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1. Introduction 

Set I=[0,  1] and let (Z,)~ ~ denote the Haar orthogonal system. If  fELl(I) 
we write Gf(t)=ftof(u)du, tEL Let m be an integer, m->0, and let (f(m))~=_,~ 
denote the system of functions which is obtained when we apply the Gram-Schmidt 
orthonormalization procedure to the sequence of functions 1, t, t 2, ..., t re+l, Gm+IZ~ , 

G m + I Z a  , G m + I z 4  , . . .  on I. We use here the usual scalar product in L~(1). The systems 
(f~m)) are called spline systems and in particular (f(0)) is called the Franklin system. 
These systems are complete in L~(1) and have been studied by e .g .Z .  Ciesielski and 
J. Domsta [6]. We shall wri tef ,  instead of  f~(~) and set f , ( t ) = 0  for tER\I.  

For n ~ 2  we have n----2J+l where j=>0, l_<-l<=2J, and set tn=(l-1/2)2-~. 
Then Dmf~ is absolutely continuous on I and it is known that 

]Dkf~(t)l <_-- Mng+l/~r"lt-t, I, 0 <= k ~_ r e + l ,  n _-> 2, tEL (1) 

where M and r are constants depeding only on m and 0 < r < l  (see [6], p. 316). 
Assume that ~ belongs to the Schwartz class of functions S(R) and that 

fR~/(x)dx~O. Set t//,(x)=t-x~b(x/t), t>0 ,  xER, and for fES ' (R)  

f*(x)  = sup If*q/,(x)l, xER. 
t:~O 

The Hardy space HP(R), 0 < p <  o% is then defined to be the space of  all f 
such that Itfllu,=llf*llp<~o, where Ilgllp is defined as (S Ig(x)l~dx) 1:~. 

For ~>-0 we set N=[c~], where [] denotes the integral part, and 6 = ~ ' N .  
I f  ~ is not an integer set 

A~ = {~0EC~(R); sup llAnOS~PllMlhl ' <oo} 

(here AhF(x)=F(x+h)-F(x)) and if ~ is an integer set 

d~ = {~oE CN-X(R); sup IIZ~O~-~olI.ollhl < oo}. 
h : O  
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Also set .~, = AdP N, where PN denotes the class of polynomials of degree ~N. The 
projection from A, to A, is denoted H. For 0<p<_-i set ~ = l / p - 1 .  It is then well- 
known that for 0 < p < l  A, is the dual space of H p (see e.g.P. Sj6gren [10]). If 
fEH p, 0 < p < l ,  and ~9E,~ then 

~ ( f )  = Z 7  zJ f bjq~ dx, 

where q~E//-I(~0)~A, and ~ ' 2 j b j  is an atomic decomposition o f f  (here 2jEC 
and each bj is ap-atom). If ~oEA, set ~o(f)=(FI(q~))(f) for j ~ H  p. Also set 

HP(I)={fEHP(R); s u p p f c I  and q~(f)ER for every real-valued ~oEA,}, 

0 < p < l .  
It is also well-known that (H1)*=BMO and we set 

H i ( I ) =  {fEH~(R); supp f c I  and f real-valued}. 

Now assume that 1/(m+2)<-p<=l. It follows that a<_-m+l and hence it is a 
consequence of (1) that we can find gnEA, (gnEBMO in the case p = l )  such that 
gn=fn on I. If fEHP(R) we then set an=a,(f)=gn(f), n = - m , - r e + l ,  .... 
If fEHP(I) then an does not depend on the choice of gn. This is a consequence of 
Lemma 3 below. We shall prove the following theorem. 

Theorem. Assume that m>=O and 1/(m+2)<p<-l. I f  fEHP(I) then the 
following holds: 

C; llfllH, a."fD""ll. CAfll,,. (2) 

f = ~ - z  anfn with convergence in H p. (3) 

I f  (nn)~=--m is an enumeration of --m, - -m+l ,  - -m+2 . . . . .  then also 

f =  ,~-m an~f,~ with convergence in H p. (4) 

I f  f =  ~'~-z+n+l enf~ with convergence in H p, then c,=an(f) 

(here N=[1]p-1]). (5) 

Remark 1. It is easy to see that f ,  EHP(I) if n>=-m+N+l and that an=0 
for n<=-m+N if fEHP(I). The theorem implies that (fn)Z,,+N+l is an uncon- 
ditional basis for HP(I) if 1](m+2)<p<=l. We shall also prove that these bases are 
equivalent. 

