On the spectral synthesis problem for points in the dual of a nilpotent Lie group

Jean Ludwig

1. Introduction

Let A be a ${ }^{*}$-semi-simple Banach algebra with involution *. One of the main problems concerning the structure of A is the determination of the space \mathscr{I} of the twosided closed ideals of A. Let $\operatorname{Prim}_{*}(A)$ be the space of the kernels of the topologically irreducible unitary representations of A equipped with the Jacobson topology. For I in \mathscr{I}, let $h(I)=\left\{J \in \operatorname{Prim}_{*}(A) \mid J \supset I\right\} ; \quad\left(h(I)\right.$ is a closed subset of $\left.\operatorname{Prim}_{*}(A)\right)$ and define for the closed subset C of $\operatorname{Prim}_{*}(A)$ the subset \mathscr{I}_{C} of \mathscr{I} by $\mathscr{I}_{C}=$ $\{I \in \mathscr{I} \mid h(I)=C\}$. The closed subset C of $\operatorname{Prim}_{*}(A)$ is called a set of spectral synthesis if \mathscr{I}_{C} consists only of one point, namely the ideal $\operatorname{ker} C=\cap_{G \in C} J$. The spectral synthesis problem has been most intensively studied for the algebra $A=L^{1}(G)$, where G is an abelian, locally compact group G. The first result was the famous theorem of N . Wiener who showed that the empty set is a set of synthesis in $\operatorname{Prim}_{*} L^{1}(\mathbf{R})$. The latest deep results are those of I. Domar. (see for instance [4]).

Almost nothing is known for the algebra $L^{1}(G)$ is G is not abelian. If G is a connected, simply connected nilpotent Lie group, the dual space \hat{G} is well known and thus also the space $\operatorname{Prim}_{*}\left(L^{1}(G)\right)$.

Let g be the Lie algebra of G and Ad^{*} the coadjoint action of G on g^{*}. By Kirillow's theorem and Brown's proof of the Kirillow conjecture ([7], [2]) \hat{G} is homeomorphic with the orbit space $\mathscr{g}^{*} /_{\mathrm{Ad} *(G)}$ and [1] tells us that $\operatorname{Prim}_{*}\left(L^{1}(G)\right) \cong \mathcal{g}^{*} /_{\mathrm{Ad} *(G)}$. Thus we may indentify the closed subsets C of $\operatorname{Prim}_{*}\left(L^{1}(G)\right)$ with the closed G-invariant subsets of $g^{*} . L^{1}(G)$ has a remarkable property: For every closed subset C of \hat{G} there exists a twosided ideal $j(C)$ in $L^{1}(G)$ with the properties:

1) $h(j(A))=A$; 2) $j(A)$ is contained in every closed, twosided ideal I of $L^{1}(G)$ with $h(I) \subset A([11])$.

If G is a group of step 1 and of step 2 every point in G is a set of spectral synthesis [9]. In this paper we show that in general a point is not a set of synthesis
if G is of step 3. Indeed, we are able to determine explicitly the spaces $\mathscr{I}_{\{T\}}$, for every $T \in \hat{G}$.

In general $\mathscr{I}_{\{T\}}$ contains an infinity of elements.
In [12] it has been shown that for every T in \hat{G}, the algebra $\operatorname{ker} T / j\{(T)\}$ is nilpotent. The results of this paper make it possible to compute the degree of nilpotency of ker $T /_{j(T)\}}$ if G is of step 3.
2. Let G be a connected and simply connected nilpotent Lie group and let g be the Lie algebra of G. The exponential mapping is a homeomorphism from \mathscr{F} onto G.

We can thus define the Schwartz space $S(G)$ to be the space of all functions f on G such that f oexp is contained in the ordinary Schwartz space $S(g)$ of the rapidly decreasing smooth functions on the real vectorspace g.
$S(G)$ is a dense $*$-subalgebra of $L^{1}(G)$. If I is any element of $\mathscr{I}, I \cap S(G)$ is a twosided closed ideal in $S(G)$.
(2.1) Proposition. Let G be a connected, simply connected nilpotent Lie group. For every π in \hat{G}, ker $\pi \cap S(G)$ is dense in ker π.

Proof. We show first, that for every tempered distribution ω on $S(G)$ which annihilates ker $\pi \cap S(G)$ and for every f_{1}, f_{2} in $S(G)$, there exists a constant $C>0$ (depending on f_{1} and f_{2}) such that

$$
\left|\left\langle\omega, f_{1} * f * f_{2}\right\rangle\right| \leqq C|\pi(f)| ; \quad \forall f \in S(G)
$$

