Convexity of means and growth of certain subharmonic functions in an *n*-dimensional cone

Göran Wanby

1. Preliminaries

This paper extends some results by Norstad [9] on subharmonic functions in the complex plane, cut along a half-ray, to an *n*-dimensional cone.

Cartesian coordinates of a point x of \mathbb{R}^n , $n \ge 3$, are denoted $(x_1, ..., x_n)$. We introduce spherical coordinates for x by

$$|x| = r, \quad x_1 = r \cos \theta_1, \quad x_i = r \cos \theta_i \prod_{j=1}^{i-1} \sin \theta_j \quad \text{for} \quad i = 2, \dots, n-1$$

and
$$x_n = r \prod_{j=1}^{n-1} \sin \theta_j.$$

Here
$$0 \le \theta_i \le \pi$$
 for $i=1, ..., n-2$ and $0 \le \theta_{n-1} \le 2\pi$. When integrating, we shall
also use the parameter ω , defined by $x=r\omega$. Then $d\omega = \sqrt{g} d\theta_1 ... d\theta_{n-1}$ with
 $\sqrt{g} = \prod_{i=1}^{n-1} (\sin \theta_i)^{n-j-1}$.

Let $\Omega = \Omega(\psi_0)$ be the cone $\{x; 0 \le \theta_1 < \psi_0\}$, where ψ_0 is given, $0 < \psi_0 < \pi$. If v is a function, defined in Ω , we shall let v(r, 0) denote the value of v at the point x = (r, 0, ..., 0). Also, if v is independent of $\theta_2, ..., \theta_{n-1}$, we shall write $v(r, \theta_1)$ for the value of v at any point whose first two spherical coordinates are r, θ_1 .

In spherical coordinates the Laplacian is

(1.1)
$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{n-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \delta,$$

where the Beltrami operator δ is given by

$$\delta = \frac{1}{\sqrt{g}} \sum_{j=1}^{n-1} \frac{\partial}{\partial \theta_j} \left(\frac{\sqrt{g}}{g_j} \frac{\partial}{\partial \theta_j} \right).$$

Here $g_1 = 1$ and $g_j = \prod_{i=1}^{j-1} (\sin \theta_i)^2$ for j = 2, ..., n-1, so $g = \prod_{j=1}^{n-1} g_j$. If the function F only depends on θ_1 ,

(1.2)
$$\delta F = F''(\theta_1) + (n-2)\cot\theta_1 F'(\theta_1).$$

For two C^2 functions u and v we also let

$$(\nabla u, \nabla v) = \sum_{j=1}^{n-1} \frac{1}{g_j} \frac{\partial u}{\partial \theta_j} \frac{\partial v}{\partial \theta_j}.$$

Let u be subharmonic in Ω . We are going to study the means $L_{\alpha}(r), \alpha \ge 1$, and J(r), defined by

$$L_{\alpha}(r, u) = \left(\int_{S} \left(\frac{u(r\omega)}{f_{\lambda}(\theta_{1})}\right)^{\alpha} f_{\lambda}(\theta_{1}) g_{\lambda}(\theta_{1}) d\omega\right)^{1/\alpha},$$

where S is the part of the unit sphere $|\omega|=1$ where $0 \le \theta_1 < \psi_0$, and

$$J(r, u) = \sup_{S} \frac{u(r\omega)}{f_{\lambda}(\theta_{1})}.$$

Here f_{λ} and g_{λ} are certain eigenfunctions of the Beltrami operator. Some of their properties are listed in the next section. When $1 < \alpha < \infty$, u is required to be non-negative.

We shall also examine the relation between $M(r) = \sup_{s} u(r\omega)$, J(r) and $L(r) = L_1(r)$.

2. The functions f_{λ} and g_{λ}

We first consider the case $n \ge 3$. If k is a given number, k > 0, we denote by $F_k = F_k(\theta)$ the unique solution of the problem

(2.1)
$$\delta F + k(k+n-2)F = 0 \quad \text{for} \quad 0 \leq \theta < \pi,$$

 $F_k(0)=1$ and $F'_k(0)=0$. It is known that F_k depends continuously on k and has a first zero $\psi(k)$ in $(0, \pi)$. As a function of $k \in (0, \infty)$ $\psi(k)$ is strictly decreasing with range $(0, \pi)$. Let $k(\psi)$ denote its inverse. Now fix $k=k(\psi_0)$. Then

(2.2)
$$v(x) = v(r, \theta_1) = r^k F_k(\theta_1)$$

is harmonic in Ω and exhibits the Phragmén—Lindelöf growth for subharmonic functions in Ω , vanishing at $\partial \Omega$. When $\psi_0 = \pi/2$ so that Ω is a half-space, k=1 for all n.

With a given λ , $0 < \lambda < 1$, let $f_{\lambda}(\theta) = F_{k\lambda}(\theta) F_{k\lambda}(\psi_0)^{-1}$. $(F_{k\lambda}(\psi_0) > 0$ since $\psi_0 = \psi(k) < \psi(k\lambda)$.) Hence $f_{\lambda}(\psi_0) = 1$ and f_{λ} solves

(2.3)
$$\delta F + k\lambda(k\lambda + n - 2)F = 0.$$

It follows from the minimum principle that f_{λ} is strictly decreasing for $0 \le \theta \le \psi(k\lambda)$. Let $w(r, \theta_1) = r^{k\lambda} f_{\lambda}(\theta_1)$. Then w is harmonic in Ω , $w(x) = |x|^{k\lambda}$ at $\partial \Omega$ and on |x| = 1,

(2.4)
$$1 \leq w(x) \leq f_{\lambda}(0) = C(\lambda)^{-1},$$

by which $C(\lambda)$ is defined.

Since the indicial equation at $\theta=0$ of (2.1) is $\mu(\mu+n-3)=0$, (2.3) also has solutions g_{λ} , unbounded at $\theta=0$ and such that $(\sin \theta)^{n-2}g_{\lambda}(\theta) \to 0$ as $\theta \to 0$. We may choose g_{λ} such that $g_{\lambda}(\theta) \to +\infty$ when $\theta \to 0$ and $g_{\lambda}(\psi_0)=0$. An application of Sturm's comparison theorem shows that g_{λ} has no zeros in $(0, \psi_0)$. The minimum principle then gives that g_{λ} is strictily decreasing for $0 \le \theta \le \psi_0$, so $g'_{\lambda}(\theta) \le 0$ for these values of θ . Actually, $g'_{\lambda}(\psi_0) \ne 0$, since otherwise g_{λ} would be identically zero. Thus we may prescribe $g'_{\lambda}(\psi_0)=-1$. These conditions determine g_{λ} uniquely.