Remark 2. The inequalities in the theorem hold as well with (~ :m a2,f,2) 1/2 
replaced by (~,=-,n a2ng2n) 112 (Zn is defined as the characteristic function ,~, whenever 
n~ l ) .  
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For  analogous results in the case p >  1 see S. V. Bockarev [1], Z. Ciesielski, 
P. Simon and P. Sj61in [7] and Z. Ciesielski [4]. The case p- -  1, m = 0  has been stu- 
died by P. Wojtaszczyk [11], Z. Ciesielski [5], F. Schipp and P. Simon [9] and A. 
Chang. The first explicit construction of an unconditional basis for H 1 was carried 
out by L. Carleson [3]. Earlier B. Maurey [8] had proved the existence of  an unconditi- 
nal basis in H L  In this paper C and r denote constants, which satisfy C > 0  and 
0 < r < l  and may vary from line to line. 

2. Proof of the theorem 

We shall first make a special choice of  the functions g, mentioned in the intro- 
= ~ r a + l  duction. I f  -m<=n~=l then f , ( t )  ~o  ckt k, tel,  for some constants ek. We 

then set 
gn(t) • ( Z o  +lcktu)~k(t), tER, 

where ~ECo(R)  and ~ ( t ) = l ,  -1/2<=t<=3/2, and ~ ( t ) = 0  if t = < - I  or t=>2. 
We then construct g, in the case n_~2. First set ck=Dkf,(1), k = 0 ,  1, ..., m + l .  

< m n k + l i ~ r  n(1-t ) W e  set Then (1) yields lCki= - .  

P(x) ~ , + t  cj s 
= z , s : 0  j--(x 

and h.(x):P(x)lPn(X), x>-O, where ~s.(x):~s(2nx). I t  follows that h.(x)=O for 
x~lln and hCn~)(O):ck, k=O, 1 . . . .  , m + l .  We have 

P(k) (x  ~ L~j= k Cj <: C �9 nJ+li2rn(1-tn)n l - j  : C nk + l/2 rn(1-:tn) 

O~_x<=l/n, k - - O ,  1 . . . . .  m + l .  
I t  follows that 

]h(k) (X)] "<: Cnk+a/~r n(l-t.), 0 =< x ~ l/n, k = 0, 1 . . . .  , m + l .  

We set g, (x )=h, (x -1) ,  x > l ,  and define g,(x) in an analogous way for x < 0 .  
Then D"g, is absolutely continuous on R, g,(t)=O if dist (t, I ) >  1/n and 

[Dkg,(t)i <=Mnk+ll2r ~lt-t.I, 0<= k <- m + l ,  n =>2, tER, (6) 

where O < r <  1. 

Lemma 1. I f  m>-O and 1/(m+2)<p<=l then 

2 2 1/2 I1 -. II, --  C ,  l lS l l . , ,  ss, (s). 
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Proof. The condition onp  implies that a =  l / p -  1 < m +  1 and hence N=[a] _~m. 
The functions f-re+N+1, f-re+N+2, f-re+N+3 . . . .  are orthogonal to f_  . . . . .  , f-m+N 
and hence orthogonal to 1, t . . . . .  ft. It follows that fn, n>= - r e + N +  1, are multiples 
of p-atoms and hence belong to HP(R) and HP(I). 

