R_{h}\right\|_{X^{s} \rightarrow X_{h}^{s}} \leqq C \quad \text { for all } h \in H, \tag{2.6a}
\end{equation*}
$$

$$
\begin{equation*}
\left\|P_{h}\right\|_{Y_{h}^{s} \rightarrow Y^{s}} \leqq C \quad \text { for all } h \in H \tag{2.6b}
\end{equation*}
$$

The product $\tilde{R}_{h} P_{h}$ maps Y_{h}^{s} into itself. For 'smooth' functions $u_{h}, \tilde{R}_{h} P_{h} u_{h}$ should approximate u_{h}. More precisely, the interpolation error should satisfy

$$
\begin{equation*}
\left\|\tilde{R}_{h} P_{h}-I\right\|_{Y_{h}^{t} \rightarrow Y_{h}^{s}} \leqq C h^{t-s} \quad\left(0 \leqq t-s \leqq \varkappa_{I}, \quad h \in H\right) \tag{2.7}
\end{equation*}
$$

where $I=$ identity and $\chi_{I}=$ order of $\tilde{R}_{h} P_{h}$. Examples of $P_{h}, R_{h}, \tilde{R}_{h}$ are given in the following sections.

The consistency of the discretization L_{h} can be expressed by

$$
\begin{equation*}
\left\|L_{h} R_{h}-\widetilde{R}_{h} L\right\|_{X^{t} \rightarrow Y_{h}^{s}} \leqq C h^{t-s} \quad\left(0 \leqq t-s \leqq x_{C}, \quad h \in H\right), \tag{2.8}
\end{equation*}
$$

where x_{C} denotes the order of consistency.
Note that it suffices to prove (2.7) and (2.8) for $s=t-\chi_{I}$ and $s=t-\chi_{C}$, respectively. Then (2.7), (2.8) follow for all larger s because of (2.5).

The following theorem requires a discrete regularity estimate for L_{h} corresponding to the spaces X_{h}^{0}, Y_{h}^{0}, and the regularity estimate (2.2b) for the continuous operator L. Then higher discrete regularity can be proved.

Theorem 2.1. Let $x>0$ and assume

$$
\begin{equation*}
I \subset[0, \infty), \quad 0 \in I, \quad I \cap[t-x, t) \neq \emptyset \quad \text { for all } \quad 0 \neq t \in I \tag{2.9}
\end{equation*}
$$

Suppose
(i) discrete regularity (2.4) for $s=0$,
(ii) continuous regularity (2.2b) for all $0 \neq s \in I$.

Assume that there are $P_{h} ; R_{h}, \widetilde{R}_{h}$ with
(iii) estimates $(2.6 a, b)$ for all $0 \neq s \in I$,
(iv) estimate (2.7) for all $0 \neq t \in I, s \in \operatorname{In}[t-x, t)$,
(v) consistency (2.8) for all $0 \neq t \in I, s \in I \cap[t-\varkappa, t)$,
(vi) inverse estimate (2.5) for all $s, t \in I, s<t$.

Then the discrete regularity estimate (2.4) holds for all $s \in I$.
Proof. Split L_{h}^{-1} into

$$
L_{h}^{-1}=R_{h} L^{-1} P_{h}-L_{h}^{-1}\left[\left(L_{h} R_{h}-\widetilde{R}_{h} L\right) L^{-1} P_{h}+\left(\widetilde{R}_{h} P_{h}-I\right)\right] .
$$

Assume (2.4) for some $s \geqq 0$. Then the following estimate holds for all $t \in \operatorname{In}[s, s+x]$. The subscripts $X_{h}^{t} \rightarrow X_{h}^{s}, Y_{h}^{t} \rightarrow Y_{h}^{s}, \ldots$ are abbreviated by $t \rightarrow s$:

$$
\begin{gathered}
\left\|L_{h}^{-1}\right\|_{t \rightarrow t} \leqq\left\|R_{h}\right\|_{t \rightarrow t}\left\|L^{-1}\right\|_{t \rightarrow t}\left\|P_{h}\right\|_{t \rightarrow t}+\|I\|_{s \rightarrow t}\left\|L_{h}^{-1}\right\|_{s \rightarrow s}\left[\left\|L_{h} R_{h}-\widetilde{R}_{h} L\right\|_{t \rightarrow s}\left\|L^{-1}\right\|_{t \rightarrow t}\left\|P_{h}\right\|_{t \rightarrow t}\right. \\
\left.+\left\|\widetilde{R}_{h} P_{h}-I\right\|_{t \rightarrow s}\right] \leqq C+C h^{s-t}\left[C h^{t-s}+C h^{t-s}\right] \leqq C^{\prime} .
\end{gathered}
$$

This proves (2.4) for $I \cap[s, s+\chi]$. The case of general $s \in I$ follows by induction.
The regularity (2.4) is a special kind of stability. Together with the consistency we obtain the following convergence estimate.

Corollary 2.1. Let $\gamma \leqq \chi_{C}$ (cf. (2.8)). Under the conditions of Theorem 2.1 and for a right-hand side f_{h} in (2.3) with

$$
\left\|f_{h}-\tilde{R}_{h} f\right\|_{Y_{h}^{s}} \leqq C h^{\nu}\|f\|_{Y^{s+\gamma}} \quad(s, s+\gamma \in I)
$$

the solution u_{h} of (2.3) satisfies

$$
\left\|R_{h} u-u_{h}\right\|_{X_{h}^{s}} \leqq C h^{\gamma}\|f\|_{Y^{s+\gamma}} \quad\left(s, s+\gamma \in I, u:=L^{-1} f\right) .
$$

Proof. Use $R_{h} u-u_{h}=L_{h}^{-1}\left(L_{h} R_{h}-\widetilde{R}_{h} L\right) L^{-1} f+L_{h}^{-1}\left(\widetilde{R}_{h} f-f_{h}\right)$.
Theorem 2.1 requires discrete regularity for $s=0$. Weakening this assumption we obtain

Corollary 2.2. Replace assumption (i) of Theorem 2.1 by

$$
\left\|L_{h}^{-1}\right\|_{Y_{h}^{0} \rightarrow X_{h}^{-\varepsilon}} \leqq C \quad \text { for all } h \in H
$$

with some $\varepsilon>0$ and modify the assumption on I suitably. Then

$$
\begin{equation*}
\left\|L_{h}^{-1}\right\|_{Y_{h}^{s} \rightarrow X_{h}^{s-s}} \leqq C \tag{2.10}
\end{equation*}
$$

holds for all $s \in I$.
Finally we present a useful lemma about the perturbation of L_{h} by lower order terms.

Lemma 2.1. Let $\varepsilon>0, \delta>0, \eta:=\varepsilon-\delta$. Assume that L_{h} satisfies the discrete regularity estimate (2.4) for all $s \in I=[t-\eta, t]$. Let l_{h} be a perturbation of L_{h} with
lower order than L_{h} :

$$
\left\|l_{h}\right\|_{X_{h}^{s} \rightarrow Y_{h}^{s+s}} \leqq C \quad \text { for all } s+\delta \in[t-\eta, t+\delta] .
$$

Suppose that $L_{h}+l_{h}$ fulfils the non-optimal regularity (2.10) for $s=t$. Then $L_{h}+l_{h}$ satisfies the regularity estimate (2.4) for $s=t$, too.

We remark that $I=[t-\eta, t]$ can be replaced by $\{s=t-\eta+i \delta \in[t-\eta, t]: i$ integer $\} \cup\{t\}$.

Proof. By induction we show

$$
\left\|\left(L_{h}+l_{h}\right)^{-1}\right\|_{Y_{h}^{t} \rightarrow X_{h}^{t-c+i \delta}} \leqq C_{i} .
$$

First observe that this holds for $i=0$ because of (2.10). Now assume the estimate is valid for some i. Using $\left(L_{h}+l_{h}\right)^{-1}=L_{h}^{-1}-L_{h}^{-1} l_{h}\left(L_{h}+l_{h}\right)^{-1}$ one obtains

$$
\begin{gathered}
\left\|\left(L_{h}+l_{h}\right)^{-1}\right\|_{t \rightarrow t-\varepsilon+(i+1) \delta} \leqq C\left\|L_{h}^{-1}\right\|_{t \rightarrow t} \\
+\left\|L_{h}^{-1}\right\|_{t-\varepsilon+(i+1) \delta \rightarrow t-\varepsilon+(i+1) \delta}\left\|l_{h}\right\|_{t-\varepsilon+i \delta \rightarrow t-\varepsilon+(i+1) \delta}\left\|\left(L_{h}+l_{h}\right)^{-1}\right\|_{t \rightarrow t-\varepsilon+i \delta} \leqq C_{i+1},
\end{gathered}
$$

provided that $t-\varepsilon+(i+1) \delta<t$. After a finite number of steps $t-\varepsilon+i \delta \geqq t$ is reached and the regularity of $L_{h}+l_{h}$ is proved.

In Lemma 2.1 we needed the non-optimal regularity of $L_{h}+l_{h}$. This condition can be replaced by the regularity of the continuous operator $L+l$.

Lemma 2.2. Let $s<t$ and assume:
(i) L and $L+l$ satisfy the regularity conditions $(2.2 \mathrm{a}, \mathrm{b})$ for s and t (instead of s in $(2.2 \mathrm{a}, \mathrm{b})$),
(ii) L_{h}^{-1} fulfils the regularity estimate (2.4) for s and t (instead of s),
(iii) l_{h} is a term of lower order: $\left\|l_{h}\right\|_{X_{h}^{s} \rightarrow Y_{h}^{t}} \leqq C$,
(iv) consistency: $\left\|L_{h} R_{h}-\widetilde{R}_{h} L\right\|_{X^{t} \rightarrow Y_{h}^{s}} \leqq C h^{t-s},\left\|l_{h} R_{h}-\widetilde{R}_{h} l\right\|_{X^{t} \rightarrow Y_{h}^{s}} \leqq C h^{t-s}$,
(v) $f \neq 0$ implies $\varliminf_{h \rightarrow 0}\left\|\tilde{R}_{h} f\right\|_{Y_{h}^{s}}>0$ for all $f \in Y^{s}$,
(vi) P_{h} and \tilde{R}_{h} are uniformly bounded: $\left\|P_{h}\right\|_{Y_{h}^{t} \rightarrow Y^{t}} \leqq C,\left\|\widetilde{R}_{h}\right\|_{Y^{s} \rightarrow Y_{h}^{s}} \leqq C$,
(vii) the estimate (2.7) holds for $\tilde{R}_{h} P_{h}-I$,
(viii) the embedding $Y^{t} \subset_{\rightarrow} Y^{s}$ is compact.

Then there is h_{0} such that

$$
\left\|\left(L_{h}+l_{h}\right)^{-1}\right\|_{Y_{h}^{r} \rightarrow X_{h}^{r}} \leqq C \quad \text { for } r=s, t \text { and all } h \leqq h_{0}, \quad h \in H .
$$

We note that the $O\left(h^{t-s}\right)$ terms in (iv) and (vii) can be replaced by $o(1)$.

Proof. It suffices to prove t-regularity since as in the proof of Lemma $2.1 t$-regularity implies s-regularity by using $\left(L_{h}+l_{h}\right)^{-1}=L_{h}^{-1}-\left(L_{h}+l_{h}\right)^{-1} l_{h} L_{h}^{-1}$.