We shall also need

(2.5)
$$f'_{\lambda}(\theta)g_{\lambda}(\theta) - f_{\lambda}(\theta)g'_{\lambda}(\theta) = (\sin\theta)^{2-n}(\sin\psi_0)^{n-2}$$

To see this, let h be the left member of (2.5). Then, by (1.2), $h' = f_{\lambda}'' g_{\lambda} - f_{\lambda} g_{\lambda}'' = -(n-2) \cot \theta h$, which gives $h(\theta) = C(\sin \theta)^{2-n}$. Since $h(\psi_0) = 1$, we get (2.5).

Above we assumed $n \ge 3$. When n=2 and $k=1, \cos \lambda \theta$ and $\sin \lambda (\pi/2 - \theta)$ are two linearly independent solutions of (2.3).

When n is even, it is possible to obtain explicit expressions for f_{λ} . For example, for n=4, we have $\psi_0 = \pi/(k+1)$,

$$f_{\lambda}(\theta) = \frac{\sin \frac{\pi}{k+1}}{\sin \pi \frac{k\lambda+1}{k+1}} \frac{\sin (k\lambda+1)\theta}{\sin \theta}$$

Also,

$$g_{\lambda}(\theta) = \frac{\sin \frac{\pi}{k+1}}{k\lambda+1} \frac{\sin (k\lambda+1)(\psi_0 - \theta)}{\sin \theta}.$$

Especially

$$C(\lambda) = \frac{\sin \pi \frac{k\lambda+1}{k+1}}{(k\lambda+1)\sin \frac{\pi}{k+1}}.$$

A recurrence formula, from which f_{λ} can be evaluated by means of residues, is given in Hayman [7, p. 160].

3. Statement of results

Let u be subharmonic in Ω and λ a given number, $0 < \lambda < 1$. Throughout the paper we assume that u satisfies the boundary condition

(3.1)
$$u(y) \leq C(\lambda)u(|y|, 0) \text{ when } y \in \partial \Omega \setminus \{0\}.$$

Here u(y) is defined when $y \in \partial \Omega$ as $\lim u(x)$ when $x \to y$, $x \in \Omega$. $C(\lambda)$ is given by (2.4). We shall prove

Theorem 1. Let $u \not\equiv -\infty$ be subharmonic in Ω and satisfy (3.1). Then the mean $L_{\alpha}(r), \alpha \geq 1$, is a convex function with respect to the family $Ar^{k\lambda} + Br^{-k\lambda+2-n}, r > 0$. If $\alpha > 1$, u is supposed to be non-negative.

Theorem 2. If u is subharmonic in Ω and satisfies (3.1) then J(r) is convex with respect to the family $Ar^{k\lambda} + Br^{-k\lambda+2-n}$, r > 0.

Theorem 1 corresponds to theorems I and IV of Norstad [9] and Theorem 2 is a generalization of Theorem III of [9]. Transferred to the right half-plane the two-dimensional results are that

$$\left(\int_{-\pi/2}^{\pi/2} \left(\frac{u(re^{i\theta})}{\cos\lambda\theta}\right)^{\alpha} \cos\lambda\theta \sin\lambda\left(\frac{\pi}{2} - |\theta|\right) d\theta\right)^{1/\alpha}$$

and

$$\sup_{|\theta| < \pi/2} \frac{u(re^{i\theta})}{\cos \lambda \theta}$$

are convex with respect to $Ar^{\lambda} + Br^{-\lambda}$. Here $C(\lambda) = \cos \frac{\lambda \pi}{2}$. Continuity on the axis of symmetry and on the boundary is implicit in [9].

The limiting case $\lambda = 1$, which corresponds to boundary values $u(y) \leq 0$, was treated, for a half-space of \mathbb{R}^n , by Dinghas [4]. His result is that

$$r^{n-1} \left(\int_{\substack{|\omega|=1\\ |\theta|<\pi/2}} \left(\frac{u(r\omega)}{\cos \theta} \right)^{\alpha} \cos^2 \theta \, d\omega \right)^{1/\alpha},$$

is a convex function of r^n , which is the conclusion of Theorem 1 in case $k=\lambda=1$. When $\alpha=1$ and $u=\log^+|f(z)|$ with f analytic in the right half-plane and such

that $|f(z)| \leq 1$ on the imaginary axis, the result is a classical theorem by Ahlfors [1]. From the convexity we get

Corollary. Under the assumptions of Theorem 1 and 2 and if $u(0) < \infty$, $r^{-k\lambda}L_{\alpha}(r)$ and $r^{-k\lambda}J(r)$ are non-decreasing, so the limits

$$\lim_{r\to\infty} r^{-k\lambda} L_{\alpha}(r) \quad \text{and} \quad \lim_{r\to\infty} r^{-k\lambda} J(r)$$

exist, possibly $=\infty$.

Let
$$w(r, \theta_1) = r^{k\lambda} f_{\lambda}(\theta_1)$$
 and put $L(1, w) = d(\lambda)$, that is

$$d(\lambda) = 2\pi \int_0^{\psi_0} f_{\lambda}(\theta) g_{\lambda}(\theta) (\sin \theta)^{n-2} d\theta \prod_{j=2}^{n-2} \int_0^{\pi} (\sin \theta)^{n-j-1} d\theta$$

with obvious interpretation if n=3. We then clearly have

$$(3.2) L(r) \leq d(\lambda) J(r).$$

From our assumptions it follows that $r^{-k\lambda}M(r)$ has a positive limit as $r \to \infty$ if u is non-negative somewhere. A proof is given in Dahlberg [3] or Essén—Lewis [6]. If $u(x_0) \ge 0$, we conclude from the Corollary that u is non-negative at some point at |x|=r for all $r \ge |x_0|$. We then have

(3.3)
$$J(r) \leq M(r) \leq C(\lambda)^{-1}J(r).$$

From (3.2) and (3.3) we get some trivial relations between the three limits. A precise result is

