Convexity of means and growth of certain subharmonic functions in an n-dimensional cone

Göran Wanby

1. Preliminaries

This paper extends some results by Norstad [9] on subharmonic functions in the complex plane, cut along a half-ray, to an n-dimensional cone.

Cartesian coordinates of a point x of $R^{n}, n \geqq 3$, are denoted $\left(x_{1}, \ldots, x_{n}\right)$. We introduce spherical coordinates for x by

$$
|x|=r, \quad x_{1}=r \cos \theta_{1}, \quad x_{i}=r \cos \theta_{i} \prod_{j=1}^{i-1} \sin \theta_{j} \quad \text { for } \quad i=2, \ldots, n-1
$$

and

$$
x_{n}=r \prod_{j=1}^{n-1} \sin \theta_{j}
$$

Here $0 \leqq \theta_{i} \leqq \pi$ for $i=1, \ldots, n-2$ and $0 \leqq \theta_{n-1} \leqq 2 \pi$. When integrating, we shall also use the parameter ω, defined by $x=r \omega$. Then $d \omega=\sqrt{g} d \theta_{1} \ldots d \theta_{n-1}$ with $\sqrt{g}=\Pi_{j=1}^{n-1}\left(\sin \theta_{j}\right)^{n-j-1}$.

Let $\Omega=\Omega\left(\psi_{0}\right)$ be the cone $\left\{x ; 0 \leqq \theta_{1}<\psi_{0}\right\}$, where ψ_{0} is given, $0<\psi_{0}<\pi$. If v is a function, defined in Ω, we shall let $v(r, 0)$ denote the value of v at the point $x=(r, 0, \ldots, 0)$. Also, if v is independent of $\theta_{2}, \ldots, \theta_{n-1}$, we shall write $v\left(r, \theta_{1}\right)$ for the value of v at any point whose first two spherical coordinates are r, θ_{1}.

In spherical coordinates the Laplacian is

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \delta \tag{1.1}
\end{equation*}
$$

where the Beltrami operator δ is given by

$$
\delta=\frac{1}{\sqrt{g}} \sum_{j=1}^{n-1} \frac{\partial}{\partial \theta_{j}}\left(\frac{\sqrt{g}}{g_{j}} \frac{\partial}{\partial \theta_{j}}\right)
$$

Here $g_{1}=1$ and $g_{j}=\prod_{i=1}^{j-1}\left(\sin \theta_{i}\right)^{2} \quad$ for $j=2, \ldots, n-1$, so $g=\prod_{j=1}^{n-1} g_{j}$. If the function F only depends on θ_{1},

$$
\begin{equation*}
\delta F=F^{\prime \prime}\left(\theta_{1}\right)+(n-2) \cot \theta_{1} F^{\prime}\left(\theta_{1}\right) \tag{1.2}
\end{equation*}
$$

For two C^{2} functions u and v we also let

$$
(\nabla u, \nabla v)=\sum_{j=1}^{n-1} \frac{1}{g_{j}} \frac{\partial u}{\partial \theta_{j}} \frac{\partial v}{\partial \theta_{j}} .
$$

Let u be subharmonic in Ω. We are going to study the means $L_{\alpha}(r), \alpha \geqq 1$, and $J(r)$, defined by

$$
L_{\alpha}(r, u)=\left(\int_{\mathrm{s}}\left(\frac{u(r \omega)}{f_{\lambda}\left(\theta_{1}\right)}\right)^{\alpha} f_{\lambda}\left(\theta_{1}\right) g_{\lambda}\left(\theta_{1}\right) d \omega\right)^{1 / \alpha}
$$

where S is the part of the unit sphere $|\omega|=1$ where $0 \leqq \theta_{1}<\psi_{0}$, and

$$
J(r, u)=\sup _{s} \frac{u(r \omega)}{f_{\lambda}\left(\theta_{1}\right)}
$$

Here f_{λ} and g_{λ} are certain eigenfunctions of the Beltrami operator. Some of their properties are listed in the next section. When $1<\alpha<\infty, u$ is required to be nonnegative.

We shall also examine the relation between $M(r)=\sup _{S} u(r \omega), J(r)$ and $L(r)=L_{1}(r)$.

2. The functions f_{λ} and g_{λ}

We first consider the case $n \geqq 3$. If k is a given number, $k>0$, we denote by $F_{k}=F_{k}(\theta)$ the unique solution of the problem

$$
\begin{equation*}
\delta F+k(k+n-2) F=0 \quad \text { for } \quad 0 \leqq \theta<\pi \text {, } \tag{2.1}
\end{equation*}
$$

$F_{k}(0)=1$ and $F_{k}^{\prime}(0)=0$. It is known that F_{k} depends continuously on k and has a first zero $\psi(k)$ in $(0, \pi)$. As a function of $k \in(0, \infty) \psi(k)$ is strictly decreasing with range $(0, \pi)$. Let $k(\psi)$ denote its inverse. Now fix $k=k\left(\psi_{0}\right)$. Then

$$
\begin{equation*}
v(x)=v\left(r, \theta_{1}\right)=r^{k} F_{k}\left(\theta_{1}\right) \tag{2.2}
\end{equation*}
$$

is harmonic in Ω and exhibits the Phragmén-Lindelöf growth for subharmonic functions in Ω, vanishing at $\partial \Omega$. When $\psi_{0}=\pi / 2$ so that Ω is a half-space, $k=1$ for all n.

With a given $\lambda, 0<\lambda<1$, let $f_{\lambda}(\theta)=F_{k \lambda}(\theta) F_{k \lambda}\left(\psi_{0}\right)^{-1} . \quad\left(F_{k \lambda}\left(\psi_{0}\right)>0 \quad\right.$ since $\psi_{0}=\psi(k)<\psi(k \lambda)$.) Hence $f_{\lambda}\left(\psi_{0}\right)=1$ and f_{λ} solves

$$
\begin{equation*}
\delta F+k \lambda(k \lambda+n-2) F=0 . \tag{2.3}
\end{equation*}
$$

It follows from the minimum principle that f_{λ} is strictly decreasing for $0 \leqq \theta \leqq \psi(k \lambda)$. Let $w\left(r, \theta_{1}\right)=r^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$. Then w is harmonic in $\Omega, w(x)=|x|^{k \lambda}$ at $\partial \Omega$ and on $|x|=1$,

$$
\begin{equation*}
1 \leqq w(x) \leqq f_{\lambda}(0)=C(\lambda)^{-1} \tag{2.4}
\end{equation*}
$$

by which $C(\lambda)$ is defined.
Since the indicial equation at $\theta=0$ of (2.1) is $\mu(\mu+n-3)=0,(2.3)$ also has solutions g_{λ}, unbounded at $\theta=0$ and such that $(\sin \theta)^{n-2} g_{\lambda}(\theta) \rightarrow 0$ as $\theta \rightarrow 0$. We may choose g_{λ} such that $g_{\lambda}(\theta) \rightarrow+\infty$ when $\theta \rightarrow 0$ and $g_{\lambda}\left(\psi_{0}\right)=0$. An application of Sturm's comparison theorem shows that g_{λ} has no zeros in $\left(0, \psi_{0}\right)$. The minimum principle then gives that g_{λ} is strictily decreasing for $0 \leqq \theta \leqq \psi_{0}$, so $g_{\lambda}^{\prime}(\theta) \leqq 0$ for these values of θ. Actually, $g_{\lambda}^{\prime}\left(\psi_{0}\right) \neq 0$, since otherwise g_{λ} would be identically zero. Thus we may prescribe $g_{\lambda}^{\prime}\left(\psi_{0}\right)=-1$. These conditions determine g_{λ} uniquely.