Assume that the regularity of $L_{h}+l_{h}$ does not hold. Then there would be a sequence $h_{i} \rightarrow 0, f_{h_{i}} \in X_{h_{i}}^{t}$ such that

$$
\varphi_{h}=\left(L_{h}+l_{h}\right) L_{h}^{-1} f_{h}, \quad\left\|f_{h}\right\|_{Y_{h}^{t}}=1, \quad\left\|\varphi_{h}\right\|_{Y_{h}^{t}} \rightarrow 0 \quad\left(h=h_{i}\right)
$$

Because of (vi) the sequence $\left\{P_{h_{i}} f_{h_{i}}\right\}$ is bounded in Y^{t}. By (viii) there is a subsequence $\left\{h_{k}\right\}$ such that $F_{k}:=P_{h_{k}} f_{h_{k}}$ converges in Y^{s} :

$$
F=\lim _{k \rightarrow \infty} F_{k} \in Y^{s}
$$

The estimate

$$
1=\left\|f_{h}\right\|_{Y_{h}^{t}}=\left\|\varphi_{h}-l_{h} L_{h}^{-1} f_{h}\right\|_{Y_{h}^{t}} \leqq\left\|\varphi_{h}\right\|_{Y_{h}^{t}}+C^{\prime}\left\|f_{h}\right\|_{Y_{h}^{s}}
$$

(cf. (ii), (iii)) and (vii) yield

$$
\begin{aligned}
& \left\|F_{k}\right\|_{Y^{s}} \geqq C^{-1}\left\|\tilde{R}_{h} F_{k}\right\|_{Y_{h}^{s}} \geqq C^{-1}\left\|f_{h}\right\|_{Y_{h}^{s}}-C^{-1}\left\|\left(\tilde{R}_{h} P_{h}-I\right) f_{h}\right\|_{Y_{h}^{s}} \\
& \geqq\left(C C^{\prime}\right)^{-1}\left(1-\left\|\varphi_{h}\right\|_{Y_{h}^{t}}\right)-C^{\prime \prime} h^{t-s} \rightarrow 1 /\left(C C^{\prime}\right) \quad \text { for } h=h_{k} \rightarrow 0
\end{aligned}
$$

ensuring $F \neq 0$.
In the following part we shall show $F=0$, too. This contradiction would prove the lemma. By (i) $F=0$ follows from $(L+l) L^{-1} F=0$. Hence by (v) it suffices to show $\left\|\tilde{R}_{h}\left(I+l L^{-1}\right) F\right\|_{Y_{h}^{s} \rightarrow 0}\left(h=h_{k} \rightarrow 0\right)$. Since $F_{k} \rightarrow F$ in Y^{s}, it remains to prove

$$
\left\|\widetilde{R}_{h}\left(I+l L^{-1}\right) F_{k}\right\|_{Y_{h}^{s}} \rightarrow 0 \quad\left(h=h_{k} \rightarrow 0\right)
$$

But this assertion follows from

$$
\begin{gathered}
\tilde{R}_{h}\left(I+l L^{-1}\right) F_{k}=\tilde{R}_{h}\left\{P_{h}\left(I+l_{h} L_{h}^{-1}\right) f_{h}+\left(l L^{-1} P_{h}-P_{h} l_{h} L_{h}^{-1}\right) f_{h}\right\} \\
=\tilde{R}_{h} P_{h} \varphi_{h}+\left\{\left[\tilde{R}_{h} l-l_{h} R_{h}\right] L^{-1} P_{h}+l_{h} L_{h}^{-1}\left[L_{h} R_{h}-\tilde{R}_{h} L\right] L^{-1} P_{h}+l_{h} L_{h}^{-1}\left[\tilde{R}_{h} P_{h}-I\right]\right. \\
\left.+\left[I-\tilde{R}_{h} P_{h}\right] l_{h} L_{h}^{-1}\right\} f_{h} \quad\left(h=h_{k}\right)
\end{gathered}
$$

and (i-iv, vi), since the brackets [...] yield $O\left(h^{t-s}\right)$.
Corollary 2.3. The condition (v) of Lemma 2.2 can be replaced by the following assumptions:
(v. $\left.v_{1}\right) Y^{t}$ dense in Y^{s},
$\left(v_{2}\right)\left\|f_{h}\right\|_{Y_{h}^{s}} \geqq \delta\left\|P_{h} f_{h}\right\|_{Y^{s}}, \delta>0$, for all $f_{h} \in Y_{h}^{s}$,
(v_{3}) $\left\|P_{h} \widetilde{R}_{h}-I\right\|_{Y^{t} \rightarrow Y^{s}} \leqq C h^{t-s}$ (even o(1) suffices).

Proof. Choose $\tilde{f} \in Y^{t}$ such that $\|f-\tilde{f}\|_{Y^{s}} \leqq \varepsilon:=\delta\|f\|_{Y^{s}} /[2(\delta+C)]$. Then one concludes from ($\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$, vi) that

$$
\begin{gathered}
\left\|\tilde{R}_{h} f\right\|_{Y_{h}^{s}} \geqq\left\|\tilde{R}_{h} \tilde{f}_{Y_{h}^{-}}\right\| \tilde{R}_{h}\left(f-\tilde{f}^{\prime}\right)\left\|_{Y_{h}^{s}} \geqq \delta\right\| P_{h} \tilde{R}_{h} f_{Y^{s}}-C \varepsilon \\
\geqq \delta\left\|\tilde{f}_{Y_{s}}-\right\|\left(P_{h} \tilde{R}_{h}-I\right) \tilde{f}_{Y^{s}}-C \varepsilon \geqq \delta\|f\|_{Y_{s}}-(\delta+C) \varepsilon-C^{\prime} h^{t-s} \| \tilde{f}_{\|_{r t}}
\end{gathered}
$$

This estimate yields $\underline{l i m}\left\|\tilde{R}_{h} f\right\|_{Y_{h}^{s}} \geqq \delta\|f\|_{Y^{s}}-(\delta+C) \varepsilon=\frac{1}{2} \delta\|f\|_{Y^{s}>0}$.
Another formulation of Lemma 2.2 is given in [18].

2.2. Difference scheme in a square

We start with the simple case of the square $\Omega=(0,1) \times(0,1)$. Let $h=1 / N$ and define

$$
\Omega_{h}=\{(x, y) \in \Omega: x / h, y / h \in \mathbf{Z}\}, \bar{\Omega}_{h}=\{(x, y) \in \bar{\Omega}: x / h, y / h \in \mathbf{Z}\}
$$

Denote the grid functions defined on Ω_{h} by $\mathscr{F}\left(\Omega_{h}\right)$, and by $\mathscr{F}_{0}\left(\bar{\Omega}_{h}\right)$ the set of grid functions on $\bar{\Omega}_{h}$ satisfying the boundary condition: $u_{h}(x, y)=0$ for $(x, y) \in \bar{\Omega}_{h} \backslash \Omega_{h}$.

Let L be the differential operator

$$
\begin{equation*}
L=a \partial^{2} / \partial x^{2}+b \partial^{2} / \partial y^{2}+c \partial / \partial x+d \partial / \partial y+e \tag{2.11}
\end{equation*}
$$

with variable coefficients satisfying

$$
\begin{gather*}
a, b, c, d, e \in W^{2, \infty}(\Omega) \\
a(x, y) \geqq \varepsilon>0, \quad b(x, y) \geqq \varepsilon>0 \quad \text { for all }(x, y) \in \Omega . \tag{2.12}
\end{gather*}
$$

The boundary value problem is (1.1): $L u=f(\Omega),\left.u\right|_{\Gamma}=0$. Therefore, we choose the following spaces:

$$
\begin{aligned}
& X^{s}= \begin{cases}H_{0}^{1+s}(\Omega) & \text { for } s \in[-1,0] s \neq-1 / 2, \\
H^{1+s}(\Omega) \cap H_{0}^{1}(\Omega) & \text { for } s \geqq 0\end{cases} \\
& Y^{s}= \begin{cases}\text { dual of } X^{-s} & \text { for } s \in[-1,-1 / 2), \\
H^{s-1}(\Omega) & \text { for } s \in(-1 / 2,2), s \neq 1 / 2, \\
\left\{f \in H^{s-1}(\Omega): f(0,0)=f(0,1)=f(1,0)=f(1,1)=0\right\} \text { for } s \in(2,3] .\end{cases}
\end{aligned}
$$

For the exceptional value $s=2$ we define Y^{s} by interpolation: $Y^{2}=\left[Y^{3}, Y^{1}\right]_{1 / 2}$ (cf. [10]).

Note that $H_{0}^{t}(\Omega)=H^{t}(\Omega)$ for $t \in[0,1 / 2]$ and $H^{0}(\Omega)=L^{2}(\Omega)$.
Lemma 2.3. Assume that $\lambda=0$ is not an eigenvalue of L. Then (2.2a) and the continuous regularity (2.2b) hold for $s \in I:=[-1,3] \backslash\{-1 / 2,1 / 2\}$.

Proof. For $|s| \leqq 1,|s| \neq 1 / 2$ use the result of Kadlec [8] and interpolation. The proof for $s>1, s \in I$ is given in the appendix of [7].

Discretize (1.1) by $L_{h} u_{h}=f_{h}$ with

$$
\begin{equation*}
L_{h}=a T_{x}^{-1} \partial_{x}^{2}+b T_{y}^{-1} \partial_{y}^{2}+\frac{c}{2}\left(I+T_{x}^{-1}\right) \partial_{x}+\frac{d}{2}\left(I+T_{y}^{-1}\right) \partial_{y}+e \quad\left(h^{-1} \in \mathbb{Z}\right) \tag{2.13}
\end{equation*}
$$

X_{h}^{s} and Y_{h}^{s} are the vector spaces $\mathscr{F}_{0}\left(\bar{\Omega}_{h}\right)$ and $\mathscr{F}\left(\Omega_{h}\right)$, respectively. For simplicity we define the norms only for the integers $s=k \in\{0,1,2,3\}$. We denote $\left[\sum_{|\alpha|=j} \sum_{P}\left|\partial^{\alpha} g_{k}\right|^{2}\right]^{1 / 2}$ by $\left|g_{h}\right|_{j, s_{h}}$, where $\partial^{\alpha} g_{h}(P)$ involves only values of g_{h} belonging to S_{h}. Set

$$
\begin{array}{cc}
\left\|u_{h}\right\|_{X_{h}^{k}}=\left[\sum_{j=0}^{k+1}\left|u_{h}\right|_{j, \Omega_{h}}^{2}\right]^{1 / 2} & (k=0,1, \ldots), \\
\left\|f_{h}\right\|_{Y_{h}^{k}}=\left[\sum_{j=0}^{k-1}\left|f_{h}\right|_{j, \Omega_{h}}^{2}\right]^{1 / 2} & (k=1), \\
\left\|f_{h}\right\|_{Y_{h}^{0}}=\sup \left\{h^{2}\left|\sum_{P \in \Omega_{h}} f_{h}(P) u_{h}(P)\right|:\left\|u_{h}\right\|_{X_{h}^{0}}=1\right\} \quad(k=0) .
\end{array}
$$

For $k=3 f \in Y^{3}$ satisfies $f(0,0)=\ldots=0$. This property cannot be translated into $f_{h}(0,0)=\ldots=0$ since $(0,0) \nsubseteq \Omega_{h}$. Therefore define

$$
f(0,0)=2 f(h, h)-f(2 h, 2 h)
$$

with analogous definitions for $\bar{f}(0,1), \bar{f}(1,0), \bar{f}(1,1)$. Then we set

$$
\begin{array}{r}
\|f\|_{Y_{h}^{k}}=\left[\sum_{j=0}^{k-1}\left|f_{h}\right|_{j, \Omega_{h}}^{2}+h^{4-2 k}\left(|\bar{f}(0,0)|^{2}+|\bar{f}(0,1)|^{2}+|\bar{f}(1,0)|^{2}+|\bar{f}(1,1)|^{2}\right)\right]^{1 / 2} \\
(k=2,3)
\end{array}
$$

Theorem 2.2. Let L_{h} be the difference operator (2.13) in the square Ω_{h} with coefficients satisfying (2.12). Assume l_{2}-stability (1.5). Then the discrete regularity estimate (2.4) holds for $s=0,1,2,3$. In particular for $s=3$ one obtains (1.6) with $\hat{H}_{h}^{2}\left(\Omega_{h}\right):=Y_{h}^{3}$. The regularity can be extended to $s \in I$ (cf. Lemma 2.3) if the norms of Y_{h}^{s}, Y_{h}^{s} are suitably defined.