Theorem 3. If u satisfies the conditions of Theorem 1, if $u(0) < \infty$ and if $u(r, 0) = 0(r^{k\lambda})$ when $r \to 0$, then $\lim_{r \to \infty} r^{-k\lambda} J(r) = \infty$ or

(a)
$$\lim_{r \to \infty} r^{-k\lambda} L(r) = d(\lambda) \lim_{r \to \infty} r^{-k\lambda} J(r).$$

If further u is non-negative somewhere, then

(b)
$$\lim_{r \to \infty} r^{-k\lambda} M(r) = C(\lambda)^{-1} \lim_{r \to \infty} r^{-k\lambda} J(r),$$

while, if $u \leq 0$ throughout Ω ,

(c)
$$\lim_{r\to\infty} r^{-k\lambda}M(r) = \lim_{r\to\infty} r^{-k\lambda}J(r).$$

Our boundary condition (3.1) implies

$$(3.4) u(y) \leq C(\lambda)M^+(|y|),$$

where $M^+(r) = \max(M(r), 0)$. Among the consequences of (3.4) is the generalized Ahlfors—Heins theorem in \mathbb{R}^n , proved by Essén—Lewis [6]. Related problems are studied in Dahlberg [3] and Wanby [10]. We also refer to Hellsten, Kjellberg and Norstad [8] and Drasin and Shea [5].

4. Some results on the Green's function

Let $\Omega_R = \Omega \cap \{|x| < R\}$ and denote by G(x, y) and $G_R(x, y)$ the Green's functions for Ω and Ω_R respectively. Also let $\frac{\partial}{\partial N}$ denote the inner normal derivative with respect to $y \in \partial \Omega$ or $\partial \Omega_R$. In the following we will need some estimates by Azarin

[2] of
$$\frac{\partial G_R}{\partial N}$$
 and $\frac{\partial G}{\partial N}$. With F_k and v as in (2.2) we have

(4.1)
$$\frac{\partial G_R}{\partial N}(x, R\omega) \approx \left(\frac{|x|}{R}\right)^k R^{1-n} F_k(\theta_1(x)) F_k(\theta_1(\omega)),$$

(4.2)
$$\frac{\partial G}{\partial N}(x, y) \approx F_k(\theta_1(x)) \frac{\partial v}{\partial N}(y/|y|) \left(\frac{|x|}{|y|}\right)^k |y|^{1-n}, \text{ if } 0 < |x| < \frac{4}{5}|y|,$$

(4.3)
$$\frac{\partial G}{\partial N}(x, y) \approx F_k(\theta_1(x)) \frac{\partial v}{\partial N}(y/|y|) \left(\frac{|y|}{|x|}\right)^k |x|^{2-n} |y|^{-1}, \quad \text{if} \quad 0 < |y| < \frac{4}{5} |x|,$$

(4.4)
$$\frac{\partial G}{\partial N}(x, y) \approx F_k(\theta_1(x)) \frac{\partial v}{\partial N}(y/|y|) |x-y|^{-n}, \text{ if } \frac{4}{5} \leq \frac{|x|}{|y|} \leq \frac{5}{4}.$$

Here $f \approx g$ means that there are positive constants C_1 and C_2 , only depending on Ω , such that $C_1 \leq f/g \leq C_2$.

Let $d\sigma(y)$ denote Lebesgue measure on $\partial\Omega$. Following [6, pp. 117—118] we let μ be the measure on $\partial\Omega$, defined by

$$t^{n-2}dt\,d\mu(y) = d\sigma(y), \quad |y| = t,$$

and

$$B(t, \theta_1) = \int_{\partial\Omega \cap \{|y|=t\}} \frac{\partial G}{\partial N} \left(\frac{x}{|x|}, y\right) d\mu(y).$$

We then get, with |x|=r,

$$\int_{\partial\Omega\cap\{|y|=t\}}\frac{\partial G}{\partial N}(x, y)\,d\mu(y)=r^{1-n}B(t/r, \theta_1).$$

We also note that

(4.5) $t^{n}B(t, \theta_{1}) = B(1/t, \theta_{1}).$

In the following we shall also use the following notation:

$$D_R = \Omega \cap \{ |x| = R \}, \quad K_R = \partial \Omega \cap \{ |x| < R \}$$

and

$$\Omega_{r_1,r_2} = \Omega \cap \{r_1 \leq |x| \leq r_2\}, \quad K_{r_1,r_2} = \partial \Omega_{r_1,r_2} \cap \partial \Omega.$$

5. Proof of Theorem 1

We shall first prove

Lemma. Let u be a subharmonic C^2 function in $\overline{\Omega}$ and suppose that u satisfies (3.1). Then

(5.1)
$$\int_{S} \left(\frac{u(r\omega)}{f_{\lambda}(\theta_{1})} \right)^{\alpha-1} \left(\delta u(r\omega) + k\lambda(k\lambda + n - 2)u(r\omega) \right) g_{\lambda}(\theta_{1}) \, d\omega \leq 0.$$

Here S denotes the part of the unit sphere $|\omega|=1$, where $0 \le \theta_1 < \psi_0$. When $\alpha > 1$, u is supposed to be positive.

Proof. We first assume $\alpha > 1$. Denote the integrand of (5.1) by D_{α} and put $u(x) = q(x) f_{\lambda}(\theta_1)$. We get

$$D_{\alpha} = q^{\alpha - 1} (f_{\lambda} \delta q + q \delta f_{\lambda} + 2(\nabla q, \nabla f_{\lambda}) + k \lambda (k \lambda + n - 2) q f_{\lambda}) g_{\lambda},$$