We shall also need

$$
\begin{equation*}
f_{\lambda}^{\prime}(\theta) g_{\lambda}(\theta)-f_{\lambda}(\theta) g_{\lambda}^{\prime}(\theta)=(\sin \theta)^{2-n}\left(\sin \psi_{0}\right)^{n-2} . \tag{2.5}
\end{equation*}
$$

To see this, let h be the left member of (2.5). Then, by (1.2), $h^{\prime}=f_{\lambda}^{\prime \prime} g_{\lambda}-f_{\lambda} g_{\lambda}^{\prime \prime}=$ $-(n-2) \cot \theta h$, which gives $h(\theta)=C(\sin \theta)^{2-n}$. Since $h\left(\psi_{0}\right)=1$, we get (2.5).

Above we assumed $n \geqq 3$. When $n=2$ and $k=1, \cos \lambda \theta$ and $\sin \lambda(\pi / 2-\theta)$ are two linearly independent solutions of (2.3).

When n is even, it is possible to obtain explicit expressions for f_{2}. For example, for $n=4$, we have $\psi_{0}=\pi /(k+1)$,

$$
f_{\lambda}(\theta)=\frac{\sin \frac{\pi}{k+1}}{\sin \pi \frac{k \lambda+1}{k+1}} \frac{\sin (k \lambda+1) \theta}{\sin \theta}
$$

Also,

$$
g_{\lambda}(\theta)=-\frac{\sin \frac{\pi}{k+1}}{k \lambda+1} \frac{\sin (k \lambda+1)\left(\psi_{0}-\theta\right)}{\sin \theta} .
$$

Especially

$$
C(\lambda)=\frac{\sin \pi \frac{k \lambda+1}{k+1}}{(k \lambda+1) \sin \frac{\pi}{k+1}}
$$

A recurrence formula, from which f_{λ} can be evaluated by means of residues, is given in Hayman [7, p. 160].

3. Statement of results

Let u be subharmonic in Ω and λ a given number, $0<\lambda<1$. Throughout the paper we assume that u satisfies the boundary condition

$$
\begin{equation*}
u(y) \leqq C(\lambda) u(|y|, 0) \quad \text { when } \quad y \in \partial \Omega \backslash\{0\} . \tag{3.1}
\end{equation*}
$$

Here $u(y)$ is defined when $y \in \partial \Omega$ as $\lim u(x)$ when $x \rightarrow y, x \in \Omega . C(\lambda)$ is given by (2.4). We shall prove

Theorem 1. Let $u \not \equiv-\infty$ be subharmonic in Ω and satisfy (3.1). Then the mean $L_{\alpha}(r), \alpha \geqq 1$, is a convex function with respect to the family $A r^{k \lambda}+B r^{-k \lambda+2-n}, r>0$. If $\alpha>1, u$ is supposed to be non-negative.

Theorem 2. If u is subharmonic in Ω and satisfies (3.1) then $J(r)$ is convex with respect to the family $A r^{k \lambda}+B r^{-k \lambda+2-n}, r>0$.

Theorem 1 corresponds to theorems I and IV of Norstad [9] and Theorem 2 is a generalization of Theorem III of [9]. Transferred to the right half-plane the two-dimensional results are that

$$
\left(\int_{-\pi / 2}^{\pi / 2}\left(\frac{u\left(r e^{i \theta}\right)}{\cos \lambda \theta}\right)^{\alpha} \cos \lambda \theta \sin \lambda\left(\frac{\pi}{2}-|\theta|\right) d \theta\right)^{1 / \alpha}
$$

and

$$
\sup _{|\theta|<\pi / 2} \frac{u\left(r e^{i \theta}\right)}{\cos \lambda \theta}
$$

are convex with respect to $A r^{\lambda}+B r^{-\lambda}$. Here $C(\lambda)=\cos \frac{\lambda \pi}{2}$. Continuity on the axis of symmetry and on the boundary is implicit in [9].

The limiting case $\lambda=1$, which corresponds to boundary values $u(y) \leqq 0$, was treated, for a half-space of R^{n}, by Dinghas [4]. His result is that

$$
r^{n-1}\left(\int_{\substack{\omega|=1\\| \omega \mid<\pi / 2}}\left(\frac{u(r \omega)}{\cos \theta}\right)^{\alpha} \cos ^{2} \theta d \omega\right)^{1 / \alpha}
$$

is a convex function of r^{n}, which is the conclusion of Theorem 1 in case $k=\lambda=1$.
When $\alpha=1$ and $u=\log ^{+}|f(z)|$ with f analytic in the right half-plane and such that $|f(z)| \leqq 1$ on the imaginary axis, the result is a classical theorem by Ahlfors [1].

From the convexity we get
Corollary. Under the assumptions of Theorem 1 and 2 and if $u(0)<\infty, r^{-k \lambda} L_{\alpha}(r)$ and $r^{-k \lambda} J(r)$ are non-decreasing, so the limits

$$
\lim _{r \rightarrow \infty} r^{-k \lambda} L_{\alpha}(r) \text { and } \lim _{r \rightarrow \infty} r^{-k \lambda} J(r)
$$

exist, possibly $=\infty$.

Let $w\left(r, \theta_{1}\right)=r^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$ and put $L(1, w)=d(\lambda)$, that is

$$
d(\lambda)=2 \pi \int_{0}^{\psi_{0}} f_{\lambda}(\theta) g_{\lambda}(\theta)(\sin \theta)^{n-2} d \theta \prod_{j=2}^{n-2} \int_{0}^{\pi}(\sin \theta)^{n-j-1} d \theta
$$

with obvious interpretation if $n=3$. We then clearly have

$$
\begin{equation*}
L(r) \leqq d(\lambda) J(r) \tag{3.2}
\end{equation*}
$$

From our assumptions it follows that $r^{-k \lambda} M(r)$ has a positive limit as $r \rightarrow \infty$ if u is non-negative somewhere. A proof is given in Dahlberg [3] or Essén-Lewis [6]. If $u\left(x_{0}\right) \geqq 0$, we conclude from the Corollary that u is non-negative at some point at $|x|=r$ for all $r \geqq\left|x_{0}\right|$. We then have

$$
\begin{equation*}
J(r) \leqq M(r) \leqq C(\lambda)^{-1} J(r) \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we get some trivial relations between the three limits. A precise result is

Theorem 3. If u satisfies the conditions of Theorem 1 , if $u(0)<\infty$ and if $u(r, 0)=$ $0\left(r^{k \lambda}\right)$ when $r \rightarrow 0$, then $\lim _{r \rightarrow \infty} r^{-k \lambda} J(r)=\infty$ or