($|\pi(f)|$ denotes the operatornorm of $\pi(f))$.
(2.2) There exists $k \in \mathbf{N}$ and a realization of π on $L^{2}\left(\mathbf{R}^{k}\right)$ such that:
a) For every f in $S(G)$ the operator $\pi(f)$ on $L^{2}\left(\mathbf{R}^{k}\right)$ is described by a Schwartzkernel $K_{\pi}(f)$; that means: there exists a function $K_{\pi}(f)$ in $S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)$ so that:

$$
\begin{aligned}
(\pi(f) \xi)(x)=\int_{\mathbf{R}^{k}} K_{\pi}(f)(x, y) \xi(y) d y ; & \forall \xi \in L^{2}\left(\mathbf{R}^{k}\right) \\
& \forall x \in \mathbf{R}^{k} .
\end{aligned}
$$

b) The mapping $K_{\pi}: S(G) \rightarrow S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)$ is surjective.
c) If $d \pi$ denotes the representation of the envelopping algebra $U(g)_{\mathbf{C}}$ corresponding to π on $L^{2}\left(\mathbf{R}^{k}\right)$, then $d \pi\left(U(g)_{\mathbf{C}}\right)$ is the algebra of differential operators with polynomial coefficients on \mathbf{R}^{k}. ([15] and [7])

Thus K_{π} defines an algebraical and topological isomorphism also denoted by K_{π}, of the Fréchet spaces $S(G) /_{S(G) \cap \text { ker } x}$ and $S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)$. This allows us to define a tempered distribution $\tilde{\omega}$ on $S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)$ by:

$$
\left\langle\tilde{\omega}, K_{\pi}(f)\right\rangle:=\langle\omega, f\rangle ; f \in S(G)
$$

There exists a continuous and bounded function w in $L^{2}\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)$ and a differential operator D with polynomial coefficients such that

$$
\langle\tilde{\omega}, g\rangle=\int_{\mathbf{R}^{k} \not \mathbf{R}^{k}} w(x, y) D g(x, y) d x d y ; g \in S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)
$$

(see [16]).
Now if $f_{1}, f, f_{2} \in S(G), x, y \in \mathbf{R}^{k}$:

$$
K_{\pi}\left(f_{1} * f * f_{2}\right)(x, y)=\int_{\mathbf{R}^{k} \times \mathbf{R}^{k}} K_{\pi} f_{1}(x, u) K_{\pi} f(u, v) K_{\pi}(v, y) d u d v
$$

Thus: $\quad D K_{\pi}\left(f_{1} * f_{*} f_{2}\right)(x, y)=\sum_{i, j}^{N} \int_{\mathbf{R}^{k} \times \mathbf{R}^{k}} F_{i}^{1}(x, u) K_{\pi} f(u, v) F_{j}^{2}(v, y) d u d v$ for some $F_{i}^{1}, F_{j}^{2} \in S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right)$.

Taking

$$
f_{i}^{1}, f_{j}^{2}(i, j=1, \ldots, N) \text { in } S(G) \text { with } K_{\pi}\left(f_{i}^{1}\right)=F_{i}^{1} ; K_{\pi}\left(f_{j}^{2}\right)=F_{j}^{2}(i, j=1, \ldots, N)
$$ we get:

$$
\begin{aligned}
\left|\left\langle\omega, f_{1} * f^{*} f_{2}\right\rangle\right|= & \left|\int_{\mathbf{R}^{k} \times \mathbf{R}^{k}} w(x, y)\left(\sum_{\substack{i=1 \\
j=1}}^{N} K_{\pi}\left(f_{i}^{1} * f * f_{j}^{2}\right)\right)(x, y) d x d y\right| \\
& \leqq \sum_{i, j=1}^{N}|w|_{2}\left|K_{\pi}\left(f_{i}^{1} * f * f_{j}^{2}\right)\right|_{2}
\end{aligned}
$$

As for any F in $S\left(\mathbf{R}^{k} \times \mathbf{R}^{k}\right),\left|F_{2}\right|$ is the Hilbert - Schmidt norm of the operator defined by F on $L^{2}\left(\mathbf{R}^{k}\right)$ we have:

$$
\left|\left\langle\omega, f_{1} * f * f_{2}\right\rangle\right| \leqq \sum_{i, j=1}^{N}|w|_{2}\left|\pi\left(f_{i}^{1} * f^{*} f_{j}^{2}\right)\right|_{\mathrm{H} . \mathrm{s} .} \leqq \underbrace{\left.\sum_{i, j}^{N}\left|\pi\left(f_{i}\right)\right|_{\mathrm{H} . \mathrm{s} .} \pi\left(f_{j}\right)\right\}}_{c}|\pi(f)| .
$$

Let now $\varphi \in L^{\infty}(G)$ with $\langle\varphi, \operatorname{ker} \pi \cap S(G)\rangle=0$.
Then: $\left|\left\langle\varphi, f_{1} * f * f_{2}\right\rangle\right| \leqq C|\pi(f)| ; \forall f \in S(G) \quad\left(C\right.$ depending on f_{1} and $\left.f_{2}\right)$.
Hence $\left\langle\varphi, f_{1} * \operatorname{ker} \pi * f\right\rangle=0$ for all $f_{1}, f_{2} \in S(G)$ and so $\langle\varphi, \operatorname{ker} \pi\rangle=0$.
This implies (by Hahn - Banach):
$\operatorname{ker} \pi \cap S(G)$ is dense in ker π.
q.e.d.
3. The determination of $\mathscr{I}_{\{T\}}$ for a point T in \hat{G}, if G is of step 3.