Since f_{λ} satisfies (2.3), we have

$$\begin{split} \int_{S} D_{\alpha} d\omega &= \int_{S} q^{\alpha-1} (f_{\lambda} \delta q + 2(\nabla q, \nabla f_{\lambda})) g_{\lambda} d\omega \\ &= \int q^{\alpha-1} \left(f_{\lambda} \frac{1}{\sqrt{g}} \sum_{j=1}^{n-1} \frac{\partial}{\partial \theta_{j}} \left(\frac{\sqrt{g}}{g_{j}} \frac{\partial q}{\partial \theta_{j}} \right) + 2 \sum_{j=1}^{n-1} \frac{1}{g_{j}} \frac{\partial q}{\partial \theta_{j}} \frac{\partial f_{\lambda}}{\partial \theta_{j}} \right) g_{\lambda} \sqrt{g} d\theta_{1} \dots d\theta_{n-1} \\ &= \int \sum_{j=1}^{n-1} \left[\frac{\sqrt{g}}{g_{j}} \frac{\partial q}{\partial \theta_{j}} q^{\alpha-1} f_{\lambda} g_{\lambda} \right]_{\theta_{j}=0}^{\theta_{j}=\alpha_{j}} d\theta_{1} \dots d\theta_{j-1} d\theta_{j+1} \dots d\theta_{n-1} \\ &- \int \sum_{j=1}^{n-1} \frac{\sqrt{g}}{g_{j}} \frac{\partial q}{\partial \theta_{j}} \left(\frac{\partial}{\partial \theta_{j}} (q^{\alpha-1} f_{\lambda} g_{\lambda}) - 2q^{\alpha-1} \frac{\partial f_{\lambda}}{\partial \theta_{j}} g_{\lambda} \right) d\theta_{1} \dots d\theta_{n-1}. \end{split}$$

Here $a_1 = \psi_0$, $a_j = \pi$ when $2 \le j \le n-2$ and $a_{n-1} = 2\pi$. In the first sum all terms are zero. For j=1 we use that $g_{\lambda}(\psi_0) = 0$ and that $g_{\lambda}(\theta_1) (\sin \theta_1)^{n-2} \to 0$ as $\theta_1 \to 0$. When $2 \le j \le n-2$ we note that $\frac{\sqrt{g}}{g_j} = 0$ for $\theta_j = 0$ or π . Finally $\frac{\sqrt{g}}{g_{n-1}}$ is independent of θ_{n-1} and $\frac{\partial g}{\partial \theta_{n-1}} q^{\alpha-1}$ has the same values for $\theta_{n-1} = 0$ and 2π for fixed $\theta_1, \ldots, \theta_{n-2}$ with $0 < \theta_1 < \psi_0$, $0 < \theta_j < \pi$ when $2 \le j \le n-2$. Thus we get $\int_S D_{\alpha} d\omega = (1-\alpha) \int_S q^{\alpha-2} f_{\lambda} g_{\lambda} (\nabla q, \nabla q) d\omega$

$$+\int \sqrt{g} q^{\alpha-1} \frac{\partial q}{\partial \theta_1} \left(f_{\lambda}'(\theta_1) g_{\lambda}(\theta_1) - f_{\lambda}(\theta_1) g_{\lambda}'(\theta_1) \right) d\theta_1 \dots d\theta_{n-1}$$

$$\leq (\sin \psi_0)^{n-2} \int q^{\alpha-1} \frac{\partial q}{\partial \theta_1} \prod_{j=2}^{n-1} (\sin \theta_j)^{n-1-j} d\theta_1 \dots d\theta_{n-1}$$

$$= \alpha^{-1} (\sin \psi_0)^{n-2} \int [q^{\alpha}(r, \theta_1, \dots, \theta_{n-1})]_{\theta_1=0}^{\theta_1=\psi_0} \prod_{j=2}^{n-1} (\sin \theta_j)^{n-1-j} d\theta_2 \dots d\theta_{n-1}.$$

Here we used (2.5).

Now, if y is the point with polar coordinates $(r, \psi_0, \theta_2, ..., \theta_{n-1})$,

$$[q^{\alpha}(r,\theta_1,\ldots,\theta_{n-1}]_{\theta_1=0}^{\theta_1=\psi_0}=(u(y))^{\alpha}-(u(|y|,0)C(\lambda))^{\alpha},$$

which is non-positive because of (3.1). Thus the lemma is proved if $\alpha > 1$. Small changes are needed in case $\alpha = 1$. We omit the details.

Remark. It is clear from the proof that the lemma is true under the somewhat weaker boundary condition

 $\left(a^{-1}\int u^{\alpha}(r, \Psi_0, \theta_2, \ldots, \theta_{n-1})\prod_{j=2}^{n-1}(\sin\theta_j)^{n-1-j}d\theta_2\ldots d\theta_{n-1}\right)^{1/\alpha} \leq C(\lambda)u(r, 0).$

Here the domain of integration is given by $0 < \theta_j < \pi$ for $2 \le j \le n-2$ and $0 < \theta_{n-1} < 2\pi$ and

$$a = \prod_{j=2}^{n-1} \int (\sin \theta_j)^{n-1-j} d\theta_j = \begin{cases} \frac{(2\pi)^{(n-1)/2}}{(n-3)!!} & \text{if } n \text{ is odd} \\ \frac{2(2\pi)^{(n-2)/2}}{(n-3)!!} & \text{if } n \text{ is even.} \end{cases}$$

This corresponds to Norstad's boundary condition

$$\left[\frac{1}{2}(u^{\alpha}(ir)+u^{\alpha}(-ir))\right]^{1/\alpha}\leq\cos\frac{\pi\lambda}{2}u(r).$$

Now suppose $\alpha > 1$ and $L_{\alpha}(r, u) = Ar^{k\lambda} + Br^{-k\lambda+2-n}$ for $r=r_1$ and $r_2, r_1 < r_2$. *A* and *B* are constants. The assertion of Theorem 1 is that $L_{\alpha}(r, u) \leq Ar^{k\lambda} + Br^{-k\lambda+2-n}$ for $r_1 < r < r_2$. We shall first approximate *u* by C^2 subharmonic functions u_m which also satisfy the boundary condition (3.1). If the restriction of *u* to the positive x_1 axis is not continuous, we first replace *u* by its least harmonic majorant in a small cylinder around the x_1 -axis: $r_1 - \eta \leq x_1 \leq r_2 + \eta$, $\sum_{i=2}^{n} x_i^2 \leq \eta^2$. The new function is then subharmonic in Ω , satisfies (3.1) and is continuous on the x_1 -axis for $r_1 \leq x_1 \leq r_2$. Now, if $\varepsilon > 0$ is given, there are points $x^{(1)}, \ldots, x^{(N)}$ on $\partial\Omega$ and a $\delta > 0$ such that each point in the set K_{r_1, r_2} belongs to some ball $|x - x^{(k)}| < \delta$ and such that

(5.2)
$$u(x) < u(x^{(k)}) + \varepsilon \quad \text{if} \quad |x - x^{(k)}| < 2\delta.$$