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-k \lambda} L(r)=d(\lambda) \lim _{r \rightarrow \infty} r^{-k \lambda} J(r) \tag{a}
\end{equation*}
$$

If further u is non-negative somewhere, then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-k \lambda} M(r)=C(\lambda)^{-1} \lim _{r \rightarrow \infty} r^{-k \lambda} J(r) \tag{b}
\end{equation*}
$$

while, if $u \leqq 0$ throughout Ω,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-k \lambda} M(r)=\lim _{r \rightarrow \infty} r^{-k \lambda} J(r) \tag{c}
\end{equation*}
$$

Our boundary condition (3.1) implies

$$
\begin{equation*}
u(y) \leqq C(\lambda) M^{+}(|y|), \tag{3.4}
\end{equation*}
$$

where $M^{+}(r)=\max (M(r), 0)$. Among the consequences of (3.4) is the generalized Ahlfors-Heins theorem in R^{n}, proved by Essén-Lewis [6]. Related problems are studied in Dahlberg [3] and Wanby [10]. We also refer to Hellsten, Kjellberg and Norstad [8] and Drasin and Shea [5].

4. Some results on the Green's function

Let $\Omega_{R}=\Omega \cap\{|x|<R\}$ and denote by $G(x, y)$ and $G_{R}(x, y)$ the Green's functions for Ω and Ω_{R} respectively. Also let $\frac{\partial}{\partial N}$ denote the inner normal derivative with respect to $y \in \partial \Omega$ or $\partial \Omega_{R}$. In the following we will need some estimates by Azarin
[2] of $\frac{\partial G_{R}}{\partial N}$ and $\frac{\partial G}{\partial N}$. With F_{k} and v as in (2.2) we have

$$
\begin{equation*}
\frac{\partial G_{R}}{\partial N}(x, R \omega) \approx\left(\frac{|x|}{R}\right)^{k} R^{1-n} F_{k}\left(\theta_{1}(x)\right) F_{k}\left(\theta_{1}(\omega)\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial G}{\partial N}(x, y) \approx F_{k}\left(\theta_{1}(x)\right) \frac{\partial v}{\partial N}(y /|y|)\left(\frac{|x|}{|y|}\right)^{k}|y|^{1-n}, \quad \text { if } \quad 0<|x|<\frac{4}{5}|y| \tag{4.2}\\
& \frac{\partial G}{\partial N}(x, y) \approx F_{k}\left(\theta_{1}(x)\right) \frac{\partial v}{\partial N}(y /|y|)\left(\frac{|y|}{|x|}\right)^{k}|x|^{2-n}|y|^{-1}, \quad \text { if } \quad 0<|y|<\frac{4}{5}|x| \tag{4.3}\\
& \frac{\partial G}{\partial N}(x, y) \approx F_{k}\left(\theta_{1}(x)\right) \frac{\partial v}{\partial N}(y /|y|)|x-y|^{-n}, \quad \text { if } \quad \frac{4}{5} \leqq \frac{|x|}{|y|} \leqq \frac{5}{4} \tag{4.4}
\end{align*}
$$

Here $f \approx g$ means that there are positive constants C_{1} and C_{2}, only depending on Ω, such that $C_{1} \leqq f / g \leqq C_{2}$.

Let $d \sigma(y)$ denote Lebesgue measure on $\partial \Omega$. Following [6, pp. 117-118] we let μ be the measure on $\partial \Omega$, defined by

$$
t^{n-2} d t d \mu(y)=d \sigma(y), \quad|y|=t
$$

and

$$
B\left(t, \theta_{1}\right)=\int_{\partial \Omega \cap\{|y|=t\}} \frac{\partial G}{\partial N}\left(\frac{x}{|x|}, y\right) d \mu(y)
$$

We then get, with $|x|=r$,

$$
\int_{\partial \Omega \cap\{|y|=t\}} \frac{\partial G}{\partial N}(x, y) d \mu(y)=r^{1-n} B\left(t / r, \theta_{1}\right)
$$

We also note that

$$
\begin{equation*}
t^{n} B\left(t, \theta_{1}\right)=B\left(1 / t, \theta_{1}\right) \tag{4.5}
\end{equation*}
$$

In the following we shall also use the following notation:
and

$$
D_{R}=\Omega \cap\{|x|=R\}, \quad K_{R}=\partial \Omega \cap\{|x|<R\}
$$

$$
\Omega_{r_{1}, r_{2}}=\Omega \cap\left\{r_{1} \leqq|x| \leqq r_{2}\right\}, \quad K_{r_{1}, r_{2}}=\partial \Omega_{r_{1}, r_{2}} \cap \partial \Omega
$$

5. Proof of Theorem 1

We shall first prove
Lemma. Let u be a subharmonic C^{2} function in $\bar{\Omega}$ and suppose that u satisfies (3.1). Then

$$
\begin{equation*}
\int_{S}\left(\frac{u(r \omega)}{f_{\lambda}\left(\theta_{1}\right)}\right)^{\alpha-1}(\delta u(r \omega)+k \lambda(k \lambda+n-2) u(r \omega)) g_{\lambda}\left(\theta_{1}\right) d \omega \leqq 0 \tag{5.1}
\end{equation*}
$$

Here S denotes the part of the unit sphere $|\omega|=1$, where $0 \leqq \theta_{1}<\psi_{0}$. When $\alpha>1$, u is supposed to be positive.

Proof. We first assume $\alpha>1$. Denote the integrand of (5.1) by D_{α} and put $u(x)=q(x) f_{\lambda}\left(\theta_{1}\right)$. We get

$$
D_{\alpha}=q^{\alpha-1}\left(f_{\lambda} \delta q+q \delta f_{\lambda}+2\left(\nabla q, \nabla f_{\lambda}\right)+k \lambda(k \lambda+n-2) q f_{\lambda}\right) g_{\lambda}
$$

Since f_{λ} satisfies (2.3), we have

$$
\begin{aligned}
\int_{\mathrm{S}} D_{\alpha} d \omega & =\int_{S} q^{\alpha-1}\left(f_{\lambda} \delta q+2\left(\nabla q, \nabla f_{\lambda}\right)\right) g_{\lambda} d \omega \\
& =\int q^{\alpha-1}\left(f_{\lambda} \frac{1}{\sqrt{g}} \sum_{j=1}^{n-1} \frac{\partial}{\partial \theta_{j}}\left(\frac{\sqrt{g}}{g_{j}} \frac{\partial q}{\partial \theta_{j}}\right)+2 \sum_{j=1}^{n-1} \frac{1}{g_{j}} \frac{\partial q}{\partial \theta_{j}} \frac{\partial f_{\lambda}}{\partial \theta_{j}}\right) g_{\lambda} \sqrt{g} d \theta_{1} \ldots d \theta_{n-1} \\
& =\int \sum_{j=1}^{n-1}\left[\frac{\sqrt{g}}{g_{j}} \frac{\partial q}{\partial \theta_{j}} q^{\alpha-1} f_{\lambda} g_{\lambda}\right]_{\theta_{j}=0}^{\theta_{j}=a_{j}} d \theta_{1} \ldots d \theta_{j-1} d \theta_{j+1} \ldots d \theta_{n-1} \\
& -\int \sum_{j=1}^{n-1} \frac{\sqrt{g}}{g_{j}} \frac{\partial q}{\partial \theta_{j}}\left(\frac{\partial}{\partial \theta_{j}}\left(q^{\alpha-1} f_{\lambda} g_{\lambda}\right)-2 q^{\alpha-1} \frac{\partial f_{\lambda}}{\partial \theta_{j}} g_{\lambda}\right) d \theta_{1} \ldots d \theta_{n-1} .
\end{aligned}
$$