Proof. Define R_{h} and \tilde{R}_{h} by

$$
\left(R_{h} u\right)(x, y)=h^{-2} \iint_{|x-\xi|,|y-\eta| \leqslant h / 2} u(\xi, n) d \xi d \eta
$$

for $(x, y) \in \Omega_{h}$. (2.6a) holds for $s \in\{1,3\}$. The construction of prolongations P_{h} is described by Aubin [2]. Special care is needed to satisfy $P_{h} u_{h}=0$ at the corners of Ω. Thanks to the definition of Y_{h}^{3} the estimates (2.6b) ($s \in\{1,3\}$) and (2.7) ($s, t \in\{0,1,3\}, s \leqq t \leqq s+2$) can be fulfilled. Obviously, (2.8) is valid with consistency order $x_{c}=2$, i.e., for $s=0, t=1$, and $s=1, t=3$. Also (2.5) is trivial. Now apply Theorem 2.1 with $I=\{0,1,3\}, x=2$. The regularity for $s=2$ follows by interpolation.

2.3. Difference scheme in a square, continued

This section contains the proof of regularity with respect to Hölder spaces. We will use Lemma 2.1 rather than Theorem 2.1.

The following spaces X_{h}^{s} and Y_{h}^{s} correspond to $C^{s}(\bar{\Omega})$ with zero boundary condition and to a subspace of $C^{s-2}(\bar{\Omega})$, respectively. s varies in $I=(2,3)$. The norms are

$$
\begin{gathered}
\left\|u_{h}\right\|_{X_{h}^{k+\lambda}}=\sum_{|\alpha| \leqq k}\left|\partial^{\alpha} u_{h}\right|_{0, \Omega_{h}}+\sum_{|\alpha|=k}\left|\partial^{\alpha} u_{h}\right|_{\lambda, \Omega_{h}}, \quad u_{h} \in \mathscr{F}_{0}\left(\bar{\Omega}_{h}\right) \\
\left\|f_{h}\right\|_{Y_{h}^{2+2}}=\left|f_{h}\right|_{0, \Omega_{h}}+\left|f_{h}\right|_{\lambda_{,} \Omega_{h}}+h^{-\lambda}\left[\left|f_{h}(h, h)\right|+\left|f_{h}(1-h, h)\right|+|f(h, 1-h)|\right. \\
+|f(1-h, 1-h)|]
\end{gathered}
$$

where $\left|\partial^{\alpha} v_{h}\right|_{0, s_{h}}$ is the maximum of all $\partial^{\alpha} v_{h}(P)$ with P such that $\left(\partial^{\alpha} v_{h}\right)(P)$ involves only $v_{h}(R)$ with $R \in S_{h} .\left|\partial_{h}^{\alpha} v_{h}\right|_{\lambda, s_{h}}$ is the maximum of all $\left|\partial^{\alpha} v_{h}(P)-\partial^{\alpha} v_{h}(Q)\right| /[$ distance $(P, Q)]^{\lambda}$ with P and Q as above.

We consider the same difference scheme as in Section 2.2 and show (1.7).
Theorem 2.3. Let L_{h} be the scheme (2.13) with coefficients $a, b, c, d, e \in C^{2+\lambda}(\bar{\Omega})$, $\lambda \in(0,1)$. Assume l_{2}-stability (1.5). Then the discrete regularity estimate (2,4) holds with X_{h}^{s} and $Y_{h}^{s}, s=2+\lambda$, as defined above (hence (1.7) with $\alpha=\lambda, C_{h}^{2+\alpha}=X_{h}^{2+\alpha}$, $\left.\hat{C}_{h}^{\alpha}=Y_{h}^{2+\alpha}\right)$.

Proof. (i) In the first step we show that without loss of generality the coefficients c and d may be taken to be zero. Set $I_{h}=\frac{1}{2}\left[c\left(I+T_{x}^{-1}\right) \partial_{x}+d\left(I+T_{y}^{-1}\right) \partial_{y}\right]+e-\sigma$ and $\tilde{L}_{h}=L_{h}-l_{h}$. For σ large enough \tilde{L}_{h} is also l_{2}-stable. Let $H_{h}^{t}=Y_{h}^{t+1}, H_{0, h}^{t}=X_{h}^{t-1}$ with $X_{h}^{\tau}, Y_{h}^{\tau}$ from Section 2.2. According to the comment following Theorem 2.2, the norms of $X_{h}^{\tau}, Y_{h}^{\tau}$ can also be defined for nonintegers τ (cf. [6]). Then Theorem 2.2 yields

$$
\left\|L_{h}^{-1}\right\|_{H_{h}^{\lambda} \rightarrow H_{0, h}^{2+\lambda}} \leqq C .
$$

The discrete analogues of the embeddings $C^{\lambda}(\Omega) \subset{ }_{\rightarrow} H^{\lambda}(\Omega), H^{2+\lambda}(\Omega) \subset C^{1+\lambda}(\Omega)$ are

$$
\|\cdot\|_{H_{h}^{\lambda}} \leqq C\|\cdot\|_{X_{h}^{2+\lambda}}, \quad\|\cdot\|_{X_{h}^{1+\lambda}} \leqq C\|\cdot\|_{H_{0, n}^{2+\lambda}}
$$

Combining the three inequalities we obtain

$$
\left\|L_{h}^{-1}\right\|_{Y_{h}^{3+\lambda} \rightarrow Y_{h}^{1+2}} \leqq C \quad(\lambda=s-2)
$$

Obviously, $l_{h}: X_{h}^{1+\lambda} \rightarrow Y_{h}^{2+\lambda}$ is uniformly bounded. Note that the estimate of $h^{-\lambda}\left[\left|f_{h}(h, h)\right|+\ldots\right]$ follows from the zero boundary condition $u_{h} \in \mathscr{F}_{0}\left(\bar{\Omega}_{h}\right)$. Applying

Lemma 2.1 with $I=\{2+\lambda\}, \varepsilon=\delta=1$, one obtains that X_{h}^{s}-regularity of \tilde{L}_{h} implies X_{h}^{s}-regularity of L_{h}. In the following we write L_{h} instead of \tilde{L}_{h}.
(ii) Define $f_{h}(P)=0$ at $P \in \bar{\Omega}_{h} \backslash \Omega_{h}$ and extend the function by reflection: $f_{h}(x, y)=-f_{h}(-x, y)=-f_{h}(x,-y), f_{h}(1-x, y)=-f_{h}(1+x, y), \ldots \quad$ for $\quad(x, y) \in \Omega_{h}$. Let $\hat{\Omega}_{h}=\{(x, y) \in(-1,2) \times(-1,2), x / h, y / h \in \mathbf{Z}\}$ be the extended domain of f_{h}. Obviously,

$$
\begin{equation*}
\left\|f_{h}\right\|_{C_{h}^{2}\left(\Omega_{h}\right)}=\left\|f_{h}\right\|_{C_{h}^{2}\left(\Omega_{h}\right)} \tag{2.14}
\end{equation*}
$$

holds, where $\left\|f_{h}\right\| c_{h}^{2}\left(s_{h}\right)=\left|f_{h}\right|_{0, s_{h}}+\left|f_{h}\right|_{\lambda, s_{h}}$. The solution u_{h} is to be extended in the same way, whereas the coefficients a, b are extended symmetrically: $a(-x, y)=$ $=a(x, y)$, etc. Note that $L_{h} u_{h}=f_{h}$ holds for the extended domain $\widehat{\Omega}_{h}$. The interior Schauder regularity proved by Thomée [16] yields

$$
\begin{equation*}
\left\|u_{h}\right\|_{X_{h}^{2+\lambda}}=\left\|u_{h}\right\|_{C_{h}^{2+\lambda}\left(\Omega_{h}\right)} \leqq C\left[\left|u_{h}\right|_{0, \Omega_{h}}+\left\|f_{h}\right\|_{C_{h}^{2}\left(\Omega_{h}\right)}\right] \leqq C^{\prime}\left\|f_{h}\right\|_{C_{h}^{\lambda}\left(\Omega_{h}\right)} \tag{2.15}
\end{equation*}
$$

thanks to (2.14) and

$$
\left|u_{h}\right| 0, \Omega_{h} \leqq C\left\|u_{h}\right\|_{H_{h}^{2+\lambda}\left(\Omega_{h}\right)} \leqq C^{\prime}\left\|f_{h}\right\|_{H_{h}^{\lambda}\left(\Omega_{h}\right)} \leqq C^{\prime \prime}\left\|f_{h}\right\| C_{C_{h}^{\lambda}\left(\Omega_{h}\right)} .
$$

Note that the needed estimate of [16] requires only $a, b \in C^{2}\left(\mathbf{R}^{2}\right)$ as fulfilled in our situation.
(iii) Let $f_{h} \in \mathscr{F}\left(\Omega_{h}\right)$ and define f_{h} at $P \in \bar{\Omega}_{h} \backslash \Omega_{h}$ by $f_{h}(0, y)=f_{h}(h, y), f_{h}(1, y)=$ $f_{h}(1-h, y), \ldots$, except at the corners where we set $f_{h}(0,0)=f_{h}(1,0)=f_{h}(0,1)=$ $f_{h}(1,1)=0$. We have

$$
\begin{equation*}
\left\|f_{h}\right\|_{C_{h}^{2}\left(\Omega_{h}\right)}=\left\|f_{h}\right\|_{Y_{n}^{2+\lambda}} . \tag{2.16}
\end{equation*}
$$

Piece-wise linear interpolation of $f_{h}(0, v h), 0 \leqq \nu \leqq 1 / h$, gives a function $g_{1} \in C^{\lambda}(I)$, $I=(0,1)$, with $\left\|g_{1}\right\| C^{\lambda}(t) \leqq\left\|f_{h}\right\| C_{h}^{\lambda}\left(\bar{\Omega}_{h}\right)$ and $g_{1}(0)=g_{1}(1)=0$. Extend $g_{1} / \alpha(0, \cdot)$ to a 2-periodic function g with $g(-t)=-g(t)$. The function

$$
G(x, y)=c_{0} x \int_{-\infty}^{\infty} \exp \left(-\sqrt{1+(y-\eta)^{2} / x^{2}}\right) g(\eta) d \eta
$$

with $c_{0}=1 / \int_{-\infty}^{\infty} \exp \left(-\sqrt{1+t^{2}}\right) d t$ satisfies

$$
\begin{gather*}
G(0, y)=G(x, 0)=G(x, 1)=0, \\
G \in C^{2+\lambda}(\bar{\Omega}), \quad\|G\|_{C^{2}+\lambda(\Omega)} \leqq C\|g\|_{C^{\lambda}(\mathbf{R})}, \tag{2.17}\\
G_{x x}(0, y)=g(y) .
\end{gather*}
$$

Choose $\chi \in C^{\infty}(\mathbf{R})$ with $\chi(y)=1$ for $y \leqq 1 / 3, \chi(y)=0$ for $y \geqq 2 / 3$ and define $u_{1}(x, y)=G(x, y) \chi(x)$. Using (2.17) and

$$
\|g\|_{C^{\lambda}(\mathbf{R})} \leqq C\left\|g_{1}\right\|_{C^{\lambda}(I)} \leqq C^{\prime}\left\|f_{h}\right\|_{C_{h}^{\lambda}\left(\bar{\Omega}_{h}\right)}=C^{\prime}\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}}
$$

we obtain

$$
\left\|u_{1}\right\|_{C^{2}+\lambda\left(\bar{\Omega}_{h}\right)} \leqq C\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}} .
$$

Since the restriction $u_{1, h}$ of u_{1} to the grid points of $\bar{\Omega}_{h}$ belongs to $\overline{\mathscr{F}}_{0}\left(\bar{\Omega}_{h}\right)$, the estimate

$$
\begin{equation*}
\left\|u_{1, h}\right\|_{X_{h}^{2+\lambda}} \leqq C\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}} \tag{2.18}
\end{equation*}
$$

holds. Set $f_{1, h}=L_{h} u_{1, h} \in \mathscr{F}\left(\Omega_{h}\right)$. Obviously, (2.18) implies $\left\|f_{1, h}\right\|_{Y_{h}^{2+\lambda}} \leqq C\left\|f_{h}\right\|_{Y_{h}^{2}+\lambda}$. In addition the third part of (2.17) proves

$$
\begin{equation*}
\left|f_{1, h}(h, v h)-f_{h}(h, v h)\right| \leqq C h^{\lambda}\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}} \tag{2.19}
\end{equation*}
$$

while $f_{1, h}(x, 0)=f_{1, h}(x, 1)=f_{1, h}(1, y)=0$ implies

$$
\begin{equation*}
\left|f_{1, h}(x, h)\right|, \quad\left|f_{1, h}(x, 1-h)\right|, \quad\left|f_{1, h}(1-h, y)\right| \leqq C h^{\lambda}\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}} \tag{2.20}
\end{equation*}
$$

Analogously, $f_{j, h}(j=2,3,4)$ can be defined so that (2.19) holds for $x=1-h$ or $y=h$ or $y=1-h$, respectively. By virtue of (2.19/20) the function $f_{0, h}=f_{h}-$ $\sum_{j=1}^{4} f_{j, h}$ extended to $\mathscr{F}_{0}\left(\bar{\Omega}_{h}\right)$ as in (ii) satisfies

$$
\left\|f_{0, h}\right\|_{C_{h}^{\lambda}\left(\Omega_{h}\right)} \leqq C\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}}
$$

Hence, the solution of $L_{h} u_{0, h}=f_{0, h}$ can be estimated by

$$
\left\|u_{0, h}\right\|_{X_{h}^{2+\lambda}} \leqq C\left\|f_{h}\right\|_{Y_{h}^{2+\lambda}}
$$

(cf. (2.15)). The proof is concluded by noting that $u_{h}=\sum_{j=0}^{4} u_{j, h}$ and using (2.18).