This follows from the semicontinuity at the boundary and a compactness argument. Since u is continuous on the positive x_1 -axis for $r_1 \leq x_1 \leq r_2$, we may take δ so small that

$$(5.3) |u(t,0)-u(s,0)| < \varepsilon \quad \text{if} \quad |t-s| < 2\delta, \quad r_1 \leq t \leq s \leq r_2.$$

Let $u_{\varepsilon}(x) = u(x_1 + \delta, x_2, ..., x_n) - \frac{2\varepsilon}{1 - C(\lambda)}$. Then u_{ε} is subharmonic in an open domain *D* which contains Ω_{r_1, r_2} . If $x \in K_{r_1, r_2}$ we get according to (5.2), (3.1) and (5.3),

$$u_{\varepsilon}(x) \leq C(\lambda)u_{\varepsilon}(|x|, 0) - \varepsilon(1 - C(\lambda)).$$

Let $v_{\varepsilon}(x) = u_{\varepsilon}(x) + \frac{3\varepsilon}{1 - C(\lambda)} \left(\frac{r}{r_1}\right)^{k\lambda} f_{\lambda}(\theta_1)$ to make $v_{\varepsilon} > 0$. Note that $r^{k\lambda} f_{\lambda}(\theta_1)$ satisfies (3.1) with equality. Now choose a sequence u_m of subharmonic functions which decrease to v_{ε} in D.

36

We have to show that the functions u_m satisfy (3.1). For x in K_{r_1,r_2} we first observe that $u_m(x) < v_{\varepsilon}(x) + \varepsilon (1 - C(\lambda)) < C(\lambda) v_{\varepsilon}(|x|, 0)$, if $m \ge \text{some } m_1 = m_1(\varepsilon, x)$. Since u_m and v_{ε} are continuous on the positive x_1 -axis for $r_1 \le x_1 \le r_2$, we get

$$u_{m_1}(x+y) < C(\lambda)v_{\varepsilon}(|x+y|, 0)$$
 if $|y| < \text{ some } \eta(\varepsilon, x)$.

Now, by another compactness argument, we see that there are finitely many $x^{(k)} \in \partial \Omega$ such that each $x \in K_{r_k,r_k}$ may be written as $x = x^{(k)} + y$ and such that

$$u_{m_k}(x^{(k)}+y) < C(\lambda)v_{\varepsilon}(|x^{(k)}+y|, 0) \text{ for some } k.$$

With $M = \max m_k$, by using that the sequence u_m decreases, we obtain

$$u_m(x) < C(\lambda)v_{\varepsilon}(|x|, 0) \leq C(\lambda)u_m(|x|, 0)$$

for all $x \in K_{r_1,r_2}$, if $m \ge M$.

It is easy to see that, for $r=r_1$ or r_2 , $L_{\alpha}(r, u_m) \leq L_{\alpha}(r, u) + 0(\varepsilon)$, so $L_{\alpha}(r, u_m) \leq \leq A_{\varepsilon}r^{k\lambda} + B_{\varepsilon}r^{-k\lambda+2-n}$, where $A_{\varepsilon} \rightarrow A$ and $B_{\varepsilon} \rightarrow B$ as $\varepsilon \rightarrow 0$. If the theorem is proved for the C^2 function u_m , the rest is standard, letting in order $m \rightarrow \infty, \varepsilon \rightarrow 0$ and $\eta \rightarrow 0$.

If $\alpha = 1$, to make *u* finite, we start by replacing *u* by max (u, -N), which tends to *u* when $N \rightarrow \infty$. This does not affect the boundary condition.

When u is C^2 we have

(5.4)
$$\Delta u = u_{rr}'' + \frac{n-1}{r} u_r' + \frac{1}{r^2} \,\delta u \ge 0.$$

Let $G(r) = L^{\alpha}_{\alpha}(r) = \int_{S} q^{\alpha} f_{\lambda} g_{\lambda} d\omega$. Then

(5.5)
$$G'(r) = \int_{S} \alpha q^{\alpha - 1} u'_r g_{\lambda} d\omega$$

and, if $\alpha > 1$,

$$G''(r) = \int_{S} \alpha(\alpha-1) q^{\alpha-2} (u'_r)^2 \frac{g_{\lambda}}{f_{\lambda}} d\omega + \int_{S} \alpha q^{\alpha-1} u''_{rr} g_{\lambda} d\omega.$$

From (5.5) it follows by use of the Cauchy-Schwartz inequality that

$$(G'(r))^2 \leq \alpha^2 G(r) \int_S q^{\alpha-2} (u'_r)^2 \frac{g_\lambda}{f_\lambda} d\omega.$$

Hence, by (5.4)

$$G''(r) \geq \frac{\alpha-1}{\alpha} \frac{(G'(r))^2}{G(r)} - \frac{n-1}{r} G'(r) - \frac{\alpha}{r^2} \int_{S} q^{\alpha-1} g_{\lambda} \delta u \, d\omega,$$

so from the lemma we get

$$G''(r) - \frac{\alpha - 1}{\alpha} \frac{(G'(r))^2}{G(r)} + \frac{n - 1}{r} G'(r) - \frac{\alpha}{r^2} k\lambda(k\lambda + n - 2)G(r) \ge 0$$

or

(5.6)
$$L''_{\alpha}(r) + \frac{n-1}{r} L'_{\alpha}(r) - \frac{k\lambda(k\lambda+n-2)}{r^2} L_{\alpha}(r) \ge 0.$$

If $\alpha = 1$, we have $G'(r) = \int_S u'_r g_\lambda d\omega$ so we arrive at (5.6) by another differentiation and the lemma.

Equality in (5.6) occurs if and only if $L_{\alpha}(r) = C_1 r^{k\lambda} + C_2 r^{-k\lambda+2-n}$. The result therefore follows from the (one-dimensional) maximum principle.

Remark 1. An equivalent formulation of the conclusion is that $r^{n-2+k\lambda}L_{\alpha}(r)$ is a convex function of $r^{n-2+2k\lambda}$.