From now on G will denote a connected and simply connected nilpotent Lie group of step 3, that means: if g is the Lie algebra of G,

$$
[g,[g, g]] \neq 0 ; \quad[g,[g,[g, g]]]=0 .
$$

Let T be a point in \hat{G} and denote by 0 the corresponding orbit in g^{*}.
Let z be the centre of g and z_{0} a subspace of z contained in the kernel of an element l of O.

The subset $z_{0}^{\perp}=\left\{\varrho \in \hat{G} \mid \varrho\left(\exp z_{0}\right)=I d_{\mathscr{H}}\right\}$ is closed in \hat{G} and a set of spectral synthesis in \hat{G} ([11]). Hence, as $T \in_{z_{0}^{1}}$:
(3.1) Every element I of $\mathscr{I}_{\{T\}}$ contains ker $\left(z_{0}^{\perp}\right)$.

Let $\tilde{y}=\left.g\right|_{x_{0}}, \tilde{G}=G /{\exp z_{0}}$. As $T\left(\exp z_{0}\right)=I d, T$ defines an element \tilde{T} of \tilde{G}. If p denotes the canonical projection from G onto \widetilde{G}

$$
T=\tilde{T} \circ p
$$

As $L^{1}(\widetilde{G})=L^{1}(G) /{\operatorname{ker}\left(x_{0}^{1}\right)}$ it follows from 3.1 that.
(3.2) The map $I \rightarrow I \bmod \left(\operatorname{ker} z_{0}^{\perp}\right)$ is an inclusion preserving bijection from $\mathscr{I}_{\{T\}}$ onto $\mathscr{I}_{\{T\}}$.

If for $l \in O ; l([g,[g, g]])=0$ and if we put $\xi_{0}=[g,[g, g]]$, then \tilde{g} is an algebra of step 2 and so [$\tilde{T}]$ is a set of synthesis, thus:

$$
\begin{gathered}
\{\operatorname{ker} \tilde{T}\}=\mathscr{I}_{T} \text { and hence } \\
\mathscr{I}_{T}=\{\operatorname{ker} T\}
\end{gathered}
$$

We suppose from now on that $\langle l,[g,[g, g]]\rangle \neq 0$. It follows also from (3.2) that we can suppose that $\operatorname{dim} z=1$.

Thus we have the following situation:

$$
\begin{equation*}
[g,[g, g]]=\approx \quad \text { and } \quad \operatorname{dim} z=1 \tag{3.3}
\end{equation*}
$$

We give now a detailed description of a nilpotent Lie algebra of step 3 satisfying (3.3).

Let $z \in \backslash(0)$. Let y_{1}, \ldots, y_{k} be elements of $[g, g]$ such that $\left\{y_{1}, y_{2}, \ldots, y_{k}, z\right\}$ is a basis of $[g, g]$.

As $[g,[g, g]]=\mathbf{R} z$, there exist $\varphi_{1}, \ldots, \varphi_{k} \in g^{*}$ such that

$$
\left[u, y_{i}\right]=\varphi_{i}(u) z ; \forall u \in g, \quad i=1, \ldots, k
$$

(3.4) The φ_{i} 's are linearly independent:

$$
\begin{aligned}
& \text { if } \sum_{i=1}^{k} c_{i} \varphi_{i}=0 \text { for some } c_{1}, \ldots, c_{k} \in \mathbf{R} \text { then: } \\
& {\left[u, \sum_{i} c_{i} y_{i}\right]=\left(\sum_{i=1}^{k} c_{i} \varphi_{i}(u)\right) z=0 \quad \text { for every } u \in g .}
\end{aligned}
$$

Thus $\sum_{i=1}^{k} c_{i} y_{i} \in z$ and hence $c_{1}=c_{2}=\ldots=c_{k}=0$.
This implies:
(3.5) There exist x_{1}, \ldots, x_{k} in g, such that

$$
\left[x_{i}, y_{j}\right]=\delta_{i j} z ; \quad i, j=1, \ldots, k .
$$

(3.6) Let $h=\bigcap_{i=1}^{k} \operatorname{ker} \varphi_{i} ;$ then $h=\{u \in g \mid[u,[g, g]]=0\}$

For $l \in O$, let $g(l)=\{v \in g \mid\langle l,[v, g]\rangle=0\}$.
(3.7) Let $g_{0}=g(l)+[g, g] .\left(g_{0}\right.$ depends only on $\left.O\right)$.

We show now that:
(3.8) g_{0} is the centre of h.

It is clear that $[g, g]$ is in the centre of g.
As $[g(l),[g, g]] \subset \operatorname{ker} \ln z=0, g(l)$ is contained in h.
As $[g,[h, h]] \subset[h,[g, k]] \subset[h[g, g]]=0$.