2.4. Difference schemes in a general domain

In the following we assume $\Omega \subset \mathbf{R}^{2}$ to be a domain with smooth boundary. In this case the continuous regularity is well-known. However, the analysis of the difference scheme is more difficult, since the discretization is irregular at points near the boundary. We illustrate the application of Theorem 2.1 by special examples.

2.4.1. Shortley-Weller scheme

Poisson's equation $-\Delta u=f(\Omega), u=0(\Gamma)$ can be discretized by the ShortleyWeller scheme (cf. [6], [11, p. 203]). $\left(L_{h} u\right)(P)$ is the usual five-point formula if all neighbours $(x \pm h, y),(x, y \pm h)$ of $P=(x, y)$ belong to $\Omega_{h}=\{(x, y) \in \Omega: x / h$, $y / h \in \mathbf{Z}\}$. Otherwise the second derivative is discretized more generally. E.g. in the
case of $(x, y) \in \Omega_{h},(x+h, y) \in \Omega_{h},(x-x h, y) \in \Gamma=\partial \Omega(0<x \leqq 1)$ the derivative $-u_{x x}$ is approximated by

$$
\begin{equation*}
-u_{x x}(x, y) \approx h^{-2}\left[\frac{2}{\varkappa} u(x, y)-\frac{2}{x(1+x)} u(x-x h, y)-\frac{2}{1+x} u(x+h, y)\right] \tag{2.21}
\end{equation*}
$$

where $u(x-x h, y)=0$ because of the boundary condition. If $P \in \Omega_{h}$ and $Q=P+(0, h) \in \Omega_{h}$ are grid points, we neglect a possible part of the boundary Γ between these points. Hence, neighbours with respect to the grid are also neighbours with respect to the discretization.

The norms of $X_{h}^{0}=H_{h}^{1}\left(\bar{\Omega}_{h}\right)$ and $X_{h}^{1}=H_{h}^{2}\left(\bar{\Omega}_{h}\right)$ must be defined carefully. If the norm of $H_{h}^{2}\left(\bar{\Omega}_{h}\right)$ also involves differences of the form (2.21), then the inverse estimate (2.5) holds with C depending on the minimum of all \varkappa. Since χ may become arbitrarily small, the inverse estimate (2.5) is not valid.

It is easy to define the norms of L_{h}^{2} and H_{h}^{1} :

$$
\begin{gathered}
\left\|u_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)}=\left\{h^{2} \sum_{p \in \Omega_{h}}\left|u_{h}(P)\right|^{2}\right\}^{1 / 2} \\
\left\|u_{h}\right\|_{H_{h}^{1}\left(\Omega_{h}\right)}=\left\{\left\|u_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)}^{2}+\sum_{P \in G_{h}} \sum_{i=1,2}\left|\partial_{i} u_{h}\right|^{2}\right\}^{1 / 2}
\end{gathered}
$$

where $G_{h}=\left\{(x, y) \in \mathbf{R}^{2}: x / h, y / h\right.$ integers $\}$ is the infinite grid. $\partial_{i}(i=1,2)$ are the first differences: $\partial_{1}=\partial_{x}, \partial_{2}=\partial_{y}$ (cf. Section 1). Here, the grid function u_{h} is extended by zero on $G_{h} \backslash \Omega_{h}$. The norm of $H_{h}^{-1}\left(\bar{\Omega}_{h}\right)$ is the dual norm

$$
\left\|u_{h}\right\|_{H_{h}^{-1}\left(\Omega_{h}\right)}=\sup \left\{h^{2}\left|\sum_{P \in \Omega_{h}} u_{h}(P) \bar{v}_{h}(P)\right|:\left\|v_{h}\right\|_{H_{h}^{1}\left(\bar{\Omega}_{h}\right)}=1\right\} .
$$

The extension by zero cannot be used for $H_{h}^{2}\left(\bar{\Omega}_{h}\right)$, since this space is the discrete analogue of $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and not of $H_{0}^{2}(\Omega)$. We must use differences of values at points P_{i} with dist $\left(P_{i}, P_{j}\right) \geqq h$ in order to satisfy the inverse estimate (2.5). Let $\bar{\Omega}_{h}$ be the set of all points $P=(x, y)$ with $P \in \Omega_{h}$ or $P \in \Gamma$ and either x / h or y / h being an integer. $\bar{\Omega}_{h}$ differs from Ω_{h} by the set

$$
\Gamma_{h}=\bar{\Omega}_{h} \backslash \Omega_{h}
$$

containing the intersection points of the lines $x=v h$ and $y=\mu h$ with the boundary Γ. $P \in \bar{\Omega}_{h}$ are the points involved in the difference formula (2.21). The second x-difference at $(x, y) \in \Omega_{h}$ can be defined by

$$
\begin{gathered}
\quad\left(D_{x x} u\right)(x, y) \\
=\left\{\begin{array}{l}
h^{-2}[u(x+h, y)-2 u(x, y)+u(x-h, y)] \text { if }(x, y),(x \pm h, y) \in \bar{\Omega}_{h}, \\
h^{-2}\left[\frac{2 u(x+x h, y)}{(1+x)(2+x)}-\frac{2 u(x-h, y)}{1+x}+\frac{2 u(x-2 h, y)}{2+x}\right] \\
\text { if }(x-h, y), \quad(x-2 h, y) \in \bar{\Omega}_{h}, \quad(x+x h, y) \in \Gamma_{\hbar}
\end{array}\right.
\end{gathered}
$$

and by a similar expression in the case of $(x+h, y),(x+2 h, y) \in \bar{\Omega}_{h},(x-x h, y) \in \Gamma_{h}$. The distances of the points are h and $(1+x) h$ and not h and $x h$ as in (2.21). This is necessary to ensure the inverse estimate (2.5). $D_{y y} u$ is defined analogously. The description of the mixed difference $D_{x y} u$ at a point near the boundary usually involves more than four grid points. E.g., $D_{x y}$ can be defined by a difference formula using the six grid points $(x \pm h, y),(x+h, y+h),(x, y+h),(x, y+2 h) \in \bar{\Omega}_{h},(x, y-x h) \in \Gamma_{h}$, Then the norm of $H_{h}^{2}\left(\bar{\Omega}_{h}\right)$ reads as

$$
\left.\left\|u_{h}\right\|_{H_{h}^{2}\left(\bar{\Omega}_{h}\right)}=\left\{\left\|u_{h}\right\|_{H_{h}^{1}\left(\Omega_{h}\right)}^{2}+h^{2} \sum_{P \in \Omega_{h}}\left(\left|D_{x x} u_{h}(P)\right|^{2}+\left|D_{y y} u_{h}(P)\right|^{2}\right)+\left|D_{y x} u_{h}(P)\right|^{2}\right)\right\}^{\frac{1}{2}} .
$$

The following theorem establishes the H_{h}^{2}-regularity of the Shortley-Weller difference scheme.

Theorem 2.4. Suppose that $\Omega \subset \mathbf{R}^{2}$ is a bounded domain with the uniform C^{2} regularity property (cf. $[1, p .67]$). Then the Shortley-Weller scheme satisfies the regularity estimate

$$
\left\|L_{h}^{-1}\right\|_{L_{h}^{2}(Q) \rightarrow H_{h}^{2}\left(\Omega_{h}\right)} \leqq C .
$$

Proof. We want to apply Theorem 2.1 with $I=\{0,1\}, x=1$:

$$
Y_{h}^{0}=H_{h}^{-1}\left(\bar{\Omega}_{h}\right), \quad Y_{h}^{1}=L_{h}^{2}\left(\Omega_{h}\right), \quad X_{h}^{0}=H_{h}^{1}\left(\bar{\Omega}_{h}\right), \quad X_{h}^{1}=H_{h}^{2}\left(\bar{\Omega}_{h}\right) .
$$

According to the suppositions (i)-(vi) of Theorem 2.1 the proof consists of six steps.

Step 1. Discrete regularity for $s=0$. This result is contained in [6], but it can also be obtained directly by estimating the scalar product $\left\langle u_{h}, L_{h} u_{h}\right\rangle$. Let $L_{h}=$ $L_{h}^{x}+L_{h}^{y}$, where L_{h}^{x} and L_{h}^{y} are the differences with respect to x and y. Extending u_{h} by zero outside of Ω_{h}, we obtain

$$
\begin{gathered}
\left\langle u_{h}, L_{h}^{x} u_{h}\right\rangle=h^{2} \sum_{P \in \Omega_{h}} u_{h}(P)\left(L_{h}^{x} u_{h}\right)(P)=h^{2} \sum_{P \in G_{h}}\left|\partial_{x} u_{h}\right|^{2} \\
+h^{2} \Sigma_{1} \partial_{x} u_{h}(Q)\left\{\left[\frac{2}{x(1+x)}-1\right] \partial_{x} u_{h}(Q)+\left[1-\frac{2}{1+x}\right] \partial_{x} u_{h}(P)\right\}+h^{2} \Sigma_{2}[\ldots],
\end{gathered}
$$

where the sum Σ_{1} is taken over all $P \in \Omega_{h}$ with $P+(h, 0) \in \Omega_{h}$ and $Q=P-(h, 0) \notin \Omega_{h}$. Σ_{2} is a similar expression for the case $P, P-(h, 0) \in \Omega_{h}$ and $P+(h, 0) \notin \Omega_{h}, x=x(P) \in$ $(0,1]$ is the number defined in (2.21). The inequality $2 a b \geqq-\lambda^{2} a^{2}-b^{2} / \lambda^{2}$ yields

$$
h^{2} \Sigma_{1}[\ldots]+h^{2} \Sigma_{2}[\ldots] \geqq-\frac{1}{25} h^{2} \sum_{P \in G_{h}}\left|\partial_{x} u_{h}\right|^{2} .
$$

This estimate and the analogous one for L_{h}^{y} imply

$$
\left\langle u_{h}, L_{h} u_{h}\right\rangle \geqq 0.96 h^{2} \sum_{\substack{P \in G_{h} \\ i=1,2}}\left|\partial_{i} u_{h}\right|^{2} .
$$

Since Ω is bounded, the right-hand side is the square of a norm equivalent to $|\cdot|_{H_{h}^{1}\left(\bar{\Omega}_{h}\right)}$. The inequality $\left\langle u_{h}, L_{h} u_{h}\right\rangle \geqq c\left|u_{h}\right|_{H_{h}^{1}\left(\bar{\Omega}_{h}\right)}^{2}$ with $c>0$ for all $u_{h} \in H_{h}^{1}\left(\bar{\Omega}_{h}\right)$ proves the desired H_{h}^{1}-regularity.