Remark 2. The above mentioned theorem by Dinghas follows from ours by letting $\lambda \to 1$. In fact, first replace f_{λ} by $C(\lambda)f_{\lambda}$ so that $f_{\lambda}(0)=1$ and $f_{\lambda}(\pi/2)=C(\lambda)$. As $\lambda \to 1$, $f_{\lambda}(\theta) \to \cos \theta$ and also $g_{\lambda}(\theta) \to \cos \theta$ in C^{1} on compact parts of $(0, \pi)$. Further $\int_{0 \le \theta_{\lambda} \le \eta} g_{\lambda} d\omega \to 0$ when $\eta \to 0$. This is seen by observing that $g_{\lambda}(\theta)$ is a decreasing function of λ .

6. Proof of Theorem 2 and the Corollary

Let $h(r) = Ar^{k\lambda} + Br^{-k\lambda+2-n}$ and assume J(r) = h(r) for $r = r_1$ and r_2 , $r_1 < r_2$. Solving for A and B we get

$$h(r) = D^{-1} \Big(J(r_1) (r^{k\lambda} r_2^{-k\lambda+2-n} - r^{-k\lambda+2-n} r_2^{k\lambda}) + J(r_2) (r^{-k\lambda+2-n} r_1^{k\lambda} - r^{k\lambda} r_1^{-k\lambda+2-n}) \Big),$$

where $D = r_1^{k\lambda} r_2^{-k\lambda+2-n} - r_2^{k\lambda} r_1^{-k\lambda+2-n}.$

Let $H(x) = H(r, \theta_1) = h(r) f_{\lambda}(\theta_1)$. Since $r^{k\lambda} f_{\lambda}$ and $r^{-k\lambda+2-n} f_{\lambda}$ are harmonic in Ω , His. We shall see that H majorizes u in Ω_{r_1, r_2} . In order to apply the maximum principle, we note that $v = u - H \le 0$ when $|x| = r_1$ or r_2 . Then either $v \le 0$ throughout Ω_{r_1, r_2} or v has a positive maximum at $x_0 \in \partial \Omega$. But since H satisfies (3.1) with equality, $v(x_0) \le C(\lambda) v(|x_0|, 0)$, so the maximum cannot be positive. Thus $\frac{u(x)}{f_{\lambda}(\theta_1)} \le$ h(r) when |x| = r, $r_1 \le r \le r_2$. Consequently $J(r) \le h(r)$ for these values of r, and we are through.

Proof of the Corollary

Since $\overline{\lim}_{x\to 0} u(x) = u(0) < \infty$, J(r) is bounded above when r is small. Also, h(r) is a positive linear combination of $J(r_1)$ and $J(r_2)$ for $r_1 < r < r_2$. Thus we may let $r_1 \to 0$ in the inequality $J(r) \leq h(r)$. We obtain $J(r) \leq r^{k\lambda} J(r_2) r^{-k\lambda}$ which is the assertion. The proof for L_{α} is the same.

38

Remark. Theorem 2 is actually true with (3.1) replaced by $u(y) < \infty$ and

(6.1)
$$u(y) \leq C(\lambda)M^+(|y|, u)$$
 when $y \in \Omega$

provided that $u(x) \ge 0$ somewhere on D_r for $r \ge r_1$, so that $J(r) \ge 0$. To see this, we note that $M^+(H, r) = H(r, 0)$ so v satisfies (6.1), and the conclusion is reached as above.

In general, (6.1) is not sufficient for Theorem 2 to be valid. Let $\lambda' \in (\lambda, 1)$. A trivial example is then $u = -r^{k\lambda'} f_{\lambda'}$, (θ_1) , which is harmonic in Ω , satisfies (6.1) and has $r^{-k\lambda} J(r) = Cr^{k(\lambda'-\lambda)}$ where C is a negative constant. (Actually C = -1.)

7. Proof of (a) of Theorem 3

Assume that $A = \lim_{r \to \infty} r^{-k\lambda} J(r) < \infty$. We use the notation of Section 4. The function

(7.1)

$$H_{R}(x) = \int_{S} \frac{\partial G_{R}}{\partial N}(x, R\omega) u(R\omega) R^{n-1} d\omega + \int_{K_{R}} \frac{\partial G_{R}}{\partial N}(x, y) C(\lambda) u(|y|, 0) d\sigma(y),$$

is harmonic in Ω_R with boundary values $u(R\omega)$ at D_R and $C(\lambda)u(|y|, 0)$ at K_R . H_R obviously majorizes u. Thus, if $y \in \partial \Omega$,

$$H_{R}(y) = C(\lambda)u(|y|, 0) \leq C(\lambda)H_{R}(|y|, 0),$$

so H_R satisfies (3.1) in Ω_R . Since $u \leq J(r) f_{\lambda}$,

(7.2)
$$H_R(x) \leq A |x|^{k\lambda} f_{\lambda}(\theta_1).$$

Especially $H_R(0) \leq 0$. Consequently

(7.3)
$$r^{-k\lambda}L(r, H_R) \leq R^{-k\lambda}L(R, H_R) \quad \text{for} \quad r < R.$$

Now, an application of the maximum principle in Ω_R shows that $H_{R'}$, $(x) \ge H_R(x)$ if R' > R. So, by (7.2) and the Harnack principle, $H_R(x)$ increases to a harmonic function $H(x) \le A |x|^{k\lambda} f_{\lambda}(\theta_1)$ in Ω , as $R \to \infty$. Taking the limit in (7.1), we want to show that

(7.4)
$$\int_{S} \frac{\partial G_{R}}{\partial N}(x, R\omega)u(R\omega)R^{n-1}d\omega \to 0$$
, when $R \to \infty$ and x is fixed.

We have $u(x) \leq AC(\lambda)^{-1} |x|^{k\lambda}$. If we also knew that, for some B, $u(x) \geq B |x|^{k\lambda}$ when x is large, (7.4) would follow from (4.1). Otherwise we may argue as follows. By (4.1) it is enough to prove (7.4) for $u_1 = u + C |x|^{k\lambda} f_{\lambda}(\theta_1)$, where C is chosen so

that u_1 is positive somewhere. Then $\lim_{r\to\infty} r^{-k\lambda}M(r, u_1)$ exists and is finite. If

$$v(x) = C(\lambda) \int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) M^+(|y|, u_1) d\sigma(y),$$

it follows that $v(x)=0(|x|^{k\lambda})$ when x tends to ∞ , so it suffices to show (7.4) for $p=v-u_1$. The function p is superharmonic and non-negative in Ω . Following [6, pp. 120-121] we note that for r large there exists x_r , with $|x_r|=r$,

$$r^{-k\lambda}p(x_r) \to 0$$
 as $r \to \infty$

and

(7.5)
$$\theta_1(x_r) \leq \text{constant} < \psi_0.$$

From the maximum principle and (4.1) we deduce

$$p(x_r) \geq \int_{\mathcal{S}} \frac{\partial G_R}{\partial N}(x_r, R\omega) p(R\omega) R^{n-1} d\omega \geq C_1 \left(\frac{|x_r|}{R}\right)^k F_k(\theta_1(x_r)) \int_{\mathcal{S}} F_k(\theta_1(\omega)) p(R\omega) d\omega.$$