$$
\begin{equation*}
[h, h] \subset \mathbf{R} z \tag{3.9}
\end{equation*}
$$

so $[g(l), h] \subset \operatorname{ker} l \cap \mathbf{R} z=0$, thus
$g(1)+[g, g] \subset$ centre of h.
There exists an element l_{1} on O such that

$$
l_{1}\left(y_{i}\right)=0 ; \quad i=1, \ldots, k .
$$

Let $v \in$ centre of $h ;$ put $\left[x_{i}, v\right]=\sum_{j=1}^{k} c_{i j} y_{j}+c_{i} z$.
Then $\left\langle l_{1},\left[x_{i}, v-\sum_{j=1}^{k} c_{j} y_{j}\right]\right\rangle=\left\langle l_{1},\left[x_{i}, v\right]\right\rangle-\left\langle l_{1}, c_{i} z\right\rangle=c_{i}\left\langle l_{1}, z\right\rangle-c_{i}\left\langle l_{1}, z\right\rangle=0$
as $\left[v-\sum_{y=1}^{k} c_{j} y_{j}, \hbar\right]=0$ we see that

$$
v-\sum_{j=1}^{k} c_{j} y_{j} \in g\left(l_{1}\right) \text { and so } \quad v \in g\left(l_{1}\right)+[g, g]=g_{0} .
$$

This proves (3.8).
As $[\ell, \ell] \subset \mathbf{R} z$ (see 3.9):
(3.10) There exist u_{i}, v_{j} in $\hbar(i, j=1, \ldots, s)$
such that $h=\sum_{i=1}^{s} \mathbf{R} u_{i}+\sum_{j=1}^{s} \mathbf{R} v_{j}+g_{0}$ and such that

$$
\left[u_{i}, v_{j}\right]=\delta_{i j} z ; \quad i, j=1, \ldots, s
$$

(3.11) Let now O_{0} be the restriction of O to $\mathscr{g}_{0}, O_{0}=G\left(I_{g_{0}}\right)$ for any 1 in $O . O_{0}$ is a closed G-invariant subset of g_{0}^{*}.

Let $G_{0}=\exp g_{0} . G$ acts as a group of automorphisms on G_{0} by restriction of the inner automorphisms to G_{0}, so G acts on $L^{1}\left(G_{0}\right)$ too by the formula:

$$
f^{g}(x)=f\left(g^{-1} x g\right) ; f \in L^{1}\left(G_{0}\right), \quad x \in G_{0}, g \in G .
$$

(3.12) For a closed subset C of \hat{G}_{0} let \mathscr{I}_{c}^{G} be the set of all twosided closed ideals I of $L^{1}\left(G_{0}\right)$ with $h(I)=C$, which are G-invariant.
(3.13) Proposition: Let G be a connected and simply connected Lie group of step 3 satisfying (3.3). Let $T \in \hat{G}$. Let O be the G-orbit of T in g^{*}. If $T($ centre $(G)) \neq I d_{\mathscr{H}(T)}$, there exists an inclusion preserving bijection between $\mathscr{I}_{\{T\}}$ and $\mathscr{I}_{\left(O_{0}\right)}^{G}\left(O_{0}\right.$ as in (3.10)).

Proof. Let $l \in O$ satisfy: $l\left(y_{j}\right)=0, j=1, \ldots, k, l\left(x_{i}\right)=0, i=1, \ldots, k$.
We verify immediately that, using (3.5):
(3.14) The map: $[g, g] \rightarrow l+h^{\perp} \subset g^{*}$

$$
v \rightarrow\langle l,[\cdot, v]\rangle \text { is surjective. }
$$

(3.15) Denote by h^{\perp} the set of the unitary characters of G which are trivial on $H=\exp h$. For every $\chi \in h^{\perp}$, zhere exists $v \in[g, g]$, such that $\chi(\exp x)=e^{-i(1,[x, v]\rangle} \forall$ $x \in g$ (this follows from 3.14). As $l+h^{\perp}$ is a closed G-invariant subset of g^{*}, it defines a closed subset, also denoted $l+h^{\perp}$, of \hat{G}.
(3.16) $l+h^{\perp}$ is a set of spectral synthesis by ([5], 5.3).
(3.17) Let $K=\operatorname{ker}\left(l+h^{\perp}\right) \triangleleft L^{1}(G)$. If $z \in \operatorname{centre}(g)$ with $\langle l, z\rangle=1$, then one computes easily that:
(3.18) $K=\left\{f \in L^{1}(G) \mid \int_{\mathbf{R}} f(g(\exp r z)) e^{-i r} d r=0\right.$ for almost all $\left.g \in G\right\}$ and that
(3.19) for $f \in L^{1}(G), \chi \in h^{\perp}$ one has using (3.18) (3.15) (3.5):

$$
\chi \cdot f-f^{\exp v} \in K \quad \text { if } \quad \chi=\chi(v) \quad \text { as in (3.15). }
$$

Let now O_{1} be the restriction of O to ℓ^{*}.
From (3.16) we see that K is contained in every element I of $\mathscr{I}_{\{T\}}$ as $T \in l+h^{\perp}$.
Thus (3.19) implies: $\chi \cdot I \subset I$ for every $\chi \in \ell^{\perp}, I$ in $\mathscr{I}_{\{T\}}$. [5] now implies that there exists an inclusive preserving bijection between $\mathscr{I}_{\{T\}}$ and $\mathscr{I}_{O_{1}}^{G}$.