Here $a_{1}=\psi_{0}, a_{j}=\pi$ when $2 \leqq j \leqq n-2$ and $a_{n-1}=2 \pi$. In the first sum all terms are zero. For $j=1$ we use that $g_{\lambda}\left(\psi_{0}\right)=0$ and that $g_{\lambda}\left(\theta_{1}\right)\left(\sin \theta_{1}\right)^{n-2} \rightarrow 0$ as $\theta_{1} \rightarrow 0$. When $2 \leqq j \leqq n-2$ we note that $\frac{\sqrt{g}}{g_{j}}=0$ for $\theta_{j}=0$ or π. Finally $\frac{\sqrt{g}}{g_{n-1}}$ is independent of θ_{n-1} and $\frac{\partial g}{\partial \theta_{n-1}} q^{\alpha-1}$ has the same values for $\theta_{n-1}=0$ and 2π for fixed $\theta_{1}, \ldots, \theta_{n-2}$ with $0<\theta_{1}<\psi_{0}, 0<\theta_{j}<\pi$ when $2 \leqq j \leqq n-2$. Thus we get $\int_{S} D_{\alpha} d \omega=(1-\alpha) \int_{S} q^{\alpha-2} f_{\lambda} g_{\lambda}(\nabla q, \nabla q) d \omega$

$$
\begin{aligned}
& +\int \sqrt{g} q^{\alpha-1} \frac{\partial q}{\partial \theta_{1}}\left(f_{\lambda}^{\prime}\left(\theta_{1}\right) g_{\lambda}\left(\theta_{1}\right)-f_{\lambda}\left(\theta_{1}\right) g_{\lambda}^{\prime}\left(\theta_{1}\right)\right) d \theta_{1} \ldots d \theta_{n-1} \\
& \leqq\left(\sin \psi_{0}\right)^{n-2} \int q^{\alpha-1} \frac{\partial q}{\partial \theta_{1}} \prod_{j=2}^{n-1}\left(\sin \theta_{j}\right)^{n-1-j} d \theta_{1} \ldots d \theta_{n-1} \\
& =\alpha^{-1}\left(\sin \psi_{0}\right)^{n-2} \int\left[q^{\alpha}\left(r, \theta_{1}, \ldots, \theta_{n-1}\right)\right]_{\theta_{1}=\psi_{0}}^{\theta_{1}} \prod_{j=2}^{n-1}\left(\sin \theta_{j}\right)^{n-1-j} d \theta_{2} \ldots d \theta_{n-1}
\end{aligned}
$$

Here we used (2.5).
Now, if y is the point with polar coordinates $\left(r, \psi_{0}, \theta_{2}, \ldots, \theta_{n-1}\right)$,

$$
\left[q^{\alpha}\left(r, \theta_{1}, \ldots, \theta_{n-1}\right]\right]_{\theta_{1}=0}^{\theta_{1}=\psi_{0}}=(u(y))^{\alpha}-(u(|y|, 0) C(\lambda))^{\alpha},
$$

which is non-positive because of (3.1). Thus the lemma is proved if $\alpha>1$. Small changes are needed in case $\alpha=1$. We omit the details.

Remark. It is clear from the proof that the lemma is true under the somewhat weaker boundary condition

$$
\left(a^{-1} \int u^{\alpha}\left(r, \Psi_{0}, \theta_{2}, \ldots, \theta_{n-1}\right) \prod_{j=2}^{n-1}\left(\sin \theta_{j}\right)^{n-1-j} d \theta_{2} \ldots d \theta_{n-1}\right)^{1 / \alpha} \leqq C(\lambda) u(r, 0)
$$

Here the domain of integration is given by $0<\theta_{j}<\pi$ for $2 \leqq j \leqq n-2$ and $0<\theta_{n_{-1}}<2 \pi$ and

$$
a=\prod_{j=2}^{n-1} \int\left(\sin \theta_{j}\right)^{n-1-j} d \theta_{j}= \begin{cases}\frac{(2 \pi)^{(n-1) / 2}}{(n-3)!!} & \text { if } n \text { is odd } \\ \frac{2(2 \pi)^{(n-2) / 2}}{(n-3)!!} & \text { if } n \text { is even. }\end{cases}
$$

This corresponds to Norstad's boundary condition

$$
\left[\frac{1}{2}\left(u^{\alpha}(i r)+u^{\alpha}(-i r)\right)\right]^{1 / \alpha} \leqq \cos \frac{\pi \lambda}{2} u(r)
$$

Now suppose $\alpha>1$ and $L_{\alpha}(r, u)=A r^{k \lambda}+B r^{-k \lambda+2-n}$ for $r=r_{1}$ and $r_{2}, r_{1}<r_{2}$. A and B are constants. The assertion of Theorem 1 is that $L_{\alpha}(r, u) \leqq A r^{k \lambda}+B r^{-k \lambda+2-n}$ for $r_{1}<r<r_{2}$. We shall first approximate u by C^{2} subharmonic functions u_{m} which also satisfy the boundary condition (3.1). If the restriction of u to the positive x_{1} axis is not continuous, we first replace u by its least harmonic majorant in a small cylinder around the x_{1}-axis: $r_{1}-\eta \leqq x_{1} \leqq r_{2}+\eta, \sum_{2}^{n} x_{j}^{2} \leqq \eta^{2}$. The new function is then subharmonic in Ω, satisfies (3.1) and is continuous on the x_{1}-axis for $r_{1} \leqq x_{1} \leqq r_{2}$. Now, if $\varepsilon=0$ is given, there are points $x^{(1)}, \ldots, x^{(N)}$ on $\partial \Omega$ and a $\delta>0$ such that each point in the set $K_{r_{1}, r_{2}}$ belongs to some ball $\left|x-x^{(k)}\right|<\delta$ and such that

$$
\begin{equation*}
u(x)<u\left(x^{(k)}\right)+\varepsilon \text { if }\left|x-x^{(k)}\right|<2 \delta . \tag{5.2}
\end{equation*}
$$

This follows from the semicontinuity at the boundary and a compactness argument. Since u is continuous on the positive x_{1}-axis for $r_{1} \leqq x_{1} \leqq r_{2}$, we may take δ so small that

$$
\begin{equation*}
|u(t, 0)-u(s, 0)|<\varepsilon \quad \text { if } \quad|t-s|<2 \delta, \quad r_{1} \leqq t \leqq s \leqq r_{2} . \tag{5.3}
\end{equation*}
$$