Step 2. Continuous regularity for $s=1$. See e.g., Theorem 37,I of Miranda [12].

Step 3. A restriction satisfying $\left\|R_{h}\right\|_{H^{2} \cap H_{0}^{1} \rightarrow H_{h}^{2}} \leqq C$ has to be defined. Let $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. There is a continuous extension operator $E: H^{2}(\Omega) \rightarrow H^{2}\left(\mathbf{R}^{2}\right)$ (cf. Adams [1, p. 84]) yielding $\tilde{u}=E u$. Define a provisional grid function \tilde{u}_{h} by the mean value

$$
\tilde{u}_{h}(P)=\int_{B_{h}(P)} \tilde{u}(x, y) d x d y / \int_{B_{h}(P)} d x d y, B_{h}(P)=\{(x, y):\|P-(x, y)\| \leqq h\}
$$

for $P \in \bar{\Omega}_{h}$. The construction of \tilde{u}_{h} implies

$$
\left\|\tilde{u}_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)} \leqq C\|u\|_{H^{2}\left(\mathbf{R}^{2}\right)} \leqq C^{\prime}\|u\|_{H^{2}(\Omega)} .
$$

Unfortunately, $\tilde{u}_{h}(P)$ does not satisfy $\tilde{u}_{h}(P)=0$ at points $P \in \Gamma_{h}=\bar{\Omega}_{h} \backslash \Omega_{h}$ on the boundary. Therefore, $R_{h} u$ is the following modification of \tilde{u}_{h} :

$$
\left(R_{h} u\right)(P)=\left\{\begin{array}{lll}
\tilde{u}_{h}(P) & \text { if } P \in \Omega_{h} \backslash \gamma_{h} \\
0 & \text { if } P \in \Gamma_{h} \\
\text { solution of } \quad\left(L_{h} R_{h} u\right)(P)=0 & \text { if } P \in \gamma_{h}
\end{array}\right.
$$

where

$$
\gamma_{h}=\left\{P \in \Omega_{h}: \text { not all neighbours of } P \text { belong to } \Omega_{h}\right\}
$$

is the set of points near the boundary.
The difference $\delta_{h}=\tilde{u}_{h}-R_{h} u$ satisfies $\delta_{h}=\tilde{u}_{h}$ on $\Gamma_{h}, L_{h} \delta_{h}=L_{h} \tilde{u}_{h}$ on $\gamma_{h}, \delta_{h}=0$ otherwise. Split δ_{h} into $\delta_{h}^{1}+\delta_{h}^{2}$, where

$$
\delta_{h}^{1}=\tilde{u}_{h}\left(\Gamma_{h}\right), L_{h} \delta_{h}^{1}=0\left(\gamma_{h}\right), \delta_{h}^{1}=\delta_{h}^{2}=0\left(\Omega_{h} \backslash \gamma_{h}\right), \delta_{h}^{2}=0\left(\Gamma_{h}\right), L_{h} \delta_{h}^{2}=L_{h} \tilde{u}_{h}\left(\gamma_{h}\right) .
$$

It can be shown that $\left|\delta_{h}^{1}(P)\right|=\left|\tilde{u}_{h}(P)\right|$ is bounded by $C h\|u\|_{H^{2}\left(B_{h}(P)\right)}$ for $P \in \Gamma_{h}$. The strong diagonal dominance of the matrix L_{h} restricted to the near boundary points γ_{h} implies

$$
\left\|\delta_{h}^{1}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C\left[h^{2} \sum_{P \in \Gamma_{h}}\left|\delta_{h}^{1}(P)\right|^{2}\right]^{1 / 2} \leqq C^{\prime} h^{2}\left[\sum_{P \in \Gamma_{h}}\|\tilde{u}\|_{H^{2}\left(B_{h}(P)\right)}^{2}\right]^{1 / 2} \leqq C^{\prime \prime} h^{2}\|\tilde{u}\|_{H^{2}\left(\mathrm{R}^{2}\right)}
$$

Estimating differences by integrals of derivatives we obtain

$$
\left|L_{h} \delta_{h}^{2}\right|(P)=\left|L_{h} \tilde{u}_{h}\right|(P) \leqq C h^{-1}\|u\|_{H^{2}\left(B_{2 h}(P)\right)} \quad \text { for } \quad P \in \gamma_{h}
$$

The strong diagonal dominance again shows that:

$$
\begin{gathered}
\left\|\delta_{h}^{2}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C h^{2}\left\|\left.\left(L_{h} \tilde{u}_{h}\right)\right|_{\gamma_{h}}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \\
=C h^{2}\left[\sum_{P \in y_{h}} h^{2}\left|L_{h} \tilde{u}_{h}(P)\right|^{2}\right]^{1 / 2} \leqq C^{\prime} h^{2}\left[\sum_{P \in \gamma_{h}}\|\tilde{u}\|_{H^{2}\left(B_{2 h}(P)\right)}^{2}\right]^{1 / 2} \leqq C^{\prime \prime} h^{2}\|\tilde{u}\|_{H^{2}\left(R^{2}\right)}
\end{gathered}
$$

Hence, the grid function δ_{h} satisfies

$$
\left\|\delta_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)} \leqq C h^{-2}\left\|\delta_{h^{\prime}}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C^{\prime}\|\tilde{u}\|_{H^{2}\left(\mathbf{R}^{2}\right)} \leqq C^{\prime \prime}\|u\|_{H^{2}(\Omega)}
$$

Here, we used the fact that the inverse estimate $\|\cdot\|_{H_{h}^{2}} \leqq C h^{-2}\|\cdot\|_{L_{h}^{2}}$ holds because of the definition of the norm of H_{h}^{2}.

The estimates of \tilde{u}_{h} and δ_{h} imply

$$
\left\|R_{h} u\right\|_{H_{h}^{2}\left(\bar{\Omega}_{h}\right)} \leqq\|\tilde{u}\|_{H_{h}^{2}\left(\bar{\Omega}_{h}\right)}+\left\|\delta_{h}\right\|_{H_{h}^{2}\left(\bar{\Omega}_{h}\right)} \leqq C\|u\|_{H^{2}(\Omega)}
$$

Step 4. The estimate $\left\|\widetilde{R}_{h} P_{h}-I\right\|_{L_{h}^{2} \rightarrow H_{h}^{-1}} \leqq C h$ has to be proved for a suitable choice of P_{h} and \widetilde{R}_{h}. Let P_{h} be the piece-wise constant prolongation $\left(P_{h} u_{h}\right)(x, y)=u_{h}(Q)$ with $Q=\left(x_{Q}, y_{Q}\right)$ if $x_{Q}-\frac{h}{2}<x \leqq x_{Q}+\frac{h}{2}, y_{Q}-\frac{h}{2}<y \leqq y_{Q}+\frac{h}{2}$, and let $\tilde{R}_{h} u$ be defined by

$$
\left(\tilde{R}_{h} u\right)(P)= \begin{cases}\int_{B_{h / 2}(P)} \tilde{u}(x, y) d x d y / \int_{B_{h / 2}(P)} d x d y & \text { if } P \in \Omega_{h} \backslash \gamma_{h} \\ 0 & \text { if } \quad P \in \gamma_{h}\end{cases}
$$

where $\tilde{u}=E u$ and $\gamma_{h} \subset \Omega_{h}$ are defined in the preceding Step 3.
Let $v_{h} \in H_{h}^{1}\left(\bar{\Omega}_{h}\right)$ and $u_{h} \in L^{2}\left(\Omega_{h}\right)$. Split v_{h} into $v_{h}^{1}+v_{h}^{2}$ with $v_{h}^{1}=v_{h \mid \gamma_{h}}$ (restriction to γ_{h}) and $v_{h}^{2}=v_{h}-v_{h}^{1}$. The definitions of P_{h} and \tilde{R}_{h} yield

$$
\left|\left\langle v_{h},\left[\tilde{R}_{h} P_{h}-I\right] u_{h}\right\rangle\right|=\left|\left\langle v_{h}^{1},\left[\widetilde{R}_{h} P_{h}-I\right] u_{h}\right\rangle\right|=\left|\left\langle v_{h}^{1}, u_{h}\right\rangle\right| \equiv\left\|v_{h}^{1}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)}\left\|u_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)}
$$

Using $\left\|v_{h}^{1}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C h\left\|v_{h}\right\|_{H_{h}^{1}\left(\Omega_{h}\right)}$ (cf. [6, Lemma 2.2]) we finish the proof of the desired estimate.

Step 5. Consistency $\left\|L_{h} R_{h}-\widetilde{R}_{h} L\right\|_{H^{2} \cap H_{0}^{1} \rightarrow H_{h}^{-1}} \leqq C h$. Let $v_{h} \in H_{h}^{1}\left(\bar{\Omega}_{h}\right)$ and $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be arbitrary, extend u to $\tilde{u}=E u \in H^{2}\left(\mathbf{R}^{2}\right)$ and set

$$
\tilde{v}_{h}(P)=v_{h}(P) \quad \text { for } \quad P \in \Omega_{h} \backslash \gamma_{h}, \quad v_{h}(P)=0 \quad \text { otherwise. }
$$

The new functions satisfy

$$
\left\|\tilde{v_{h}}\right\|_{H_{h}^{1}\left(\tilde{G}_{h}\right)} \leqq C\left\|v_{h}\right\|_{H_{h}^{1}\left(\pi_{h}\right)}, \quad\|\tilde{u}\|_{H^{2}\left(\mathbf{R}^{2}\right)} \leqq C\|u\|_{H^{2}(\Omega)} .
$$

Let $G_{h}=\left\{(x, y) \in \mathbf{R}^{2}: x / h, y / h\right.$ integers $\}$ be the indefinite grid in \mathbf{R}^{2} and define restrictions \hat{R}_{h} and $\hat{\tilde{R}}_{h}$ on the grid G_{h} in the same way as R_{h} and \tilde{R}_{h}, resp., are defined in $\Omega_{h} \backslash \gamma_{h}$. Furthermore, denote the five-point formula in G_{h} by \hat{L}_{h}, while $L=-\Delta$
is the negative Laplacian in \mathbf{R}^{2}. The first term of

$$
\left\langle v_{h},\left[L_{h} R_{h}-\tilde{R}_{h} L\right] u\right\rangle_{L_{h}^{2}(\Omega)}=\left\langle v_{h},\left[\hat{L}_{h} \hat{R}_{h}-\hat{\tilde{R}}_{h} L\right] \tilde{u}\right\rangle_{L_{h}^{2}\left(G_{h}\right)}+\left\langle v_{h}-\tilde{v}_{h},\left[L_{h} R_{h}-\tilde{R}_{h} L\right] \tilde{u}\right\rangle_{L_{h}^{2}(\Omega)}
$$

can be analysed by Fourier techniques yielding the bound $C h\left\|v_{h}\right\|_{H_{h}^{1}}\|u\|_{H^{2}}$. The support of $v_{h}-\tilde{v}_{h}$ is γ_{h}. Since $L_{h} R_{h} \tilde{u}$ as well as $\tilde{R}_{h} L \tilde{u}$ vanish on γ_{h}, we obtain

$$
\left\langle v_{h},\left[L_{h} R_{h}-\tilde{R}_{h} L\right] u\right\rangle_{L_{h}^{2}\left(\Omega_{h}\right)}=\left\langle\tilde{v}_{h},\left[\hat{L}_{h} \hat{R}_{h}-\hat{\tilde{R}}_{h} L\right] \tilde{u}_{L_{h}^{2}\left(G_{h}\right)}+\left\langle\left. v\right|_{\gamma_{h}^{\prime}}, L_{h}\left(R_{h}-\tilde{R}_{h}\right) \tilde{u}\right\rangle_{L_{h}^{2}\left(\Omega_{h}\right)},\right.
$$

where $v_{h \mid \gamma_{h}^{\prime}}$ is the restriction of v_{h} to $\gamma_{h}^{\prime}=\left\{P \in \Omega_{h}: P\right.$ neighbour of $\left.\gamma_{h}\right\}$. By

$$
\left\langle v_{h \gamma_{h}^{\prime}} L_{h}\left(R_{h}-\tilde{R}_{h}\right) \tilde{u}\right\rangle \leqq\left\|v_{h \gamma_{h}^{\prime}}\right\|_{L_{h}^{2}}\left\|L_{h}\left(R_{h}-\tilde{R_{h}}\right) \tilde{u}\right\|_{L_{h}^{2}} \leqq C h\left\|v_{h}\right\|_{H_{h}^{1}}\|u\|_{H^{2}}
$$

the estimates result in

$$
\left|\left\langle v_{h},\left[L_{h} R_{h}-\tilde{R}_{h} L\right] u\right\rangle\right| \leqq C h\left\|v_{h}\right\|_{H_{h}^{1}\left(\bar{\Omega}_{h}\right)}\|u\|_{H^{2}(\Omega)} .
$$

Hence, the consistency condition is proved.
Step 6. The inverse estimate $\|\cdot\|_{H_{h}^{2}} \leqq C h^{-1}\|\cdot\|_{H_{h}^{1}}$ holds by definition of the norms. Since all suppositions of Theorem 1.1 are fulfilled, the H_{h}^{2}-regularity is valid for the Shortley-Weller scheme L_{h}.