Now again the map: $\left.g_{0} \rightarrow l\right|_{g_{0}}+g_{0}^{\frac{1}{0}} \subset \hbar^{*}, u \rightarrow\left\langle\left. l\right|_{g_{0}},[\cdot, u]\right\rangle$ is surjective (by 3.10).
We can use similiar arguments as above, to get: there exists an inclusion preserving bijection between

$$
\mathscr{I}_{O_{1}}^{G} \quad \text { and } \quad \mathscr{I}_{O_{0}}^{G} . \quad \text { q.e.d. }
$$

4. The determination of $\mathscr{I}_{O_{0}}^{G}$

Let g be as in (3.3) and g_{0} as in (3.7).
(4.1) Let $D_{i}=\operatorname{ad} x_{i \mid g_{0}} ; i=1, \ldots, k,\left(x_{i}\right.$ as in 3.5).

The $D_{i}^{\prime} s$ are linearly independent and commuting endomorphisms of g_{0}.
Let $\mathbf{D}=\sum_{i=1}^{k} \mathbf{R} D_{i}$ and let $\overline{\mathbf{D}}=\exp \mathbf{D} \subset G l\left(g_{0}\right)$.
(4.2) We can realize the $2 k+1$-dimensional Heisenberg group H_{k} by defining: $H_{k}=\overline{\mathbf{D}} X[g, g]$ and defining the multiplication of H_{k} by: $(D, u) \cdot\left(D^{\prime}, u^{\prime}\right)=$ $\left(D \cdot D^{\prime}, u+D\left(u^{\prime}\right)\right) ; D, D^{\prime} \in \overline{\mathbf{D}}, u, u^{\prime} \in[\mathscr{g}, g]$. The group H_{k} acts as a group of diffeomorphisms on \mathscr{g}_{0} by the formula:

$$
\begin{equation*}
(D, u)(x)=D(x)+u \tag{4.3}
\end{equation*}
$$

(4.4) Now as \mathscr{g}_{0} is abelian, we may identify the additive group \mathscr{g}_{0} with G_{0} and so $L^{1}\left(G_{0}\right)=L^{1}\left(g_{0}\right)$.

We define the (isometric) action of H_{k} on $L^{1}\left(g_{0}\right)$ by:

$$
\begin{equation*}
((D, u) \cdot f)(x)=f\left((D, u)^{-1}(x)\right) ;(D, u) \in H_{k} ; f \in L^{1}\left(g_{0}\right), x \in \mathscr{g}_{0} . \tag{4.5}
\end{equation*}
$$

(4.5) allows us to define a representation of $L^{1}\left(H_{k}\right)$ on $L^{1}\left(\mathscr{g}_{0}\right)$:

$$
\begin{equation*}
\alpha \circ f=\int_{H_{k}} \alpha(h) h \cdot f d h ; \alpha \in L^{1}\left(H_{k}\right), f \in L^{1}\left(g_{0}\right) . \tag{4.6}
\end{equation*}
$$

(4.7) Let $K_{0}=\operatorname{ker}\left(l_{0}+z^{\perp}\right)\left(l_{0}=\left.l\right|_{g_{0}}, l \in 0\right)$
(4.3) tells us that K_{0} is invariant under the action of H_{k} (and of course of G also)
(4.8) Let $L^{1}\left(g_{0}\right)_{x}$ be the algebra of all measurable functions f on g_{0} satisfying

$$
f(x+r z)=e^{i r} f(x), \forall r \in \mathbf{R} \quad \text { for almost all } \quad x \in g_{0}
$$

2)

$$
|f|_{1}=\int_{g_{0} / \mathbf{R z}}|f(x)| d x<\infty
$$

with the multiplication defined by:

$$
f * g(x)=\int_{g_{0} / \mathbf{R}_{z}} f(y) g(-y+x) d y, f, g \in L^{1}\left(g_{0}\right)_{x} ; x \in g_{0} .
$$

The map $P_{\chi}: L^{1}\left(g_{0}\right) \rightarrow L^{1}\left(g_{0}\right)_{x}$
$P_{\chi} f(x)=\int_{\mathrm{R}} f(x+r z) e^{-i r} d r$ is a continuous surjective homomorphism. Thus:
(4.9) $L^{1}\left(g_{0}\right) / K_{0}$ is isometrically isomorphic with $L^{1}\left(g_{0}\right)_{x}$.

The dual space of $L^{1}\left(g_{0}\right)_{x}$ is of course homeomorphic with the subspace $l_{0}+z^{\perp}$ of g_{0}^{*}. Let \tilde{O}_{0} denote the image of O_{0} in $L^{1}\left(g_{0}\right)_{x}^{\wedge}$.
(4.10) The map: $I \rightarrow I \bmod K_{0}$ is an inclusion preserving bijection between $\mathscr{I}_{0_{0}}^{G}$ and $\mathscr{I}_{\tilde{\sigma}_{0}}^{G}$.

Let us return for one moment to H_{k}.
It is well known that there exists exactly one representation π of H_{k}^{\wedge} with $\pi(\exp r z)=e^{-i r} I d(r \in \mathbf{R})$.

Let $J=$ ker π. Then:
(4.11) $\operatorname{ker} \pi=\left\{\alpha \in L^{1}\left(H_{k}\right) \mid \int \alpha((D, u+r z)) e^{-i r} d r=0\right.$, for almost all $\left.(D, u)\right\}$.