Let $u_{\varepsilon}(x)=u\left(x_{1}+\delta, x_{2}, \ldots, x_{n}\right)-\frac{2 \varepsilon}{1-C(\lambda)}$. Then u_{ε} is subharmonic in an open domain D which contains $\Omega_{r_{1}, r_{2}}$. If $x \in K_{r_{1}, r_{2}}$ we get according to (5.2), (3.1) and (5.3),

$$
u_{\varepsilon}(x) \leqq C(\lambda) u_{\varepsilon}(|x|, 0)-\varepsilon(1-C(\lambda)) .
$$

Let $v_{\varepsilon}(x)=u_{\varepsilon}(x)+\frac{3 \varepsilon}{1-C(\lambda)}\left(\frac{r}{r_{1}}\right)^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$ to make $v_{\varepsilon}>0$. Note that $r^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$ satisfies (3.1) with equality. Now choose a sequence u_{m} of subharmonic functions which decrease to v_{ε} in D.

We have to show that the functions u_{m} satisfy (3.1). For x in $K_{r_{1}, r_{2}}$ we first observe that $u_{m}(x)<v_{\varepsilon}(x)+\varepsilon(1-C(\lambda))<C(\lambda) v_{\varepsilon}(|x|, 0)$, if $m \geqq$ some $m_{1}=m_{1}(\varepsilon, x)$. Since u_{m} and v_{ε} are continuous on the positive x_{1}-axis for $r_{1} \leqq x_{1} \leqq r_{2}$, we get

$$
u_{m_{1}}(x+y)<C(\lambda) v_{\varepsilon}(|x+y|, 0) \text { if }|y|<\text { some } \eta(\varepsilon, x) .
$$

Now, by another compactness argument, we see that there are finitely many $x^{(k)} \in \partial \Omega$ such that each $x \in K_{r_{1}, r_{2}}$ may be written as $x=x^{(k)}+y$ and such that

$$
u_{m_{k}}\left(x^{(k)}+y\right)<C(\lambda) v_{\varepsilon}\left(\left|x^{(k)}+y\right|, 0\right) \quad \text { for some } k .
$$

With $M=\max m_{k}$, by using that the sequence u_{m} decreases, we obtain

$$
u_{m}(x)<C(\lambda) v_{\varepsilon}(|x|, 0) \leqq C(\lambda) u_{m}(|x|, 0)
$$

for all $x \in K_{r_{1}, r_{2}}$, if $m \geqq M$.
It is easy to see that, for $r=r_{1}$ or $r_{2}, L_{\alpha}\left(r, u_{m}\right) \leqq L_{\alpha}(r, u)+0(\varepsilon)$, so $L_{\alpha}\left(r, u_{m}\right) \leqq$ $\leqq A_{\varepsilon} r^{k \lambda}+B_{\varepsilon} r^{-k \lambda+2-n}$, where $A_{\varepsilon} \rightarrow A$ and $B_{\varepsilon} \rightarrow B$ as $\varepsilon \rightarrow 0$. If the theorem is proved for the C^{2} function u_{m}, the rest is standard, letting in order $m \rightarrow \infty, \varepsilon \rightarrow 0$ and $\eta \rightarrow 0$.

If $\alpha=1$, to make u finite, we start by replacing u by $\max (u,-N)$, which tends to u when $N \rightarrow \infty$. This does not affect the boundary condition.

When u is C^{2} we have

$$
\begin{equation*}
\Delta u=u_{r r}^{\prime \prime}+\frac{n-1}{r} u_{r}^{\prime}+\frac{1}{r^{2}} \delta u \geqq 0 . \tag{5.4}
\end{equation*}
$$

Let $\quad G(r)=L_{\alpha}^{\alpha}(r)=\int_{S} q^{\alpha} f_{\lambda} g_{\lambda} d \omega$. Then

$$
\begin{equation*}
G^{\prime}(r)=\int_{s} \alpha q^{\alpha-1} u_{r}^{\prime} g_{\lambda} d \omega \tag{5.5}
\end{equation*}
$$

and, if $\alpha>1$,

$$
G^{\prime \prime}(r)=\int_{S} \alpha(\alpha-1) q^{\alpha-2}\left(u_{r}^{\prime}\right)^{2} \frac{g_{\lambda}}{f_{\lambda}} d \omega+\int_{S} \alpha q^{\alpha-1} u_{r r}^{\prime \prime} g_{\lambda} d \omega
$$

From (5.5) it follows by use of the Cauchy-Schwartz inequality that

$$
\left(G^{\prime}(r)\right)^{2} \leqq \alpha^{2} G(r) \int_{S} q^{\alpha-2}\left(u_{r}^{\prime}\right)^{2} \frac{g_{\lambda}}{f_{\lambda}} d \omega
$$

Hence, by (5.4)

$$
G^{\prime \prime}(r) \geqq \frac{\alpha-1}{\alpha} \frac{\left(G^{\prime}(r)\right)^{2}}{G(r)}-\frac{n-1}{r} G^{\prime}(r)-\frac{\alpha}{r^{2}} \int_{s} q^{\alpha-1} g_{\lambda} \delta u d \omega,
$$

so from the lemma we get

$$
G^{\prime \prime}(r)-\frac{\alpha-1}{\alpha} \frac{\left(G^{\prime}(r)\right)^{2}}{G(r)}+\frac{n-1}{r} G^{\prime}(r)-\frac{\alpha}{r^{2}} k \lambda(k \lambda+n-2) G(r) \geqq 0
$$

or

$$
\begin{equation*}
L_{\alpha}^{\prime \prime}(r)+\frac{n-1}{r} L_{\alpha}^{\prime}(r)-\frac{k \lambda(k \lambda+n-2)}{r^{2}} L_{\alpha}(r) \geqq 0 \tag{5.6}
\end{equation*}
$$

If $\alpha=1$, we have $G^{\prime}(r)=\int_{S} u_{r}^{\prime} g_{\lambda} d \omega$ so we arrive at (5.6) by another differentiation and the lemma.

Equality in (5.6) occurs if and only if $L_{\alpha}(r)=C_{1} r^{k \lambda}+C_{2} r^{-k \lambda+2-n}$. The result therefore follows from the (one-dimensional) maximum principle.

Remark 1. An equivalent formulation of the conclusion is that $r^{n-2+k \lambda} L_{\alpha}(r)$ is a convex function of $r^{n-2+2 k \lambda}$.

Remark 2. The above mentioned theorem by Dinghas follows from ours by letting $\lambda \rightarrow 1$. In fact, first replace f_{λ} by $C(\lambda) f_{\lambda}$ so that $f_{\lambda}(0)=1$ and $f_{\lambda}(\pi / 2)=C(\lambda)$. As $\lambda \rightarrow 1, f_{\lambda}(\theta) \rightarrow \cos \theta$ and also $g_{\lambda}(\theta) \rightarrow \cos \theta$ in C^{1} on compact parts of $(0, \pi)$. Further $\int_{0 \leq \theta_{1} \leqq \eta} g_{\lambda} d \omega \rightarrow 0$ when $\eta \rightarrow 0$. This is seen by observing that $g_{\lambda}(\theta)$ is a decreasing function of λ.