2.4.2. Inhomogeneous boundary conditions

Discretize the boundary value problem

$$
-\Delta u=f(\Omega), \quad u=g(\Gamma)
$$

by the Shortley-Weller scheme with $u_{h}(P)=g_{h}(P)$ for $P \in \Gamma$. The right-hand sides f_{h} and g_{h} are obtained by suitable restrictions: $f_{h}=R_{h}^{\Omega} f, g_{h}=R_{h}^{r} g$. Here R_{h}^{Γ} : $H^{3 / 2}(\Gamma) \rightarrow H_{h}^{3 / 2}\left(\Gamma_{h}\right)$ can be defined as follows: $\left(R_{h}^{\Gamma} g\right)(P)=\left(\pi h^{2}\right)^{-1} \int_{K(P)}(E g)(\xi, \eta)$ $d \xi d \eta$, where $K(P)=\left\{Q \in \mathbf{R}^{2}:\|Q-P\| \leqq h\right\}$ and $E: H^{3 / 2}(\Gamma) \rightarrow H^{2}\left(\mathbf{R}^{2}\right)$ a suitable extension.
We define $Y_{h}^{1}=L_{h}^{2}\left(\Omega_{h}\right) \times H_{h}^{3 / 2}\left(\Gamma_{h}\right)$, where $\Gamma_{h}=\bar{\Omega}_{h} \backslash \Omega_{h}$ is the set of boundary points involved in (2.21). The norm of $H_{h}^{3 / 2}\left(\Gamma_{h}\right)$ is

$$
\left\|g_{h}\right\|_{H_{h}^{3 / 2}\left(L_{h}\right)}=\inf \left\{\left\|v_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)}: v_{\left.h\right|_{r_{h}}}=g_{h}\right\} .
$$

Proposition 2.1. Let $H_{h}^{2}\left(\bar{\Omega}_{h}\right)$ be defined as above (without $u_{h}=0$ on $\bar{\Omega}_{h} \backslash \Omega_{h}$). Then H_{h}^{2}-regularity holds for the inhomogeneous Shortley-Weller scheme:

$$
\left\|u_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)} \leqq C\left(\left\|f_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)}+\left\|g_{h}\right\|_{H_{h}^{3 / 2}\left(\Gamma_{h}\right)}\right) .
$$

Proof. Choose $v_{h} \in H_{h}^{2}\left(\bar{\Omega}_{h}\right)$ with $g_{h}=v_{h \mid \Gamma_{h}}$ and $\left\|g_{h}\right\|_{H_{h / 2}^{3}\left(\Gamma_{h}\right)}=\left\|v_{h}\right\|_{H_{h}^{2}\left(\bar{\Omega}_{h}\right)}$. Define w_{h} by $w_{h}(P)=v_{h}(P)$ except for those $P \in \Omega_{h}$ corresponding to irregular discretizations. Here we determine w_{h} from $\left(L_{h} w_{h}\right)(P)=0 . w_{h}$ satisfies $w_{h}=g_{h}\left(\Gamma_{h}\right)$ and $\left\|L_{h} w_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C\left\|w_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)} \leqq C^{\prime}\left\|v_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)}=C^{\prime}\left\|g_{h}\right\|_{H_{h}^{3 / 2}\left(\Omega_{h}\right)}$. The application of Theorem 2.4 for the right-hand side $\tilde{f}_{h}=f_{h}-L_{h} w_{h}$ yields the desired estimate.

2.4.3. Discretization by composed meshes

As a last example we discuss an unusual discretization: a difference scheme on composed meshes as proposed by Starius [15]. Assume that the boundary Γ of Ω is sufficiently smooth. Let $\Omega_{i}(i=1,2,3)$ be subregions of Ω with boundaries Γ_{i} (cf. Fig. 1). Assume that a given

Fig. 1
transformation maps the annular strip $\Omega \backslash \Omega_{3}$ between Γ_{3} and Γ into a rectangle R. The inverse transformation maps a regular square grid of R into a curved grid Ω_{h}^{A} of $\Omega \backslash \Omega_{3}$. Let $\Omega_{h}^{B} \subset \Omega$ be a usual square grid. The boundary value problem (1.1),

$$
L u=f(\Omega),\left.\quad u\right|_{\Gamma}=0(\Gamma)
$$

with a second order differential operator L with smooth coefficients (a more general boundary condition $\left.B u\right|_{\Gamma}=g$ is also possible) is discretized by

$$
\begin{equation*}
L_{h}^{A} u_{h}^{A}=f_{h}^{A} \quad\left(\Omega_{h}^{A}\right), \quad u_{h_{\mid \Gamma \cap \Omega_{h}^{A}}^{A}}=0 \tag{2.22a}
\end{equation*}
$$

on the curved mesh Ω_{h}^{A} and by

$$
\begin{equation*}
L_{h}^{B} u_{h}^{B}=f_{h}^{B}\left(\Omega_{h}^{B}\right) \tag{2.22b}
\end{equation*}
$$

on the square grid Ω_{h}^{B}. Here, Ω_{h}^{A} and Ω_{h}^{B} denote the interior points of $\Omega_{h}^{A}, \Omega_{h}^{B}: P$ is an interior point of Ω_{h}^{A}, if (2.22a) evaluated at P involves only $u_{h}^{A}(Q)$ with $Q \in \Omega_{h}^{A}$. The non-interior points of $\Omega_{h}^{A} \backslash \AA_{h}^{A}$ belong either to Γ (then $u_{h}^{A}=0$ by (2.22a)) or to Γ_{3}. Let Π^{B} be a prolongation (interpolation) of grid functions defined on Ω_{h}^{B} to functions defined on Ω. Set

$$
\begin{equation*}
u_{n}^{A}(P)=\left(\Pi^{B} u_{n}^{B}\right)(P) \text { for } P \in \Omega_{n}^{A} \cap \Gamma_{3} . \tag{2.22c}
\end{equation*}
$$

Similarly define

$$
\begin{equation*}
u_{h}^{B}(P)=\left(\Pi^{A} u_{h}^{A}\right)(P) \text { for } P \in \Omega_{h}^{B} \backslash \Omega_{h}^{B} \tag{2.22d}
\end{equation*}
$$

We assume that (2.22c) involves only values of $u_{h}^{B}(Q)$ for $Q \in \Omega_{2} \supset \Omega_{3}$, while (2.22d) involves only $u_{h}^{A}(Q)$ for $Q \in \Omega \backslash \Omega_{1}$.

By (2.22a-d) the solution $u_{h}=\left(u_{h}^{A}, u_{h}^{B}\right)$ is determined. For the sake of consistency we define f_{h}^{A} from f_{h}^{B} by:

$$
f_{h}^{A}=\Pi^{B} f_{h_{l}}^{B} l_{h}^{A} .
$$

The discrete spaces $L_{h}^{2}\left(\Omega_{h}^{B}\right)$ and $H_{h}^{s}\left(\Omega_{h}^{B} \cap \Omega_{2}\right)$ are defined as usual. For the definition of $H_{h}^{s}\left(\Omega_{h}^{A}\right)$, use the differences with respect to the transformed (rectangular) grid.

Proposition 2.2. Let $s \geqq 0$. Assume that
(i) the scheme (2.22a-d) is l_{2}-stable, i.e.,

$$
\left\|u_{h}^{A}\right\|_{L_{h}^{2}\left(\Omega_{h}^{A}\right)}+\left\|u_{h}^{B}\right\|_{L_{h}^{2}\left(\Omega_{h}^{B}\right)} \leqq C\left\|f_{h}^{B}\right\|_{L_{h}^{2}\left(\left(_{h}^{B}\right)\right.},
$$

(ii) L_{h}^{A} and L_{h}^{B} are elliptic (cf. [17]),
(iii) distance $\left(\Gamma_{1}, \Gamma_{2}\right)>\varepsilon$, with ε independent of h,
(iv) the interpolation Π^{B} is sufficiently accurate,
(v) the coefficients of L, L_{h}^{A}, L_{h}^{B}, the boundary Γ, and the transformation of the strip $\Omega \backslash \Omega_{3}$ into R are smooth enough.
Then regularity holds in the following form:

$$
\left\|u_{h}^{A}\right\|_{H_{h}^{S+2}\left(\Omega\left(\Omega_{h}^{A}\right)\right.}+\left\|u_{h}^{B}\right\|_{H_{h}^{s+2}\left(\Omega_{h}^{B} \cap \Omega_{2}\right)} \leqq C\left\|f_{h}^{B}\right\|_{H_{h}^{s}\left(\Omega_{h}^{B}\right)} .
$$

Note that the regions Ω_{h}^{A} and $\Omega_{h}^{B} \cap \Omega_{2}$ overlap.
Proof. The interior regularity of L_{h}^{B} yields

$$
\left\|u_{h}^{B}\right\|_{H_{h}^{s+2}\left(\Omega_{h}^{B} \cap \Omega_{2}\right)} \leqq C^{\prime}\left(\left\|u_{h}^{B}\right\|_{L_{h}^{2}\left(\Omega_{h}^{B}\right)}+\left\|f_{h}^{B}\right\|_{H_{h}^{f}\left(\Omega_{h}^{B}\right)}\right) \leqq C\left\|f_{h}^{B}\right\|_{H_{h}^{B}\left(\Omega_{h}^{B}\right)} .
$$

(cf. Thomée and Westergren [17]). By the assumption on Π^{B} the boundary values (2.22c) of u_{h}^{A} at Γ_{3} can be estimated with respect to $H_{h}^{s+3 / 2}\left(\Omega_{h}^{A} \cap \Gamma_{3}\right)$ (in the sense of

Section 2.4.2) by $C\left\|f_{h}^{B}\right\|_{H_{h}^{s}\left(\Omega_{h}^{B}\right)}$. Considerations similar to those of Sections 2.2 and 2.4.2 show

$$
\left\|u_{h}^{A}\right\|_{H_{h}^{g}+2\left(\Omega_{h}^{A}\right)} \leqq C^{\prime}\left(\left\|u_{h}^{A}\right\|_{L_{h}^{2}\left(\Omega_{h}^{A}\right)}+\left\|f_{h}^{A}\right\|_{H_{h}^{s}\left(\Omega_{h}^{A}\right)}+\left\|f_{h}^{B}\right\|_{H_{h}^{s}\left(\Omega_{h}^{A}\right)}\right) \leqq C\left\|f_{h}^{B}\right\|_{H_{h}^{s}\left(\Omega_{h}^{B}\right)}
$$

Remark. An analogous regularity estimate holds for Hölder spaces C_{h}^{s}.