Using (4.11) and (4.5) one computes easily that:
(4.12) ker $\pi \circ L^{1}\left(g_{0}\right) \subset K_{0}$.

Thus we can define a representation of $L^{1}\left(H_{k}\right)_{\chi}=L^{1}\left(H_{k}\right)_{/ J}$ on $L^{1}\left(g_{0}\right)_{x}$ by the formula (4.6).

The algebra $L^{1}\left(H_{k}\right)_{\chi}$ has many projectors:
(4.13) Let ψ be the character of $\mathbf{R} z+Y\left(Y=\sum_{i=1}^{k} \mathbf{R} y_{i}\right): \psi(y+r z)=e^{-i r}$, $y \in Y, r \in \mathbf{R}$.

If $\pi=\operatorname{ind}_{[g, g]}^{H_{k}} \psi, \pi$ acts on $L^{2}\left(\mathbf{R}^{k}\right)$ and π fulfils the conditions of (1.1).
For $\operatorname{fin} S\left(H_{k}\right): K_{\pi}(f)\left(D, D^{\prime}\right)=\int_{Y+\mathbf{R}_{z}} f\left(D^{\prime-1} \cdot D, u\right) e^{i\left\langle D^{\prime}, u\right\rangle} d u ; D, D^{\prime} \in \overline{\mathbf{D}}$;
here $\left\langle D, u^{\prime}\right\rangle=\Sigma d_{i} u_{i}^{\prime}-u_{0}^{\prime}, \quad$ if $\quad D=\exp \left(\Sigma d_{i} D_{i}\right) \quad$ and $\quad u^{\prime}=\sum_{i=1}^{k} u_{i}^{\prime} y_{i}+u_{0}^{\prime} z$.
(4.14) For $\xi \in S(\overline{\mathbf{D}}),|\xi|_{2}=1$, let α_{ξ} be the (unique) element of $S\left(H_{k}\right)_{\chi}=$ $S\left(H_{k}\right) /$ ker $\pi \cap S\left(H_{k}\right)$ with $K_{\pi}\left(\alpha_{\xi}\right)=\xi \otimes \xi$, that means: $\pi\left(\alpha_{\xi}\right)$ is the projector on $\mathbf{C} \xi$. Thus α_{ξ} is a projector in $L^{1}\left(H_{k}\right)_{\chi}$.
(4.15) Let \mathscr{P} be the set of all α_{ξ} in $S\left(H_{k}\right)_{x}$, such that $\pi\left(\alpha_{\xi}\right)$ is a one dimensional projector (on the subspace $\mathbf{C} \xi,|\xi|_{2}=1$) As $\{\pi\}$ is a set of synthesis in $\hat{H}_{k}([9])$, for every $\alpha \in \mathscr{P}$, the ideal $L^{1}\left(H_{k}\right)_{\chi} * \alpha * L^{1}\left(H_{k}\right)_{\chi}$ is dense in $L^{1}\left(H_{k}\right)_{\chi}$.
(4.16) Let $L^{1}\left(g_{0}\right)_{\tilde{\chi}}$ be the algebra of all the measurable functions h on g_{0} satisfying:

1) $\quad h(x+y+r z)=e^{i r} h(x) ;$ for all $y \in Y, \quad r \in \mathbf{R}$ for almost all $x \in g_{0}$.
2)

$$
\int_{\mathscr{I}_{0 / \mathbf{R} z+Y}}|h(x)| d x=|h|_{1}<\infty
$$

(4.17) Remark: Let W be a subspace of $g(l)$ such that $W \cap(Y+\mathbf{R} z)=0$ and such that $g_{0}=W+(Y+\mathbf{R} z)$; then the restriction map $\left.f \rightarrow f\right|_{W}$ is an isometric isomorphism of the algebra

$$
L^{1}\left(g_{0}\right)_{\tilde{x}} \quad \text { onto } \quad L^{1}(W)=L^{1}(g(l)+[g, g] /[g, g])
$$

(4.18) Let $C=C\left(\overline{\mathbf{D}}, L^{\mathbf{1}}\left(g_{0}\right)_{\bar{\chi}}\right)$ be the Banach algebra of all bounded continuous functions from $\overline{\mathbf{D}}\left(\cong \mathbf{R}^{k}\right)$ into $L^{1}\left(g_{0}\right)_{\tilde{\chi}}$ (with pointwise multiplication).

Let C_{∞} be the closed subalgebra of the functions vanishing at infinity.
(4.19) Let p be the projection from $L^{1}\left(\mathscr{g}_{0}\right)_{\chi}$ onto $L^{1}\left(\mathscr{g}_{0}\right)_{\bar{x}}$ defined by:

$$
p(f)(x)=\int_{Y} f(x+y) d y
$$

(4.20) Proposition: The map $K: L^{1}\left(g_{0}\right)_{\chi} \rightarrow C\left(\overline{\mathbf{D}}, L^{1}\left(g_{0}\right)_{\chi}\right)$

$$
K f(D)=p\left(D^{-1} \cdot f\right)
$$

is a continuous and injective homomorphism of

$$
L^{1}\left(g_{0}\right)_{x} \text { into } C_{\infty} .
$$

Proof. As for any $f \in L^{1}\left(g_{0}\right)_{x}, D \in \overline{\mathbf{D}},|K f(D)|_{1}=\left|p\left(D^{-1} \cdot f\right)\right|_{1} \leqq\left|D^{-1} \cdot f\right|_{1}=|f|_{1}$, K is a bounded operator.