6. Proof of Theorem 2 and the Corollary

Let $h(r)=A r^{k \lambda}+B r^{-k \lambda+2 \sim n}$ and assume $J(r)=h(r)$ for $r=r_{1}$ and r_{2}, $r_{1}<r_{2}$. Solving for A and B we get

$$
h(r)=D^{-1}\left(J\left(r_{1}\right)\left(r^{k \lambda} r_{2}^{-k \lambda+2-n}-r^{-k \lambda+2-n} r_{2}^{k \lambda}\right)+J\left(r_{2}\right)\left(r^{-k \lambda+2-n} r_{1}^{k \lambda}-r^{k \lambda} r_{1}^{-k \lambda+2-n}\right)\right),
$$

where $D=r_{1}^{k \lambda} r_{2}^{-k \lambda+2-n}-r_{2}^{k \lambda} r_{1}^{-k \lambda+2-n}$.
Let $H(x)=H\left(r, \theta_{1}\right)=h(r) f_{\lambda}\left(\theta_{1}\right)$. Since $r^{k \lambda} f_{\lambda}$ and $r^{-k \lambda+2-n} f_{\lambda}$ are harmonic in Ω, H is. We shall see that H majorizes u in $\Omega_{r_{1}, r_{2}}$. In order to apply the maximum principle, we note that $v=u-H \leqq 0$ when $|x|=r_{1}$ or r_{2}. Then either $v \leqq 0$ throughout $\Omega_{r_{1}, r_{2}}$ or v has a positive maximum at $x_{0} \in \partial \Omega$. But since H satisfies (3.1) with equality, $v\left(x_{0}\right) \leqq C(\lambda) v\left(\left|x_{0}\right|, 0\right)$, so the maximum cannot be positive. Thus $\frac{u(x)}{f_{\lambda}\left(\theta_{1}\right)} \leqq$ $h(r)$ when $|x|=r, r_{1} \leqq r \leqq r_{2}$. Consequently $J(r) \leqq h(r)$ for these values of r, and we are through.

Proof of the Corollary

Since $\lim _{x \rightarrow 0} u(x)=u(0)<\infty, J(r)$ is bounded above when r is small. Also, $h(r)$ is a positive linear combination of $J\left(r_{1}\right)$ and $J\left(r_{2}\right)$ for $r_{1}<r<r_{2}$. Thus we may let $r_{1} \rightarrow 0$ in the inequality $J(r) \leqq h(r)$. We obtain $J(r) \leqq r^{k \lambda} J\left(r_{2}\right) r^{-k \lambda}$ which is the assertion. The proof for L_{α} is the same.

Remark. Theorem 2 is actually true with (3.1) replaced by $u(y)<\infty$ and

$$
\begin{equation*}
u(y) \leqq C(\lambda) M^{+}(|y|, u) \quad \text { when } \quad y \in \Omega \tag{6.1}
\end{equation*}
$$

provided that $u(x) \geqq 0$ somewhere on D_{r} for $r \geqq r_{1}$, so that $J(r) \geqq 0$. To see this, we note that $M^{+}(H, r)=H(r, 0)$ so v satisfies (6.1), and the conclusion is reached as above.

In general, (6.1) is not sufficient for Theorem 2 to be valid. Let $\lambda^{\prime} \in(\lambda, 1)$. A trivial example is then $u=-r^{k \lambda^{\prime}} f_{\lambda^{\prime}},\left(\theta_{1}\right)$, which is harmonic in Ω, satisfies (6.1) and has $r^{-k \lambda} J(r)=C r^{k\left(\lambda^{\prime}-\lambda\right)}$ where C is a negative constant. (Actually $C=-1$.)

7. Proof of (a) of Theorem 3

Assume that $A=\lim _{r \rightarrow \infty} r^{-k \lambda} J(r)<\infty$. We use the notation of Section 4. The function

$$
\begin{equation*}
H_{R}(x)=\int_{s} \frac{\partial G_{R}}{\partial N}(x, R \omega) u(R \omega) R^{n-1} d \omega+\int_{K_{R}} \frac{\partial G_{R}}{\partial N}(x, y) C(\lambda) u(|y|, 0) d \sigma(y) \tag{7.1}
\end{equation*}
$$

is harmonic in Ω_{R} with boundary values $u(R \omega)$ at D_{R} and $C(\lambda) u(|y|, 0)$ at K_{R}. H_{R} obviously majorizes u. Thus, if $y \in \partial \Omega$,

$$
H_{R}(y)=C(\lambda) u(|y|, 0) \leqq C(\lambda) H_{R}(|y|, 0)
$$

so H_{R} satisfies (3.1) in Ω_{R}. Since $u \geqq J(r) f_{\lambda}$,

$$
\begin{equation*}
H_{R}(x) \leqq A|x|^{\mid k \lambda} f_{\lambda}\left(\theta_{1}\right) \tag{7.2}
\end{equation*}
$$

Especially $H_{R}(0) \leqq 0$. Consequently

$$
\begin{equation*}
r^{-k \lambda} L\left(r, H_{R}\right) \leqq R^{-k \lambda} L\left(R, H_{R}\right) \quad \text { for } \quad r<R . \tag{7.3}
\end{equation*}
$$

Now, an application of the maximum principle in Ω_{R} shows that $H_{R^{\prime}},(x) \geqq H_{R}(x)$ if $R^{\prime}>R$. So, by (7.2) and the Harnack principle, $H_{R}(x)$ increases to a harmonic function $H(x) \leqq A|x|^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$ in Ω, as $R \rightarrow \infty$. Taking the limit in (7.1), we want to show that

$$
\begin{equation*}
\int_{s} \frac{\partial G_{R}}{\partial N}(x, R \omega) u(R \omega) R^{n-1} d \omega \rightarrow 0, \quad \text { when } \quad R \rightarrow \infty \quad \text { and } x \text { is fixed. } \tag{7.4}
\end{equation*}
$$

We have $u(x) \leqq A C(\lambda)^{-1}|x|^{\mid \lambda \lambda}$. If we also knew that, for some $B, u(x) \geqq B|x|^{k \lambda}$ when x is large, (7.4) would follow from (4.1). Otherwise we may argue as follows. By (4.1) it is enough to prove (7.4) for $u_{1}=u+C|x|^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$, where C is chosen so
that u_{1} is positive somewhere. Then $\lim _{r \rightarrow \infty} r^{-k \lambda} M\left(r, u_{1}\right)$ exists and is finite. If

$$
v(x)=C(\lambda) \int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) M^{+}\left(|y|, u_{1}\right) d \sigma(y)
$$

it follows that $v(x)=0\left(|x|^{k \lambda}\right)$ when x tends to ∞, so it suffices to show (7.4) for $p=v-u_{1}$. The function p is superharmonic and non-negative in Ω. Following [6 , pp. 120-121] we note that for r large there exists x_{r}, with $\left|x_{r}\right|=r$,

$$
r^{-k \lambda} p\left(x_{r}\right) \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

and

$$
\begin{equation*}
\theta_{1}\left(x_{r}\right) \leqq \text { constant }<\psi_{0} \tag{7.5}
\end{equation*}
$$