Assume ~0~Co, ~o real, fq~dx=l, ~o(x)=0 for [x[>l ,  %(x)=e-lq~(x/~). 
For fEHP(I) and - m < = n ~ - m + N  we have 

an(f)  = g, ,(f)  = lim gn(f.qg~) = l imfgnf*~o~ctX = O, 

since gn is a polynomial of degree <=N in a neighbourhood of I and f .  ~o~EHPc~Co . 
We fix a positive integer M and set 

T.f( t)  = ~-,.+N+I enanf.(t), 

where en - - •  an=an(f),fEHP(R) and e=(e.). 
We shall first prove that 

IIZ~bllp <- Cp (7) 

if b is a p-atom. We may assume that b is real-valued. Then there exists an interval 
J=[c,d] such that s u p p b c J ,  Ilbll~<-lJI -alp and 

f b(t)tkdt = O, k = O, 1 ... . .  N. (8) 

Set B l ( s ) = f ' _ b ( t ) d t  and Bk(s)=f~_Bk_l(t)dt ,  k = 2 ,  . . . , N + I .  
It follows from (8) that supp BkCJ, k =  1, 2, ..., N +  1, and it also follows that 

[Igkll= <-_ [Jl k-~/p, k = 1, 2, ;.., N + I .  (9) 

We have T.b(t)-= ~M_.,+le+l~.a.f.(t), where a.=a.(b), and integrating by 
parts we obtain 

an (b) = f gn (S) b (s) ds = ( -  1) N +1 f + l g .  (s) +1 (s)  ds. 
For -m+N+l<=n<=l it is clear that 

Hena~f.llp <= Gla~l <- GI]b[[H. <---- Cp. 

Setting S~b(t)= ~ye .an f . ( t )  it is therefore enough to prove 

IIS.bIIp <-- Cp. (10) 

An application of the H61der inequality shows that 

fm2jIS.b[Pdt-  lS, bl et)" (L at)l-"* = C(ZM2a2n)PlZIj[1-1#2. (11) 

We claim that 
Z ~  a2n ~-- CIJI 1-alp. (12) 
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Setting hn=g~-fn we have 

a.= f g~bds= f f ,  bds+f h, bds=c,+d.. 
(f.) is an orthonormal system and hence 

. ~  c~ g f I b2at <= f b2dt <- tJI1-2/P" 
We have 

Z~d~= x ~ ( f  h.(Ob(Odt)(f h,(s)b(s)ds)= f f  G(t,s)b(t)b(s)dtds, 
where G(t, s)= z ~  h.(t)h.(s). 

Setting Q = I •  and Q~=(1, 1)+Q, Q 2 = ( 1 , - 1 ) + Q ,  Q3=( -1 ,  1)+Q and 
Q4=(-1 ,  - 1 ) + Q  one finds that 

z ~ d  z = ~.~ li, where 1 i = f f  G(t, s)b(t)b(s)dtds, i = 1, 2, 3, 4. 2 n Ql 

For (t, s)6Q1 we have I~+~h.(t)h.(s)l<-C 2Jzj(t, s), where Zj is the charac- 

teristic function of the square [1, 1 +2-J]•  1 +2-J].  It follows that IG(t, s)[<= 
C((t-1)2+(s-1)~) -1/2, (t, s)~Q1, and hence 

1Ill ~- ClJl- ~z" ff~.,• Q, ((t-  1)~+ (s-  1)~)-l/=dt as 

<- Clgl-21P f f (.,+~n,~,~r (U2"-}-V2) - l l 2 d u  dO = C l J [  1-2/p.  

We have the same estimates for 12, 1~ and/4 and conclude that ~ d~-< C [J ] x -20,. 
We have proved (12) and it then follows from (11) that 

f,n. [S"blPdt <= C. (13) 

We shall now prove that 

f r..~s [S"blP dt <= C. 
We have 

.,< M M [S.b(t)[ = 2 ,  [anfn(t)[ = 22  I f  Dn+lg"(s)f~(t)Bs+l(s)ds] 

and invoking (1), (6) and (9) we obtain 

[S=b(t)[ ~ C X f  I J[ N+I-1/p f, nn+2r"lS-'.lr"lt-"lds 

_<- r ~..J j = 0  j J r nls-t"l r nlt-tnl) ds 

(14) 

_< C]jIN+ 1-1/p f l ( 2 g  2"/(N+ ~) q='lt-*l) ds, 
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where 0 < q < l .  We observe that 