Denote the latter integral by I(R). Taking r=R/2, we obtain from (7.5)

$$R^{-k\lambda}I(R) \leq C_2 r^{-k\lambda}p(x_r),$$

which tends to 0 as $R \rightarrow \infty$. Thus, by (4.1),

$$0 \leq \int_{S} \frac{\partial G_{R}}{\partial N}(x, R\omega) p(R\omega) R^{n-1} d\omega \leq C_{3} |x|^{k} (I(R) R^{-k\lambda}) R^{-k(1-\lambda)} \to 0,$$

when $R \rightarrow \infty$, so (7.4) is verified.

Since $\frac{\partial G_R}{\partial N} \uparrow \frac{\partial G}{\partial N}$ as $R \to \infty$, we note, with $u^+ = \max(u, 0)$, that

$$\int_{K_R} \frac{\partial G_R}{\partial N}(x, y) C(\lambda) u^+(|y|, 0) \, d\sigma(y) \uparrow \int_{\partial\Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) u^+(|y|, 0) \, d\sigma(y),$$

which is finite, due to (4.2) (and (4.3)). Since H(x) is finite, also

$$\lim_{R\to\infty}\int_{K_R}\frac{\partial G_R}{\partial N}(x,y)C(\lambda)u^-(|y|,0)\,d\sigma(y)=\int_{\partial\Omega}\frac{\partial G}{\partial N}(x,y)C(\lambda)u^-(|y|,0)\,d\sigma(y)$$

is finite. Here $u=u^+-u^-$. Thus

$$H(x) = \int_{\partial\Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) u(|y|, 0) \, d\sigma(y).$$

It is easily seen that H satisfies (3.1) and $H(0) \leq 0$, so $r^{-k\lambda}L(r, H)$ and $r^{-k\lambda}J(r, H)$ have finite limits as r tends to ∞ . Since $u(x) \leq H(x) \leq A|x|^{k\lambda} f_{\lambda}(\theta_1)$, $r^{-k\lambda}J(r, u) \leq r^{-k\lambda}J(r, H) \leq A$. Hence $\lim_{r\to\infty} r^{-k\lambda}J(r, H) = A$. By (7.3) we get

$$r^{-k\lambda}L(r, H_R) \leq R^{-k\lambda}L(R, H_R) \leq R^{-k\lambda}L(R, H)$$

From the definition of H_R it is seen that $L(R, u) = L(R, H_R)$. Hence, letting $R \rightarrow \infty$,

$$r^{-k\lambda}L(r, H) \leq \lim_{R \to \infty} R^{-k\lambda}L(R, u) \leq \lim_{R \to \infty} R^{-k\lambda}L(R, H)$$

Thus

$$\lim_{r\to\infty} r^{-k\lambda}L(r, H) = \lim_{R\to\infty} r^{-k\lambda}L(R, u) = a$$

(So it suffices to prove the theorem for H.)

Now repeat the procedure with $H^{(1)} = H$ instead of u, etc. We get an increasing sequence of harmonic functions $H^{(n)}(x)$ in Ω with

$$H^{(n)}(x) = \int_{\partial\Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) H^{(n-1)}(|y|, 0) \, d\sigma(y)$$

and $H^{(n)}(x) \leq A |x|^{k\lambda} f_{\lambda}(\theta_1)$. Hence $H^{(n)}$ has a finite harmonic limit

(7.6)
$$h(x) = \int_{\partial\Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) h(|y|, 0) d\sigma(y),$$

when $n \rightarrow \infty$. We also observe that h satisfies (3.1) with equality.

Below we shall prove

(7.7)
$$h(x) = A|x|^{k\lambda} f_{\lambda}(\theta_1).$$

Supposing this done, we have $d(\lambda)^{-1}r^{-k\lambda}L(r,h) = A$. If ε is given >0 and r_0 fixed,

$$d(\lambda)^{-1}r_0^{-k\lambda}L(r_0, H^{(n)}) > A - \varepsilon$$
 for some $n = n(\varepsilon, r_0)$.

Since $r^{-k\lambda}L(r, H^{(n)})$ increases to a when $r \to \infty$, we obtain $ad(\lambda)^{-1} > A - \varepsilon$, and so we are through.

8. Proof of (7.7)

To prove that h is a multiple of $r^{k\lambda}f_{\lambda}(\theta_1)$, it is by (7.6) enough to show that $h(r, 0) = Cr^{k\lambda}$. With B as in Section 4 we have

$$h(r,0) = \int_0^\infty C(\lambda) h(t,0) B(t/r,0) t^{n-2} r^{1-n} dt.$$

From the construction of h we know $h(r, 0) \leq Ar^{k\lambda}$. Using part of the proof of the generalized Ahlfors—Heins theorem in \mathbb{R}^n ([6, pp. 119—123]), we see that $u(r, 0) \geq Cr^{k\lambda}$ when x is large. Here (4.2) — (4.4) are needed. Since we have assumed that $u(r, 0) \geq C'r^{k\lambda}$ when r is near 0, we have $|h(r, 0)| \leq C''r^{k\lambda}$ for all r>0. Let $f(t)=h(t, 0)t^{-k\lambda}$. Then f is C^{∞} and bounded on \mathbb{R}^+ and

$$f(r) = \int_0^\infty C(\lambda) f(t)(t/r)^{k\lambda} t^{n-2} r^{1-n} B(t/r, 0) dt.$$

Put $r=e^{-x}$, $t=e^{-s}$ and $f(e^{-x})=\varphi(x)$. Hence

(8.1)
$$\varphi(x) = \int_{-\infty}^{\infty} \varphi(s) C(\lambda) e^{(x-s)(n-1+k\lambda)} B(e^{x-s}, 0) ds.$$