From the maximum principle and (4.1) we deduce

$$
p\left(x_{r}\right) \geqq \int_{S} \frac{\partial G_{R}}{\partial N}\left(x_{r}, R \omega\right) p(R \omega) R^{n-1} d \omega \supseteqq C_{1}\left(\frac{\left|x_{r}\right|}{R}\right)^{k} F_{k}\left(\theta_{1}\left(x_{r}\right)\right) \int_{s} F_{k}\left(\theta_{1}(\omega)\right) p(R \omega) d \omega
$$

Denote the latter integral by $I(R)$. Taking $r=R / 2$, we obtain from (7.5)

$$
R^{-k \lambda} I(R) \leqq C_{2} r^{-k \lambda} p\left(x_{r}\right),
$$

which tends to 0 as $R \rightarrow \infty$. Thus, by (4.1),

$$
0 \leqq \int_{\mathrm{S}} \frac{\partial G_{R}}{\partial N}(x, R \omega) p(R \omega) R^{n-1} d \omega \leqq C_{3}|x|^{\mid k}\left(I(R) R^{-k \lambda}\right) R^{-k(1-\lambda)} \rightarrow 0
$$

when $R \rightarrow \infty$, so (7.4) is verified.
Since $\frac{\partial G_{R}}{\partial N} \oint \frac{\partial G}{\partial N}$ as $R \rightarrow \infty$, we note, with $u^{+}=\max (u, 0)$, that

$$
\int_{K_{R}} \frac{\partial G_{R}}{\partial N}(x, y) C(\lambda) u^{+}(|y|, 0) d \sigma(y) \uparrow \int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) u^{+}(|y|, 0) d \sigma(y)
$$

which is finite, due to (4.2) (and (4.3)). Since $H(x)$ is finite, also

$$
\lim _{R \rightarrow \infty} \int_{K_{R}} \frac{\partial G_{R}}{\partial N}(x, y) C(\lambda) u^{-}(|y|, 0) d \sigma(y)=\int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) u^{-}(|y|, 0) d \sigma(y)
$$

is finite. Here $u=u^{+}-u^{-}$. Thus

$$
H(x)=\int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) u(|y|, 0) d \sigma(y)
$$

It is easily seen that H satisfies (3.1) and $H(0) \leqq 0$, so $r^{-k \lambda} L(r, H)$ and $r^{-k \lambda} J(r, H)$ have finite limits as r tends to ∞. Since $u(x) \leqq H(x) \leqq A|x|^{k \lambda} f_{\lambda}\left(\theta_{1}\right), r^{-k \lambda} J(r, u) \leqq$ $r^{-k \lambda} J(r, H) \leqq A$. Hence $\lim _{r \rightarrow \infty} r^{-k \lambda} J(r, H)=A$. By (7.3) we get

$$
r^{-k \lambda} L\left(r, H_{R}\right) \leqq R^{-k \lambda} L\left(R, H_{R}\right) \leqq R^{-k \lambda} L(R, H)
$$

From the definition of H_{R} it is seen that $L(R, u)=L\left(R, H_{R}\right)$. Hence, letting $R \rightarrow \infty$,

$$
r^{-k \lambda} L(r, H) \leqq \lim _{R \rightarrow \infty} R^{-k \lambda} L(R, u) \leqq \lim _{R \rightarrow \infty} R^{-k \lambda} L(R, H)
$$

Thus

$$
\lim _{r \rightarrow \infty} r^{-k \lambda} L(r, H)=\lim _{R \rightarrow \infty} r^{-k \lambda} L(R, u)=a
$$

(So it suffices to prove the theorem for H.)
Now repeat the procedure with $H^{(1)}=H$ instead of u, etc. We get an increasing sequence of harmonic functions $H^{(n)}(x)$ in Ω with

$$
H^{(n)}(x)=\int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) H^{(n-1)}(|y|, 0) d \sigma(y)
$$

and $H^{(n)}(x) \leqq A|x|^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$. Hence $H^{(n)}$ has a finite harmonic limit

$$
\begin{equation*}
h(x)=\int_{\partial \Omega} \frac{\partial G}{\partial N}(x, y) C(\lambda) h(|y|, 0) d \sigma(y) \tag{7.6}
\end{equation*}
$$

when $n \rightarrow \infty$. We also observe that h satisfies (3.1) with equality.
Below we shall prove

$$
\begin{equation*}
h(x)=A|x|^{k \lambda} f_{\lambda}\left(\theta_{1}\right) \tag{7.7}
\end{equation*}
$$

Supposing this done, we have $d(\lambda)^{-1} r^{-k \lambda} L(r, h)=A$. If ε is given >0 and r_{0} fixed,

$$
d(\lambda)^{-1} r_{0}^{-k \lambda} L\left(r_{0}, H^{(n)}\right)>A-\varepsilon \quad \text { for some } \quad n=n\left(\varepsilon, r_{0}\right) .
$$

Since $r^{-k \lambda} L\left(r, H^{(n)}\right)$ increases to a when $r \rightarrow \infty$, we obtain $a d(\lambda)^{-1}>A-\varepsilon$, and so we are through.

8. Proof of (7.7)

To prove that h is a multiple of $r^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$, it is by (7.6) enough to show that $h(r, 0)=C r^{k \lambda}$. With B as in Section 4 we have

$$
h(r, 0)=\int_{0}^{\infty} C(\lambda) h(t, 0) B(t / r, 0) t^{n-2} r^{1-n} d t
$$

From the construction of h we know $h(r, 0) \leqq A r^{k \lambda}$. Using part of the proof of the generalized Ahlfors-Heins theorem in R^{n} ([6, pp. 119-123]), we see that $u(r, 0) \geqq C r^{k \lambda}$ when x is large. Here (4.2) - (4.4) are needed. Since we have assumed that $u(r, 0) \geqq C^{\prime} r^{k \lambda}$ when r is near 0 , we have $|h(r, 0)| \leqq C^{\prime \prime} r^{k \lambda}$ for all $r>0$. Let $f(t)=h(t, 0) t^{-k \lambda}$. Then f is C^{∞} and bounded on R^{+}and

$$
f(r)=\int_{0}^{\infty} C(\lambda) f(t)(t / r)^{k \lambda} t^{n-2} r^{1-n} B(t / r, 0) d t
$$

Put $r=e^{-x}, t=e^{-s}$ and $f\left(e^{-x}\right)=\varphi(x)$. Hence

$$
\begin{equation*}
\varphi(x)=\int_{-\infty}^{\infty} \varphi(s) C(\lambda) e^{(x-s)(n-1+k \lambda)} B\left(e^{x-s}, 0\right) d s \tag{8.1}
\end{equation*}
$$