3. Regularity of discrete nonlinear boundary value problems

3.1. Main theorems

We want to show that under suitable assumptions the discrete solution of the nonlinear problem is as regular as the solution u^{*} of the continuous boundary value problem

$$
\begin{equation*}
\mathscr{L}\left(u^{*}\right)=0 . \tag{3.1}
\end{equation*}
$$

Denote the discretization of (3.1) by

$$
\begin{equation*}
\mathscr{L}_{h}\left(u_{h}\right)=0 \tag{3.2}
\end{equation*}
$$

Assume $u^{*} \in X^{t}$ and define $u_{h}^{*}=R_{h} u^{*} \in X_{h}^{t}$ [cf. (2.6a)]. The consistency order of \mathscr{L}_{h} is \varkappa if

$$
\begin{equation*}
\left\|\mathscr{L}_{h}\left(u_{h}^{*}\right)\right\|_{Y_{h}^{s}} \leqq C h^{\min (x, t-s)} \quad(s \leqq t) \tag{3.3}
\end{equation*}
$$

The derivative of \mathscr{L}_{h} is denoted by L_{h} :

$$
L_{h}\left(v_{h}\right)=\partial \mathscr{L}_{h}\left(v_{h}\right) / \partial v_{h} .
$$

Assume that L_{h} satisfies the Lipschitz condition

$$
\begin{equation*}
\left\|L_{h}\left(v_{h}\right)-L_{h}\left(w_{h}\right)\right\|_{X_{h}^{s} \rightarrow Y_{h}^{s}} \leqq C h^{-\lambda}\left\|v_{h}-w_{h}\right\|_{X_{h}^{s}} \text { for all } v_{h}, w_{h} \in K_{h, s}^{\mu}(r) \tag{3.4}
\end{equation*}
$$

where

$$
K_{h, s}^{\mu}(r)=\left\{v_{h} \in X_{h}^{s}:\left\|v_{h}-u_{h}^{*}\right\|_{X_{h}^{s}} \leqq r h^{\mu}\right\} .
$$

The following result guarantees the existence of a discrete solution of (3.2):
Theorem 3.1. Let $u^{*} \in X^{t}$ be a solution of (3.1). Assume (3.3), (3.4), and

$$
\begin{equation*}
\left\|L_{h}^{-1}\left(u_{h}^{*}\right)\right\|_{Y_{h}^{s} \rightarrow X_{h}^{s}} \leqq C h^{-\varrho} \tag{3.5}
\end{equation*}
$$

for some s, λ, μ, ϱ with

$$
\min (x, t-s)>\max (\lambda+2 \varrho, \mu+\varrho) .
$$

Then there exists $h_{0}>0$ so that for all $h<h_{0}$ the discrete problem (3.2) has a solution $u_{h} \in K_{h, s}^{\mu}(r)$.

Note that for $\varrho>0$ (3.5) follows from the (non-)optimal regularity (2.10) with $\varepsilon=\varrho$ and (2.8).

Proof. Apply the Newton-Kantorovič theorem (cf. Meis and Marcowitz [11, p. 282ff]). The iteration

$$
u_{h}^{0}=u_{h}^{*}, \quad u_{h}^{i+1}=u_{h}^{i}-L_{h}^{-1}\left(u_{h}^{*}\right) \mathscr{L}_{h}\left(u_{h}^{i}\right)
$$

converges to $u_{h} \in K_{h, s}^{\mu}(r)$ if

$$
\begin{equation*}
C_{N} h^{\varepsilon} \leqq 1 / 2 \tag{3.6}
\end{equation*}
$$

where $\varepsilon=\min (\varkappa, t-s)-\max (\lambda+2 \varrho, \mu+\varrho) . \quad C_{N}$ is determined by the constants involved in (3.3-5). Therefore, Theorem 3.1 is proved with $h_{0}=\left(2 C_{N}\right)^{-1 / \varepsilon}$.

The next theorem proves the discrete regularity of u_{h} :
Theorem 3.2. Let $u^{*} \in X^{t}$ be a solution of (3.1). Suppose that there is some s such that the following conditions hold:
(i) discrete regularity estimate (2.4) for $L_{h}=L_{h}\left(u_{h}^{*}\right)$, i.e., (3.5) for $\varrho=0$,
(ii) consistency (3.3) with $x \geqq t-s$,
(iii) Lipschitz condition (3.4) for all $\lambda=\mu$ in some interval $\left[\mu_{1}, \mu_{2}\right.$), where $\mu_{2}=t-s$ and μ_{1} arbitrary with $\mu_{1}<\mu_{2}$,
(iv) inverse estimate (2.8),
(v) $\left\|u_{h}^{*}\right\|_{X_{h}^{t}} \leqq C$.

Then for $h \leqq h_{0}$ (h_{0} sufficiently small) there is a solution of the discrete equation (3.2) with

$$
\begin{equation*}
\left\|u_{h}\right\|_{X_{h}^{t}} \leqq C \quad \text { for all } \quad h \in H \cap\left(0, h_{0}\right] . \tag{3.7}
\end{equation*}
$$

Proof. Let $h \in H \cap\left(0, h_{0}\right)$. Set $\mu=\mu_{2}-\varepsilon(h)$, where $\varepsilon(h)=-\log \left(2 C_{N}\right) / \log h$ with C_{N} as in (3.6). By virtue of Theorem 3.1 we have $u_{h} \in K_{h, s}^{u}(r)$. Hence $\left\|u_{h}-u_{h}^{*}\right\|_{X_{h}^{s}}$ s $\leqq r h^{\mu}$. The assumptions (iv) and (v) imply

$$
\left\|u_{h}\right\|_{X_{h}^{t}} \leqq\left\|u_{h}^{*}\right\|_{X_{h}^{t}}+\left\|u_{h}-u_{h}^{*}\right\|_{X_{h}^{t}} \leqq C^{\prime}+C^{\prime \prime} h^{s-t+\mu}=C^{\prime}+C^{\prime \prime} h^{\varepsilon}=C^{\prime}+C^{\prime \prime} /\left(2 C_{N}\right)=C .
$$

Since the right-hand side is independent of h, (3.7) is proved.
In Theorem 3.2μ varies, while s is fixed. The same result can be obtained if $\mu<\psi$ is fixed and s varies in $[t-\mu-\eta, t-\mu), n>0$ arbitrary.

Corollary 3.1. In the case of a non-optimal estimate (3.5) $\varrho>0$, the estimate (3.7) requires (ii)-(v) with $\lambda+\varrho=\mu \in\left[\mu_{1}, \mu_{2}\right]$.

Our main interest is the regularity of u_{h}. Usually, one is more interested in convergence:

Corollary 3.2. Assume (3.3), (3.4), (3.5) with $s=t-\chi, \varrho=0, \lambda \leqq u$, for all $\mu \in(x-\eta, x), \eta>0$ arbitrary. Then the estimate

$$
\left\|u_{h}-u_{h}^{*}\right\|_{X_{h}^{t-x}} \leqq C h^{x} \quad\left(h \leqq h_{0}\right)
$$

holds.
Proof. Set $\mu=\mu(h)=\chi-\varepsilon(h), \varepsilon(h)$ as in the proof of Theorem 3.1. Theorem 3.1 implies $\left\|u_{h}-u_{h}^{*}\right\|_{X_{h}}^{t-x} \leqq C h^{\mu}=2 C C_{N} h^{x}$.

An application to the stationary Navier-Stokes equations is given in [18].

3.2. First example: Discrete Hölder spaces

Consider the general nonlinear equation

$$
\begin{equation*}
\mathscr{L}(u) \equiv \varphi\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{y y}\right)=0(\Omega), \quad u=0(\Gamma) \tag{3.8}
\end{equation*}
$$

in the square $\Omega=(0,1) \times(0,1)$ and assume that the solution u^{*} of (3.8) belongs to the Hölder space $C^{2+\lambda}(\bar{\Omega})$ for some $\lambda \in(0,1)$. This implies $\varphi(x, y, 0,0,0,0,0)=0$ at the corners $(x, y)=(0,0),(0,1),(1,0),(1,1)$. Therefore we choose

$$
\begin{aligned}
& X^{2+\lambda}=\left\{u \in C^{2+\lambda}(\bar{\Omega}):\left.u\right|_{\Gamma}=0\right\} \\
& Y^{2+\lambda}=\left\{f \in C^{\lambda}(\bar{\Omega}): f(0,0)=f(0,1)=f(1,0)=f(1,1)=0\right\}
\end{aligned}
$$

for $\lambda \in I=(0,1)$.
A suitable discretization is

$$
\begin{equation*}
\mathscr{L}_{h}\left(u_{h}\right)=\varphi\left(x, y, u_{h}, 1 / 2\left(I+T_{x}^{-1}\right) \partial_{x} u_{h}, 1 / 2\left(I+T_{y}^{-1}\right) \partial_{y} u_{h}, T_{x}^{-1} \partial_{x}^{2} u_{h}, T_{y}^{-1} \partial_{y}^{2} u_{h}\right)=0 . \tag{3.9}
\end{equation*}
$$

The discrete spaces $X_{h}^{s}=C_{h}^{s}, Y_{h}^{s}$ can be defined as in Section 2.3. The derivative at $u_{h}^{*}=\left.u^{*}\right|_{\bar{\Omega}_{h}}$ is (2.13) with

$$
\begin{aligned}
a^{*}(x, y) & =\varphi_{u_{x x}}\left(x, y, u_{h}^{*}(x, y), 1 / 2\left(I+T_{x}^{-1}\right) \partial_{x} u_{h}^{*}, \ldots\right), \\
b^{*} & =\varphi_{u_{y y}}, c^{*}=\varphi_{u_{x}}, d^{*}=\varphi_{u_{y}}, e^{*}=\varphi_{u} .
\end{aligned}
$$

Define L_{h} by (2.13) with

$$
a(x, y)=\varphi_{u_{x x}}\left(x, y, u^{*}(x, y), u_{x}^{*}(x, y), u_{y}^{*}(x, y), u_{x x}^{*}(x, y), u_{y y}^{*}(x, y)\right)
$$

and b, c, d, e, analogously.
Theorem 3.3. Let $u^{*} \in C^{2+\lambda}(\bar{\Omega})$ be a solution of (3.8). Assume
(i) $a(x, y), b(x, y) \geqq \varepsilon>0$,
(ii) L_{h} defined by a, b, c, d, e is l_{2}-stable (cf. (1.5)),
(iii) a, b, c, d, e are uniformly Lipschitz continuous in U, where $U \subset \bar{\Omega} \times \mathbf{R}^{5}$ is a neighbourhood of $\left\{\left(x, y, u^{*}(x, y), u_{x}^{*}, u_{y}^{*}, u_{x x}^{*}, u_{y y}^{*}\right):(x, y) \in \bar{\Omega}\right\}$.
Then for h sufficiently small $\left(h<h_{0}\right)$ there is a solution u_{h} of (3.9) with

$$
\left\|u_{h}\right\|_{C_{h}^{8}+\lambda} \leqq C
$$

Proof. Apply Theorems 3.2 and 2.3.