Zo2J(N+2)qVr <_c f ~ xN+lq,,,dx= c f ~ N+I _ y q = ~ > 0 ,  

and hence 

[S,b(t)l <= CIj]N+I-1/P f j lt--s]-N-2ds <= C]J}N+Z-1/Plt--tol-N-2, t6 I \ 2 J ,  

where t o denotes the center of J. It follows that 

f , \ u  IS'hi"tit <= CIJItN+2~I'-I f r, x2, [t--t~ 

<= CIJt (N + =)P-* - ,-f'=l t-<N + ~)J' dt = C, 

since (N+2)p>  1. 
We have proved (14) and the proof of (10) and (7) is complete. 
Now let f6HP(I) and let . ~  2~bi be an atomic decomposition of f w i t h  

(~Y; I,~,lO */" --< C, ll flI,,-. 

It follows that a , ( f ) = ~  2ia.(bi) and hence T , f ( t ) = ~  2iT~b~(t). 
Thus 

]T,f(t)l p <= ~ o  iZ,l ~ lT=bi(t)l~ 
and 

f ,  I r . f  ( t ) f  dt <= Cp Z 7  ]2if <- Cp[lfllP.. 

Using a property of the Rademacher functions (see A. Zygmund [12], p. 213) 
we then conclude that 

f , ( z  M ~f2)P/2dt IlfIf _man ~ Cp top 

and the lemma follows when we let M tend to infinity. 

Lemrna 2. Assume that m>=O and 1/(m+5/2)<p<=l. I f  cnER, 

n > = - m + N + l ,  and II(Z:.+~+~cZf:)~/=ll,<o% then Z_~,+~+~c,y, 

converges in H p and 

oa ~ C co 

Proof. It is sufficient to prove the lemrna in the case when only finitely many c. 
are non-vanishing. The general case then follows from a limiting argument if we use 
the fact that H p is complete. 

Since f .EH p, n>=-m+N+l ,  we have for -m+N+l~=n~_l  

II c . f .  II f~. <= c l  c. 1" = Cl c. I" ff.~ dx -<= C f (c 2,fn2)"/" dx. 
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It is therefore enough to prove 

IIz; ll,, ell(z; <w:)X"ll,. 
Since all f . ,  n=>2, are orthogonal to 1, t . . . .  , t "+1 the iterated primitive func- 

tions k G fn, l ~ k ~ m + 2 ,  will be supported in I and satisfy the estimate 

[GkL(t)[ ~ Mn-k+l/~rnft-t.}. 

Let ~ E C o ( - 1 ,  1) with fCdx=O such that supt>o]~S(t~)[>-c>O for ~ = z k l  and 
let dlt(x)=~(x/t)/t. 

Then by A. P. Calder6n and A. Torchinsky [2], Theorem 6.9, p. 56, 

IIz. <.fnll-, C, IIA+(Z; <.S.)II,. p > 0, 
where 

f f 1]2 , dy dti  
A e ( f ) ( x ) =  ly_~l<tlf*l]s,(y)l---7-u- ~ , fCS'. 

We will show that 

IIA+( ;  ns.)ll, C, II(z; m+51-"----~ <P < 1. 

To do this we shall define an auxiliary function in the upper half plane and for 
this need that there for each n =2  j + l, j=>o, 1 <= l ~  2 ~, exists a subinteravl 1" of the 
interval In=[(l--1)2--~, /2 -j] such that 

{1 1~1 -~ cn - 1 ,  

If.(x)l --> cn 11~, xE I~, (15) 
for some constant c>0.  

Proof of(15): The function Din+if. makes a jump at t n of magnitude, say A ~0.  
Thus at least one of the left and the right limit at t. has magnitude ~-A/2. 

I.  is divided by t. into two intervals of length 2 - j -1  and on at least one of them 
f .  can be written in the form ,.+1 A0 I /1  (x-~i )  where ~i are complex numbers and 
IAol ~A/(2(m+ 1)!). Now we can find a subinterval I" of length 6 =2-J-1/(3(m+2)) 
such that dist (I~, Re a0=>6 for every i. It  follows easily that ]f,(x)[>=cA2 -j(m+l) 
on ~ .  