With $K(s)=C(\lambda) e^{s(n-1+k \lambda)} B\left(e^{s}, 0\right)$ we then have $\varphi=\varphi * K$. Here $\frac{d^{m} \hat{K}(\xi)}{d \xi^{m}}$ exists for every m, since $\int_{-\infty}^{\infty}|s|^{m} K(s) d s$ is finite, which is readily checked. Thus $(1-\hat{K}) \hat{\varphi}=0$. Since $\varphi \neq 1$ solves $(8.1), \hat{K}(0)=1$. Further we observe that $\hat{K}(\xi) \not \equiv 1$ if $\xi \neq 0$, so $\hat{\varphi}$ has its support at the origin. Now

$$
\hat{K}^{\prime}(0)=\int_{-\infty}^{\infty}(-i s) K(s) d s=-i C(\lambda) \int_{-\infty}^{\infty} s e^{s(n-1+k \lambda)} B\left(e^{s}, 0\right) d s
$$

which, by a change of variables and (4.5), equals

$$
-i C(\lambda) \int_{1}^{\infty}\left(t^{k \lambda+n-2}-t^{-k \lambda}\right) B(t, 0) \ln t d t
$$

This is obviously $\neq 0$, so we conclude that $\hat{\varphi}(\xi)=C \delta(\xi)$. Hence φ is constant, which means that $h\left(r, \theta_{1}\right)=C r^{k \lambda} f_{\lambda}\left(\theta_{1}\right)$. From the construction of h we have $C \leqq A$. But $u \leqq h$ so $J(r, u) \leqq C r^{k \lambda}$. Thus $C=A$ and the proof is finished.

9. Proof of (b) and (c) of Theorem 3

To prove (b) we first observe that $u(x) \leqq \min \left(M(r), J(r) f_{\lambda}\left(\theta_{1}\right)\right)$, so

$$
L(r, u) \leqq L\left(r, \min \left(M(r), J(r) f_{\lambda}\left(\theta_{1}\right)\right)\right)
$$

Let $m(r)=r^{-k \lambda} M(r), j(r)=r^{-k \lambda} J(r) \quad$ and $\quad e(r)=j(r) d(\lambda)-r^{-k \lambda} L(r) \quad$ so that $e(r) \rightarrow 0$ as $r \rightarrow \infty$. We have $0 \leqq j(r) \leqq m(r) \leqq C(\lambda)^{-1} j(r)$. Thus there is a $\psi_{1}=\psi_{1}(r)$, $0 \leqq \psi_{1} \leqq \psi_{0}$, such that $m(r)=j(r) f_{\lambda}\left(\psi_{1}\right)$. Hence

$$
\begin{gathered}
j(r) d(\lambda)-e(r) \\
\leqq j(r) a\left(\int_{0}^{\psi_{1}} f_{\lambda}\left(\psi_{1}\right) g_{\lambda}\left(\theta_{1}\right)\left(\sin \theta_{1}\right)^{n-2} d \theta_{1}+\int_{\psi_{1}}^{\psi_{0}} f_{\lambda}\left(\theta_{1}\right) g_{\lambda}\left(\theta_{1}\right)\left(\sin \theta_{1}\right)^{n-2} d \theta_{1}\right)
\end{gathered}
$$

where

$$
a= \begin{cases}\frac{(2 \pi)^{(n-1) / 2}}{(n-3)!!} & \text { if } n \text { is odd } \\ \frac{2(2 \pi)^{(n-2) / 2}}{(n-3)!!} & \text { if } n \text { is even. }\end{cases}
$$

It follows that

$$
e(r) a^{-1} \geqq j(r) \int_{0}^{\psi_{1}}\left(f_{\lambda}\left(\theta_{1}\right)-f_{\lambda}\left(\psi_{1}\right)\right) g_{\lambda}\left(\theta_{1}\right)\left(\sin \theta_{1}\right)^{n-2} d \theta_{1}
$$

The assertion of the theorem is that $\psi_{1}(r) \rightarrow 0$ as $r \rightarrow \infty$. If not so, there would exist an $\eta>0$ and a sequence $r_{i} \rightarrow \infty$ as $i \rightarrow \infty$, such that $\psi_{1}\left(r_{i}\right) \geqq \eta$. It would follow that

$$
e\left(r_{i}\right) a^{-1} \geqq j\left(r_{i}\right) \int_{0}^{\eta}\left(f_{\lambda}\left(\theta_{1}\right)-f_{\lambda}(\eta)\right) g_{\lambda}\left(\theta_{1}\right)\left(\sin \theta_{1}\right)^{n-2} d \theta_{1}
$$

Hence $\lim _{r \rightarrow \infty} j(r)=A \leqq 0$, which is a contradiction unless $A=0$ in which case there is nothing to prove.

In case $u \leqq 0$, we have $0 \leqq-j(r) \leqq-m(r) \leqq-C(\lambda)^{-1} j(r)$. With ψ_{1} as above, the aim is to show that $\psi_{1} \rightarrow \psi_{0}$ as $r \rightarrow \infty$. Proceeding by contradiction as before, we get

$$
-e(r) \leqq j(r) a \int_{\psi_{0}-\eta}^{\psi_{0}}\left(f_{\lambda}\left(\psi_{0}-\eta\right)-f_{\lambda}\left(\theta_{1}\right)\right) g_{\lambda}\left(\theta_{1}\right)\left(\sin \theta_{1}\right)^{n-2} d \theta_{1}
$$

on some sequence $r=r_{i}$, where $r_{i} \rightarrow \infty$ as $i \rightarrow \infty$, and some $\eta>0$. This gives $A \geqq 0$ and the proof is finished.

References

1. Ahlfors, L., On Phragmén-Lindelöf's principle, Trans. Amer. Math. Soc. 41 (1937), 1-8.
2. Azarin, V. S., Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl, (2) 80 (1969), 119-138. Mat. Sb. 66 (108), (1965), 248-264.
3. Dafllberg, B., Growth properties of subharmonic functions, thesis, University of Göteborg, 1971.
4. Dinghas, A., Über das Anwachsen einiger Klassen von subharmonischen und verwandten Funktionen, Ann. Acad. Sci. Fennicae Ser A. I. 336/1 (1963), 3-27.
5. Drasin, D. and Shea, D. F., Convolution inequalities, regular variation and exceptional sets, J. d'Analyse Math. 23 (1976), 232-293.
6. Essén, M. and Lewis, J. L., The generalized Alhfors-Heins theorem in certain d-dimensional cones, Math. Scand. 33 (1973), 113-129.
7. Hayman, W. K. and Kennedy, P. B., Subharmonic functions vol. 1, Academic Press, New York, 1976.
8. Hellsten, U., Kjellberg, B. and Norstad, F., Subharmonic functions in a circle, Ark. Mat. 8 (1970), 185-193.
9. Norstad, F., Convexity of means and growth of certain subharmonic functions, Ark. Mat. 16 (1978) 141-152.
10. Wanby, G., A generalization of the Phragmén-Lindelöf principle for elliptic differential equations, Math Scand. 43 (1978), 259-274.

University of Lund
Department of Mathematics Box 725
S-220 07 LUND
Sweden