3.3. Second example: Discrete Sobolev spaces

We consider the same problem as Lapin [9]:

$$
\begin{equation*}
\mathscr{L}(u) \equiv-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a_{i}\left(x, u, \frac{\partial u}{\partial x_{i}}\right)+a_{0}(x, u, \operatorname{grad} u)=0 \tag{3.10}
\end{equation*}
$$

in $\Omega=(0,1)^{n}=\left\{x \in \mathbf{R}^{n}: 0<x_{i}<1\right.$ for $\left.1 \leqq i \leqq n\right\}$ and $u=0$ on the boundary. The discretization may be as in [9] or

$$
\begin{align*}
& \mathscr{L}_{h}\left(u_{h}\right) \equiv-\sum_{i=1}^{m} T_{i}^{-1} \partial_{i} a_{i}\left(x+\frac{h}{2} e_{i}, 1 / 2\left(I+T_{i}\right) u_{h}, \partial_{i} u_{h}\right) \tag{3.11}\\
& +a_{0}\left(x, u_{h}, 1 / 2\left(I+T_{1}\right) \partial_{1} u_{h}, \ldots, 1 / 2\left(I+T_{n}\right) \partial_{n} u_{h}\right)=0
\end{align*}
$$

where $e_{i}=i$-th unit vector, $T_{i}=T_{x_{i}}$ and $\partial_{i}=\partial_{x_{i}}$. Lapin requires almost $u \in C^{4}(\bar{\Omega})$ and restricts the dimension by $n \leqq 3$. We show that the weaker assumptions $u \in H^{4}(\Omega)$ and $n \leqq 5$ yield the same result:

Theorem 3.4. Let $u^{*} \in H^{4}(\Omega) \cap H_{0}^{1}(\Omega)$ be a solution of (3.10) with $n \leqq 5$. Then the solution u_{h} of (3.11) exist and

$$
\left\|u_{h}\right\|_{H_{h}^{4}\left(\Omega_{h}\right)} \leqq C, \quad\left\|u_{h}-R_{h} u^{*}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)} \leqq C h^{2} \quad\left(R_{h} \text { suitable }\right)
$$

(H_{h}^{s} discrete counterpart of $H^{s}(\Omega), c f$. Section 2) holds under the following assumptions:

$$
\begin{gathered}
h \leqq h_{0}, a_{i} \in W^{3, \infty}(U), a_{0} \in W^{2, \infty}(U) \\
\partial a_{i}\left(x, u^{*}, u_{x_{i}}^{*}\right) / \partial u_{x_{i}} \leqq \varepsilon>0, \quad 1 \leqq i \leqq n
\end{gathered}
$$

where U is a neighbourhood of $\left\{\left(x, u^{*}, \operatorname{grad} u^{*}\right): x \in \Omega\right\}$.
Proof (sketched). (i) Let $u_{h}^{*}=R_{h} u^{*} \in H_{h}^{4}\left(\Omega_{h}\right)$ and let $u^{* *}=l_{h} u_{h}^{*} \in C^{4}(\Omega)$ be an interpolating function: $\left.u^{* *}\right|_{\Omega_{h}}=u_{h}^{*},\left.u^{* *}\right|_{\Gamma}=0$. For a suitable R_{h} and I_{h} we have

$$
\begin{gather*}
\left\|u^{*}-u^{* *}\right\|_{H^{2}(\Omega)} \leqq C h^{2}\left\|u^{*}\right\|_{H^{4}(Q)} \\
\left|\left(D^{\alpha} u^{* *}\right)(x)\right| \leqq C h^{-n / p}\left\|u^{*}\right\|_{W|x|, p\left(K_{x}\right)} \quad(|\alpha| \leqq 4,2 \leqq p \leqq \infty), \tag{3.12}
\end{gather*}
$$

with $K_{x}=\left\{y \in \Omega:\|x-y\| \leqq C_{K} h\right\}$ for some C_{K}.

References

1. Adams, R. A., Sobolev Spaces. Academic Press, New York, 1975.
2. Aubin, J.-P., Approximation of Elliptic Boundary-Value Problems. Wiley-Interscience, New York, 1972.
3. D'jakonov, E. G., On the convergence of an iterative process, Usp. Mat. Nauk 21 (1966), 179-182.
4. Dryja, M., A priori estimates in W_{2}^{2} in a convex domain for systems of difference elliptic equations, Z̆. Vyčisl. Mat. i Mat. Fiz. 12 (1972), 1595-1601.
5. Guilinger, W. H., The Peaceman-Rachford method for small mesh increments, J. Math. Anal. Appl. 11 (1965), 261-277.
6. Hackbusch, W., On the regularity of difference schemes, Ark. Mat. 19 (1981), 71-95.
7. Hackbusch, W., Regularity of difference schemes - Part II, Report 80 -13, Mathematisches Institut, Universität zu Köln, 1980.
8. Kadlec, J., On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set, Czech. Math. J. 14 (1964), 386-393.
9. Lapin, A. V., Study of the $W_{2}^{(2)}$-convergence of difference schemes for quasilinear elliptic equations, Z̆. Vyčisl. Mat. i. Mat. Fiz. 14 (1974), 1516-1525.
10. Lions, J. L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications I. Springer, Berlin-Heidelberg-New York, 1972.
11. Meis, Th. and Marcowitz, U., Numerische Behandlung partieller Differentialgleichungen. Springer, Berlin-Heidelberg-New York, 1978. English translation: Numerical Solution of Partial Differential Equations. Springer, New York-HeidelbergBerlin, 1981.
12. Miranda, C., Partial Differential Equations of Elliptic Type. Springer, Berlin-HeidelbergNew York, 1970.
13. Schauder, J., Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282.
14. Shreve, D. C., Interior estimates in l^{p} for elliptic difference operators, SIAM J. Numer. Anal. 10 (1973), 69-80.
15. Starius, G., Composite mesh difference methods for elliptic boundary value problems, Numer. Math. 28 (1977), 243-258.
16. Thomée, V., Discrete interior Schauder estimates for elliptic difference operators, SIAM J. Numer. Anal. 5 (1968), 626-645.
17. Thomée, V. and Westergren, B., Elliptic difference equations and interior regularity, Numer. Math. 11 (1968), 196-210.
18. Hackbusch, W., Analysis and multi-grid solution of mixed finite element and mixed difference equations, Report, Universitāt Bochum, 1980.
19. Hackbusch. W., Analysis of discretizations by the concept of discrete regularity. In: The Mathematics of Finite Elements and Applications IV-MAFELAP 1981 (J. R. Whiteman, ed.), pp. 369-376. Academic Press, London, 1982.

Received August 18, 1980;
in revised form November 5, 1981

Wolfgang Hackbusch
Institut für Informatik
Christian-Albrechts-Universität Kiel
Olshausenstr. 40
D-2300 Kiel 1
Germany

(ii) The dicrete regularity (3.5) $(\varrho=0)$ of L_{h} follows from Theorem 2.2 in the case of $n=2$. But Theorem 2.2 can also be extended to $n>2$.
(iii) (3.3) is to be proved for $Y_{h}^{s}=L_{h}^{2}\left(\Omega_{h}\right), \min (\varkappa, t-s)=2$. It suffices to estimate

$$
\begin{gather*}
T_{i}^{-1} \partial_{i} a_{i}\left(x+\frac{h}{2} e_{i}, 1 / 2\left(I+T_{i}\right) u^{* *}, \partial_{i} u^{* *}\right)-\left.\frac{\partial}{\partial x_{i}} a_{i}\left(x, u^{* *}, \frac{\partial u^{* *}}{\partial x_{i}}\right)\right|_{\Omega_{h}}, \tag{3.13}\\
\left.\frac{\partial}{\partial x_{i}} a_{i}\left(x, u^{* *}, \frac{\partial u^{* *}}{\partial x_{i}}\right)\right|_{\Omega_{h}}-\tilde{R}_{h} \frac{\partial}{\partial x_{i}} a_{i}\left(x, u^{*}, \frac{\partial u^{*}}{\partial x_{i}}\right) \tag{3.14}
\end{gather*}
$$

and similar differences for a_{0}. Taylor expansion of the left term of (3.13) shows

$$
\text { (3.13) }=h^{2} O\left(C+\left|u_{x_{i} x_{i}}^{* *}\right|^{3}+\left|u_{x_{i} x_{i} x_{i}}^{* *} u_{x_{i} x_{i}}^{* *}\right|+\left|u_{x_{i} x_{i} x_{i} x_{i}}^{* *}\right|\right),
$$

where the derivatives are evaluated at $x+\vartheta h e_{i},|\vartheta| \leqq 1$. Here we used $\left\|u^{* *}\right\|_{W^{1, \infty}(\Omega)} \leqq$ $\left\|u^{*}\right\|_{H^{4}(\Omega)}$. By virtue of (3.12) the estimate

$$
\left|u_{x_{i} x_{i}}^{* *}\right| \leqq C h^{-n / 6}\left\|u^{*}\right\| \|_{W, 6},\left(K_{x}\right)
$$

holds ($p=6$). Summing over Ω_{h} we obtain

$$
\left\|\left|u_{x_{i} x_{i}}^{* *}\right|{ }^{3}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)}^{2}=h^{n} \sum_{x \in \Omega_{h}}\left|u_{x_{i} x_{i}}^{* *}\left(x+\vartheta(x) h e_{i}\right)\right|^{6} \leqq C^{\prime}\left\|u^{*}\right\|_{W^{2}, 6(\Omega)}^{6} \leqq C^{\prime \prime}\left\|u^{*}\right\|_{H^{4}(\Omega)}^{6} \leqq C,
$$ since $L^{p}(\Omega) \subset H^{2}(\Omega)$ for $2 \leqq p \leqq 10, n \leqq 5$ (cf. Adams [1]). Using $L^{q}(\Omega) \subset H^{1}(\Omega)$ ($2 \leqq q \leqq 10 / 3, n \leqq 5$) for $q=3$, we are able to estimate

$$
\left\|\left\|u_{x_{i} x_{i} x_{i}}^{* *}\right\| u_{x_{i} x_{i}^{*}}^{* *}\right\| \|_{L_{h}^{2}(\Omega)} \quad \text { by } \quad\left\|u^{*}\right\|_{W^{3}, 3(\Omega)}\left\|u^{*}\right\|_{W^{2,6}(\Omega)} \leqq C\left\|u^{*}\right\|_{H^{4}(\Omega)}^{2} .
$$

The obvious inequality $\left\|\left|u_{x_{i} x_{i} x_{i} x_{i}}^{* *}\right|\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C\left\|u^{*}\right\|_{\xi^{4}(\Omega)}$ and (3.12) imply (3.13)=O(h^{2}). A similar estimate can be obtained for (3.14).
(iv) We have to prove (3.4) for $Y_{h}^{s}=H_{h}^{s-1}\left(\Omega_{h}\right), X_{h}^{s}=H_{h}^{s+1}\left(\Omega_{h}\right), s=1$. For $s=1$ (3.4) becomes

$$
\begin{equation*}
\left\|\left[L_{h}\left(v_{h}\right)-L_{h}\left(w_{h}\right)\right] u_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C h^{-2}\left\|v_{h}-w_{h}\right\|_{E_{h}^{2}\left(\Omega_{h}\right)}\left\|u_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)} . \tag{3.15}
\end{equation*}
$$

provided that $v_{h}, w_{h} \in K_{h, 1}^{\mu}(r)$. A rough estimate gives

$$
\begin{aligned}
&\left\|\left[L_{h}\left(v_{h}\right)-L_{h}\left(w_{h}\right)\right] u_{h}\right\|_{L_{h}^{2}\left(\Omega_{h}\right)} \leqq C\left\{\left\|v_{h}-w_{h}\right\|_{W_{h}^{1, \infty}}\left\|u_{h}\right\|_{H_{h}^{2}}\right. \\
&\left.+\left\|v_{h}-w_{h}\right\|_{H_{h}^{2}}\left\|u_{h}\right\|_{W_{h}^{1}, \infty}+\left\|v_{h}\right\|_{H_{h}^{2}}\|v-w\|_{W_{h}^{1, \infty}}\left\|u_{h}\right\|_{W_{h}^{1, \infty}}\right\} \\
& \leqq C h^{-\frac{n-2}{n}-\varepsilon}\left(1+h^{\mu-\frac{n-2}{n}-\varepsilon}\right)\left\|v_{h}-w_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)}\left\|u_{h}\right\|_{H_{h}^{2}\left(\Omega_{h}\right)}
\end{aligned}
$$

if $v_{h}, w_{h} \in K_{h, 1}^{\mu}(r)$ with $\mu \geqq \varepsilon+\frac{n-2}{n}, \varepsilon>0$ arbitrary. Hence, (3.15) [i.e., (3.4) with $s=1]$ holds for all $\mu=\lambda \in\left[\varepsilon+\frac{n-2}{2}, 2\right]$. Note that this interval is nonempty since $n \leqq 5$.
(v) Theorem 3.2 and Corollary 3.2 yield Theorem 3.4.