In order to estimate A we define Ahf (x )=f (x+h) - f ( x )  and x+ =max  (x, 0) 
and set 

X :X"~A xm+2~ t \ m + l  g(x) = 1t )t 2+0 i x -  n)+ �9 

Then g is supported on [tn-(m+2)2 - j - l ,  tn], [[g]l=~C2 -j(m+l) and conse- 
quently ]lg [] ~ <= C2-J(m +3/2). 

Looking at the discontinuities of D"+lg we see that we can write g = ~ =  _~bi j  ] 
where b,=fgfidx.  In particular [bn[=]fgf. dx[~=]lgl[2~=C2-3("+312). Since 
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D'+ l f i ,  i<n, are continuous at t. we find that D"+lg makes a jump of  magnitude 
[b.I A N CA2-J(m +3/~). On the other hand we check directly that Dr" +~ g makes a jump 
of magnitude ( m + l ) !  at t.. Thus A=>c2 j(m+3/2). 

From this inequality and the estimate above we conclude that (15) holds. 
Now we define the function F on R + = {(x, t); xER, t>0}  by 

[~ 1 i~• 2_S[ n ~ 2, nln l/z when (x, t)E I. + = ~ _= 
F(x, t) = oo 

when (x, t )ERZ+~TI+. 

Note that all I,  +, n=>2, are disjoint. Furthermore, if we define 

AF(x)={f f l ,_~l<, t lF(y , t )12~-~}v ' ,  xER, 

with T>0 small enough and 

then 

and also 

g~(F)(x) = {ffR** IF(Y, 012(1 + Ix--yl/t)-2x dy dt~ '/2 t 2 I ' xER, 

1 
~ r X 2 112 C AF (x) ~_ (•2 , (f~ ( ) )  ) -~ Cg~ (F) (x) 

1 
--~ AF (x) ~= (~,~ c~.(x.(x))~) ~/~ ~= Cg~(F)(x) 

~ 0, 

for all ~>0.  But if p>l]2 we also have 

I[g~(r)llv ~- Cp[IAFI[v 

(see [2], Theorem 3.5, p. 20). This gives the equivalence between the norms 

and for p > 0 .  

To prove Lemma 2 it is enough to prove 

[[Aq,(~'~ ~ cnf,)[[p ~ CpIIgZ(F)IIp 

for all 2 with 0 < 2 < m + 5 / 2 .  We need to estimate r 

Case 1: tn>-l. By integration by parts we get 

[~k,.f.(y)[ = l(Dm+"r f.)(y)l ~_ IID-+~r [Gm+2f.(z)[dz 

~= Ct-m-3 f'z-yl<t- I n-'n-n/~rnlt"-zl dz ~ C(nt)-m-Znl/~rmaX{n(lt.-Y!-O, 0}. 

(16) 
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Case 2: tn<l ,  t < y < l - - t .  Integrating by parts we obtain 

[~t*f.(Y)] = ](G~t)*(Df.)(Y)] ~ IIG~,lh sup IOf.(z)[ ~ Ctna/2r "lt.-yl. 
Iz-y!<t 

Case 3: tn<l ,  ]yl<t or ] y - l i < t .  We have 

]4,,*f.(y)] ~= II~,lh sup [f.(z)] ~- Cni/2r "l'.-~l. 
[~-yl<t 

In the remaining case tn<l ,  y < - t  or y > l + t ,  it is clear that 

r  = O. 

From the definition of F we get 

lot* (2._~:/, Cnfn)(Y)[ ~- C Z.~_I/, ( tn)-3-mrm"t"(l"-'i-~ ~ 

<- c f f Rx{s; s<20 (s/t)8+r"r="X{(t'-Yl-OIs' ~ F(z' s) dZdSs ~ 

2 dz ds ~ x / a  c( f f R• } (s/t)~m+5-'rm'X{(l~-'l-Ols'~ ]F(z, s)] - - 7 - 1  

for all e>O. Here we have used the Cauchy - -  Schwarz inequality and the fact that 

f f Rx:s; s<2t} (s/t): +~rmax{(Iz--Yl--O/s' O} dz d_____~s < C. 
S 2 - -  

Now set 

" " 2 dy dt ~ : 1 2  

= 7 J  
Then we obtain 

(A(I) (X)) 2 

< cff.._.,<, ( ffR• ,s; s<,,i (s/t)="+'-~r ma'{(r,-y'-Ol'. O)}F (z, s)I 2 dz ds ) dy dt 
= - - 7 - )  ? 