If $\left\{D_{n}\right\}$ is a sequence in $\overline{\mathbf{D}}$, converging to $D, D_{n}^{-1} \cdot f$ converges to $D^{-1} \cdot f$ in $L^{1}\left(g_{0}\right)_{x}$, for any f, and so $K(f)\left(D_{k}\right)$ converges to $K(f)(D)$; thus $K(f)$ is continuous for any f. It is clear that K is a homomorphism.

For $\left(D^{\prime}, u^{\prime}\right) \in H_{k}, f \in L^{1}\left(g_{0}\right)_{x}$:

$$
K\left(\left(D^{\prime}, u^{\prime}\right) \cdot f\right)(D)=p\left(\left(D^{-1} \cdot\left(D^{\prime}, u^{\prime}\right)\right) \cdot f\right)=p\left(\left(D^{-1} \cdot D^{\prime}, D^{-1} \cdot u^{\prime}\right) f\right)
$$

For x in g_{0}, we have:

$$
\begin{gathered}
p\left(\left(D^{-1} \cdot D^{\prime}, D^{-1} u^{\prime}\right) \cdot f\right)(x)=\int_{Y} f\left(\left(D^{\prime-1} \cdot D(x+y)-D^{\prime-1}\left(u^{\prime}\right)\right) d y\right. \\
=\int_{Y} f\left(D^{\prime-1} \cdot D\left(x+y-u^{\prime}\right)+\left\langle D, u^{\prime}\right\rangle z\right) d y \\
=e^{i\left\langle D, u^{\prime}\right\rangle} \int_{Y} f\left(D^{\prime-1} \cdot D(x+y)\right) d y=e^{i\left\langle D, u^{\prime}\right\rangle} K f\left(D^{\prime-1} \cdot D\right)(x)
\end{gathered}
$$

if $\left\langle D, u^{\prime}\right\rangle=\sum_{i=1}^{k} d_{i} u_{i}^{\prime}-u_{0}^{\prime}$, where $D=\exp \left(\sum_{i=1}^{k} d_{i} D_{i}\right)$ and

$$
u^{\prime}=\sum_{i=1}^{k} u_{i}^{\prime} y_{i}+u_{0}^{\prime} z .
$$

Thus:

$$
\begin{equation*}
K\left(\left(D^{\prime}, u^{\prime}\right) \cdot f\right)(D)=e^{i\left\langle D, u^{\prime}\right\rangle} K f\left(D^{\prime-1} \cdot D\right) ; D, D^{\prime} \in \overline{\mathbf{D}}, u^{\prime} \in Y+\mathbf{R} z \tag{4.21}
\end{equation*}
$$

For $\alpha \in L^{1}\left(H_{k}\right)_{x}$, we get:

$$
\begin{gathered}
K(\alpha \circ f)(D)=p\left(D^{-1} \int_{\mathbf{H}^{k}} \alpha\left(D^{\prime}, u^{\prime}\right)\left(D^{\prime}, u^{\prime}\right) \cdot f d u^{\prime} d D^{\prime}\right) \\
\left.=\int_{\overline{\mathbf{D}}} \int_{\mathbf{R}_{z}+Y} \alpha\left(D^{\prime}, u^{\prime}\right) e^{i\left(D, u^{\prime}\right\rangle} d u^{\prime}\right) K f\left(D^{\prime-1} \cdot D\right) d D^{\prime}=\int_{\overline{\mathbf{D}}} \tilde{\alpha}\left(D, D^{\prime}\right) K f\left(D^{\prime}\right) d D^{\prime} .
\end{gathered}
$$

$$
\begin{equation*}
\text { if we write } \tilde{\alpha}\left(D, D^{\prime}\right)=\int_{Y+\mathbf{R z}} \alpha\left(D^{\prime-1} \cdot D, u^{\prime}\right) e^{i\left\langle D, u^{\prime}\right\rangle} d u^{\prime} \tag{4.22}
\end{equation*}
$$

Thus

$$
\begin{equation*}
K(\alpha \cdot f)=\int_{\overline{\mathbf{D}}}\left(K_{\pi} \cdot \alpha\right)\left(D, D^{\prime}\right) K f\left(D^{\prime}\right) d D^{\prime} \quad(\operatorname{see}(4.13)) \tag{4.23}
\end{equation*}
$$

As $S\left(H_{k}\right)_{\chi}$ is dense in $L^{1}\left(H_{k}\right)_{\chi}$ and as $L^{1}\left(H_{k}\right)_{\chi}$ has bounded approximate units we get:

$$
\begin{equation*}
K\left(S\left(H_{k}\right)_{\chi} \cdot L^{1}\left(g_{0}\right)_{\chi}\right) \quad \text { is dense in } K\left(L^{1}\left(g_{0}\right)_{\chi}\right) \tag{4.24}
\end{equation*}
$$

On the other hand, if $\alpha \in S\left(H_{k}\right)_{\chi}$, it is clear from (4.21) (4.22) that $K(\alpha \cdot f) \subset C_{\infty}$ for every $f \in L^{1}\left(g_{0}\right)_{x}$. Thus (4.23) implies that $K\left(L^{1}\left(g_{0}\right)_{\chi}\right) \subset C_{\infty}$.