With $K(s) = C(\lambda)e^{s(n-1+k\lambda)}B(e^s, 0)$ we then have $\varphi = \varphi * K$. Here $\frac{d^m \hat{K}(\xi)}{d\xi^m}$ exists for every *m*, since $\int_{-\infty}^{\infty} |s|^m K(s) ds$ is finite, which is readily checked. Thus $(1-\hat{K})\hat{\varphi}=0$. Since $\varphi \neq 1$ solves (8.1), $\hat{K}(0)=1$. Further we observe that $\hat{K}(\xi) \neq 1$ if $\xi \neq 0$, so $\hat{\varphi}$ has its support at the origin. Now

$$\hat{K}'(0) = \int_{-\infty}^{\infty} (-is)K(s) \, ds = -iC(\lambda) \int_{-\infty}^{\infty} s e^{s(n-1+k\lambda)} B(e^s, 0) \, ds,$$

which, by a change of variables and (4.5), equals

$$-iC(\lambda)\int_1^\infty (t^{k\lambda+n-2}-t^{-k\lambda})B(t,0)\ln t\,dt.$$

This is obviously $\neq 0$, so we conclude that $\hat{\varphi}(\xi) = C\delta(\xi)$. Hence φ is constant, which means that $h(r, \theta_1) = Cr^{k\lambda} f_{\lambda}(\theta_1)$. From the construction of h we have $C \leq A$. But $u \leq h$ so $J(r, u) \leq Cr^{k\lambda}$. Thus C = A and the proof is finished.

9. Proof of (b) and (c) of Theorem 3

To prove (b) we first observe that $u(x) \leq \min(M(r), J(r)f_{\lambda}(\theta_1))$, so

 $L(r,u) \leq L(r, \min(M(r), J(r)f_{\lambda}(\theta_1))).$

Let $m(r) = r^{-k\lambda}M(r)$, $j(r) = r^{-k\lambda}J(r)$ and $e(r) = j(r)d(\lambda) - r^{-k\lambda}L(r)$ so that $e(r) \to 0$ as $r \to \infty$. We have $0 \le j(r) \le m(r) \le C(\lambda)^{-1}j(r)$. Thus there is a $\psi_1 = \psi_1(r)$, $0 \le \psi_1 \le \psi_0$, such that $m(r) = j(r)f_{\lambda}(\psi_1)$. Hence

$$j(r)d(\lambda)-e(r)$$

$$\leq j(r)a\left(\int_{\theta}^{\psi_1}f_{\lambda}(\psi_1)g_{\lambda}(\theta_1)(\sin\theta_1)^{n-2}d\theta_1+\int_{\psi_1}^{\psi_0}f_{\lambda}(\theta_1)g_{\lambda}(\theta_1)(\sin\theta_1)^{n-2}d\theta_1\right)$$

where

$$a = \begin{cases} \frac{(2\pi)^{(n-1)/2}}{(n-3)!!} & \text{if } n \text{ is odd} \\ \frac{2(2\pi)^{(n-2)/2}}{(n-3)!!} & \text{if } n \text{ is even.} \end{cases}$$

It follows that

$$e(r)a^{-1} \ge j(r)\int_0^{\psi_1} (f_{\lambda}(\theta_1) - f_{\lambda}(\psi_1))g_{\lambda}(\theta_1) (\sin \theta_1)^{n-2} d\theta_1.$$

The assertion of the theorem is that $\psi_1(r) \rightarrow 0$ as $r \rightarrow \infty$. If not so, there would exist an $\eta > 0$ and a sequence $r_i \rightarrow \infty$ as $i \rightarrow \infty$, such that $\psi_1(r_i) \ge \eta$. It would follow that

$$e(r_i)a^{-1} \geq j(r_i)\int_0^{\eta} (f_{\lambda}(\theta_1) - f_{\lambda}(\eta))g_{\lambda}(\theta_1)(\sin \theta_1)^{n-2} d\theta_1.$$

Hence $\lim_{r\to\infty} j(r) = A \leq 0$, which is a contradiction unless A = 0 in which case there is nothing to prove.

In case $u \le 0$, we have $0 \le -j(r) \le -m(r) \le -C(\lambda)^{-1}j(r)$. With ψ_1 as above, the aim is to show that $\psi_1 \rightarrow \psi_0$ as $r \rightarrow \infty$. Proceeding by contradiction as before, we get

$$-e(r) \leq j(r)a \int_{\psi_0-\eta}^{\psi_0} (f_{\lambda}(\psi_0-\eta)-f_{\lambda}(\theta_1))g_{\lambda}(\theta_1)(\sin\theta_1)^{n-2} d\theta_1$$

on some sequence $r=r_i$, where $r_i \rightarrow \infty$ as $i \rightarrow \infty$, and some $\eta > 0$. This gives $A \ge 0$ and the proof is finished.

References

- 1. AHLFORS, L., On Phragmén-Lindelöf's principle, Trans. Amer. Math. Soc. 41 (1937), 1-8.
- AZARIN, V. S., Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138. Mat. Sb. 66 (108), (1965), 248-264.
- 3. DAHLBERG, B., Growth properties of subharmonic functions, thesis, University of Göteborg, 1971.
- DINGHAS, A., Über das Anwachsen einiger Klassen von subharmonischen und verwandten Funktionen, Ann. Acad. Sci. Fennicae Ser A. I. 336/1 (1963), 3–27.
- DRASIN, D. and SHEA, D. F., Convolution inequalities, regular variation and exceptional sets, J. d'Analyse Math. 23 (1976), 232-293.
- Essén, M. and Lewis, J. L., The generalized Alhfors—Heins theorem in certain d-dimensional cones, Math. Scand. 33 (1973), 113-129.
- 7. HAYMAN, W. K. and KENNEDY, P. B., Subharmonic functions vol. 1, Academic Press, New York, 1976.
- HELLSTEN, U., KJELLBERG, B. and NORSTAD, F., Subharmonic functions in a circle, Ark. Mat. 8 (1970), 185-193.
- NORSTAD, F., Convexity of means and growth of certain subharmonic functions, Ark. Mat. 16 (1978) 141-152.
- WANBY, G., A generalization of the Phragmén—Lindelöf principle for elliptic differential equations, Math Scand. 43 (1978), 259—274.

Received May 27, 1981

University of Lund Department of Mathematics Box 725 S--220 07 LUND Sweden