= {ly-x[<tIN{t>s/a} (s/t)2m+5 "rmaXl(!z yl Ols, o} s 2 

and since the inner integral is less than 

fsl= (slO='+'-'r"='(i=-='-=~176 <= c(,+ IZsXl)-="-'+'~ 
it follows that 

A(i)(x) ~_ Cg*+nI~-.(F)(x) 
for all e>O. 
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By the estimate in Case 2 we get when t < y < l - t  

]l//l ~ ( 2 n <  lit cnfn) (Y)] <= C ~ ,  <l/t tnrn [tn-Y[ ICnl nl/9~ 

< C f f r x  {~; ~>,/~) (t/s) r I~ -yl/* F(z, s) dZs ~d------J-s 

( f f R dz ds lVZ <= C • ~>,/~) (t/s)rl'-rl/~lF(z' sl~ - 7 - - )  ' 

where we have used the Cauchy - -  Schwarz inequality. 
Set 

h(ll> (X) : {ff{[y-x'<t}N{t<y<l-,} l~Itq~ (2n<ll tcnL)(Y)12 ~ f f ~ ) 1 , 2  

We get 

dz ds ] dy dt 
(ao'>(x)).<= c t2 

and since the inner integral is less than 

dt 
Crl'-~Jl* f ~  (t/s) -7- <= Crl,-~l/* 

we obtain 
A (II) (x) ~ Cg~ (F)(x) 

for all it>O. 
We then set 

dy dt ]~/~ a""(x) = ( f f ,,.-xl<,,n,,,.,<,,u,t.-1,<.,, ( ~ n < l / t C n f n ) ( y ) 1 2 - - " ~  " 

For  A am we can get no pointwise estimate but we shall prove that 

IIa(IIl)ll -<: Cp]lg;(F)[] p -~- p 
for all 2>0 .  

We have 

2 dy dt 
-<- f f (~n<,/,c.f~)(Y)] t= 

2 dydt +ff{ly-xl<,>{jr-ll<,) [~'* (~an<altCnfn)(Y)l t 2 = (A(IIIo) (X))2~ (X))$" 

Since A Ono~ and A c~h) can be treated in the same way we shall only consider 
A ~ and prove that 

IlA(I'l~ <-- C~llg~(F)llp, it > O. (17) 
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We set 

aj")(x)  = ( f f {  c ~ d y d t  '1~ i,_xl<,.~nu,l<,)lqs,*(Z.<'/, .f.)(Y)l---7r-] , J _->0, 
2 y < n < = 2 j ' +  1 l / 

and it follows that 
a".~ (x) ~ Z;=o A)" (x). 

We shall prove that 

A(,m p ~ C (  2-s Ig~(F)(x)]Pdx 
J P - -  d 2 - a - 1  

and since 
A?. )  p /Ia~176 ~- Z:=o il j 

we get (17) from (18) by summation. 
We have 

~O,. (Z~s<2/~=,+~ c. f . ) (y)  = 0 

if t_~2-J and by the estimates in Case 3 we have when l y l < t < 2  - j  

I~s, * (Z.-qlt c,,f,,)(Y)t ~ C~-t2 '#+'  Fnltn-- ' I  C t l  ' /2 
~'J ~+l n 

2.t<n_~2J+ 1 

[ f rl,-,'/' ( . s) a ids  ~ C  F z ,  
- -  d , /  R X  { 2 - J - x < s < 9 ~ - J }  " S 2 

(18) 

f f R dz dsV 12 <- c rl=-,I/fle(z, s)l l Cg~(F)(w) 
• S $ J 

for any w with lw[<2-J and all 2>0 .  Here we used the fact that 

f f R  I~ .s dzds  r - - Y l  ~ ~ : C .  
• S 2 - -  

Thus if ]w[<2 -s we have 

" ( f f ,  dyatl'/" A}nl)(x) ~ Cg~(F)(w) Ir-~l<0n{lyl<t<2-a} -ff ) 

and since 
jorized by 

and 

{]y --x} < t}c~ {)Yl < t<2  - J } c  {IYl < t, Ixl/2 < t< 2-J} 

f2-J dt _ 2 -s+1 
2al</--  ~ - - 2 1 o g  ix I , I x [ < 2  -j+a, 

f 2 - J + 1 ~ : / ~  
A}m)(x) <= Cg~(F)(w) [log + - - - ~ J  . 

the integral is ma- 
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Hence 
( 2-J+l)  p/~ 

IIAJ'mllg <= C[g~(r)(w)["f'-~[],, [ l o g - - ~ )  dx 

(I g]-~)'" I ,~( )( )l -< C2-'1 ~(F)( ) : f ' _  F w ,  = g w o dx <= C2 -J g 
1 

and since this holds for all w with Iwl<2 -j  we get (18) by integration over w. 
The above estimates for A m, A (m and A tin) and the inequality 

A, ( Z ~  e.f .)  <= A ~ + A~ + A ~m 

now yield (16) for 2 < m + 5 / 2 .  
This completes the proof of Lemma 2. 

Lemma 3. For fCHP(R), 0<p_<-l, set f~(x)=f(x/c) ,  c > 0  (f~ is well-defined 
if f is a function and the definition is easily extended to distributions). Then fc-+f 
in H p as c + l .  

Proof. First let b~Coc~H ~. We have 

]l b -  b~l]n, ~- Cp (]r b - bdl p + I! H(b - b~)]l p), 

where H denotes the Hilbert transform. Since bCC o it is clear that lime-+1 ]l b -b~  lip = O. 
We set g ( t ) = g x ( t ) = ~ - ~ ( x - t )  -x for tEsuppb and Ix] large. Then g(")(t)= 

c . ( x - t )  -"-1 for some constants c, and hence 

and 

Hb(x) ~ f g(t)b(t)dt = f(g(t) - NXn=O g(n)(O)ii~---~, tn) b(/:)dt 

Inb(x)l ~ CIxI-N-= f ItIN+*lb(t)Ldt = Clxl -N-= 

for large values of [x[. It is also easy to see that Hbc=(Hb)c and that Hb is conti- 
nuous. Using these facts, the above estimate of Hb(x) and the inequality 
( N + 2 ) p >  1, we apply the Lebesgue convergence theorem to conclude that 

lim liB(b-b~)llp = lira ][Hb-(Bb)r = O. 
C~1 

It follows that lime-.1 []b-bcll~,=0. 
It is well-known that Coc~H p is dense in H p and the lemma follows if we also 

invoke this fact. 

Lemma 4. Assume m>=O and 1/(m+2)<p<=l. Let ~a denote the set o f  all 
finite linear combinations with real coefficients of  the functions f , ,  n ~ - m + N +  l. 
Then ~ is dense in He(I). 
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Proof. Set H0~(I)= {fEHP(I); supp fcI~ where I ~ denotes the interior o f / .  
We first observe that H~(1) is dense in Htg(1). In fact, if fCHP(1) set h (x )=  
f ( x+ 1/2). Then he(x-1/2) approximatesf  as c tends to 1 and supp he(x-1/2)ci ~ 
if c < l .  

By convolution with an approximate identity we then conclude that H~ (I)c~Co 
is dense in He(l). 

Now let f~H~(I)nCo and thus ff(x)xkdx=O, k = 0 ,  1, . . . ,N.  Set 

S . f  = ~"_m akA, where 

a, = ak(f) = f f k f  dx. 

Since (f~) is a complete orthonormal system we have lim,_,.  [IS.f-fll~=O. 
We shall use the estimate 

IIf-S~fllH, <- Cl l f -&fl l~+Clla( f -S , f ) l lp  

and the first term on the right hand side clearly tends to zero as n-~ ~o. 
We write 

[[a(f --S,f)][~, = flxl~-2 Jn(f--S"f)[v dX + f lxl>2 }H(f -S , f ) ldx  = A,+ B,. 

Using the HSlder inequality and the boundedness of H on L~(R) we conclude 
that 

A. <= C(p_~ ]H(f-S.f)12dx) "/~-<= c ( f  ]f-S.fl~dx) "/z 

and hence lim,_,~ A.=O. 
Estimating H ( f - S , f )  in the same way as we estimated Hb in the proof  of 

Lemma 3 we obtain 

IH(f-S.f)(x)l  <-- Cl l f -S ,  fllzlxl -N-~, Ix} > 2. 

It follows that lira._.= B , = 0  and hence S , f  tends to f in H p and the proof  of  
the lemma is complete. 

Proof of the Theorem. We first prove (3). Assume f~HP(I) and set S. f= 
z~"-m akfk, where ak=ak(f). It then follows from Lemma 2 and Lemma 1 that 

t s ft ,, c, ll(z,t.,,2::)% 
Assume ~>0, let ~ be defined as in Lemma 4 and choose P ~ :  such that 

I t f -e l lHp<e .  Then S,P=P if n is large enough and hence S , f - f =  
s . f  - s .P  + P-f.  
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It follows that 

CJJf-PJlu,== e ,  []Snf-fll~. <= Ilgn(f-P)ll~.+ I lP-f [ l~ .  ~ v < C  p 

if n is large enough, and thus (3) is proved. 
The second inequality in (2) follows from Lemma 1 and the first inequality is a 

consequence of  Lemma 2 and (3). 
To prove (4) we use (2) to conclude that 

II~-z"-.%fdl,~. <= c .  ll(Z:o.+ , a.~.~01"ll" 
and the right hand side tends t oze ro  since [[(.~m a~.~f.~)ll2[[, is finite. 

To prove (5) we observe that if f =  ~-~m+n+l ckf~ then 

a.(f) = g . ( f )  = Z c k g . ( A )  = Zc~fg.Adx= On. 
The proof of  the theorem is complete. 

Remark. If  we observe that 

( . ~  c~(Z.+k(X))2) 1/z <= Ck(g*(F)(x) + g~ (F)(1-  x)) 

for any k~Z, we obtain equivalence between the norms 

(m) IIz; b.f:- .+N+,ll- .  
and 

(m') 

for m> l/p-2,  m'> l ip -2  and 0 < p _  <- 1. 
In fact, if b.ER, then 

(m) . ndn--m+N+l] lip 1120 ~.Io-.+N+,[I.. <= c . l { (Zob'"" ,2,, 
II(Y'b'~' , , , ,  i i (z~ , ., ,1,, 

"~ U p  o .~- nZn--m-kN+l.I lip = Cp - m ' + N + l  b l + m , _ N _ l  ],g+m'-m) p 

<= c,(iboi + .. + �9 ]b~,-Nl+llg~(F)ilp) 

<: r lit" ~ b 2 ~(m')'W2H ~,t f(m')a ~1]2 
�9 - - , l , , . ~ - , , , . + , , + ~  , + , , , ' - ~ - ~ . , ,  ., i~.,, c - , , l l ( ~ ' :  .~_ ~ Unjn_m,+N+l  ] [P 

Cp  0 n J n . m ' + N + l  H-. 

(here F is defined with c. replaced by b.+m"N-1 and 2 >  l/p). It follows that 
(f.(m))~_,.+N+l and (f.(m'))~_m,+U+l are equivalent bases for HP(I) under the above 
conditions on m and m'. 

Remark. During the preparation of this paper we have learnt from P. Wojtasz- 
czyi( that he has used the theory of molecules to study basis properties of the Franklin 
system. We remark that the theory of molecules can be used also for m->l. In fact, 
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using the notation and estimates in the proof of Lemma 1, we can prove that 

IIS~bl[1-~ It-tol~ S~bll ~ <- C, 

where 1 / p - 1 / 2 < ~ < N + 3 / 2  and O=(1/p-1/2)/~. 
This estimate and Theorem 7.1 in [10] can then be used to give an alternative 

proof  of  (3) and (4) in our theorem. 
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