We show now that K is injective.
If $K(f)=0$ for some f in $L^{1}\left(g_{0}\right)_{\chi}$ then for almost all x in g_{0}, for all D in $\overline{\mathbf{D}}$:

$$
0=(K f(D))\left(D^{-1}(x)\right)=\int_{Y} f(x+D)(y) d y=\int_{Y} e^{i\langle D, y\rangle} f(x+y) d y
$$

But then $f(x) \equiv 0$ for almost all x in g.
Thus K is injective
(4.25) Proposition: There exists a subalgebra $\mathscr{A}(T)$ in $L^{1}\left(g_{0}\right)_{\tilde{\chi}}$, such that for every $\alpha=\alpha_{\xi} \in \mathscr{P}$:

$$
K\left(\alpha \circ L^{1}\left(g_{0}\right)_{x}\right)=\xi \otimes \mathscr{A}(T)
$$

$\mathscr{A}(T)$ is a Banach algebra under the equivalent norms $\left|\left.\right|_{\alpha}\right.$:

$$
|h|_{\alpha}=|f|_{1} \quad \text { if } \quad K(f)=\xi \otimes h \quad \text { and } \quad f \in \alpha \cdot\left(L^{1}\left(g_{0}\right)\right)_{x} \quad\left(\alpha=\alpha_{x} \in \mathscr{P}\right) .
$$

Proof: For $\alpha \in \mathscr{P}, I_{\alpha}=\alpha \cdot I$ is a closed subspace of $L^{1}\left(g_{0}\right)_{\chi}$ for every twosided closed ideal in $L^{1}\left(g_{0}\right)_{\chi}$ (as $\left.\alpha * \alpha=\alpha\right)$.
(4.26) Put $L_{\alpha}^{1}=\left(L^{1}\left(g_{0}\right)_{\chi}\right)_{\alpha}$.

For $f \in L_{\alpha}^{1}, \alpha \cdot f=f$ and thus by (4.23)
$K(f)(D)=\int K_{\pi}(\alpha)\left(D, D^{\prime}\right) K(f)\left(D^{\prime}\right) d D^{\prime}=\xi(D) \cdot \int_{\mathbf{R}^{k}} \overline{\xi\left(D^{\prime}\right)} K(f)\left(D^{\prime}\right) d D^{\prime}$, if $\alpha=\alpha_{\xi}$.
Put $\mathscr{A}(T)_{\alpha}=\left\{h \in L^{1}\left(g_{0}\right)_{\alpha} \mid\right.$ there exists f in L_{α}^{1} with $\left.h=\int_{\mathbf{R}^{k}} \overline{\xi\left(D^{\prime}\right)} K f\left(D^{\prime}\right) d D^{\prime}\right\}$.
Then $\xi \otimes \mathscr{A}(T)_{\alpha} \supset K\left(L_{\alpha}^{1}\right)$.
If on the other hand $h=\int_{\mathbf{R}^{k}} \overline{\xi\left(D^{\prime}\right)} K f\left(D^{\prime}\right) d D^{\prime} \in \mathscr{A}(T)_{\alpha}$, then for $f^{\prime}=\alpha \cdot f \in L_{\alpha}^{1}$:

$$
K\left(f^{\prime}\right)=\xi \otimes \int_{\mathbf{R}^{k}} \overline{\xi\left(D^{\prime}\right)} K f\left(D^{\prime}\right) d D^{\prime}=\xi \otimes h
$$

Thus $\xi \otimes \mathscr{A}(T)_{\alpha}=K\left(L_{\alpha}^{1}\right)$.
(4.26) If α^{\prime} is another element of \mathscr{P} and $\alpha^{\prime}=\alpha_{\xi^{\prime}}^{\prime}\left(\left|\xi^{\prime}\right|_{\alpha}=1\right)$ then there exists $\beta \in S\left(H_{k}\right)_{x}$ such that

$$
\pi(\beta) \xi=\xi^{\prime} . \quad([15])
$$

Let $h \in \mathscr{A}(T)_{\alpha}$. There exists $f \in L_{\alpha}^{1}$, such that $K f=\xi \otimes h$.
Let $f^{\prime}=\alpha^{\prime} * \beta \circ f=\alpha^{\prime} \cdot(\beta \circ f)$. Then:

$$
\begin{gather*}
f^{\prime} \in L_{\alpha^{\prime}}^{1} \quad \text { and } \quad K f^{\prime}(D)=\int K_{\pi}\left(\alpha^{\prime} * \beta\right)\left(D, D^{\prime}\right) K f\left(D^{\prime}\right) d D^{\prime} \tag{4.27}\\
=\left(\int K_{\pi}\left(\alpha^{\prime} * \beta\left(D, D^{\prime}\right) \xi\left(D^{\prime}\right) d D^{\prime}\right) \cdot h=\left(\pi\left(\alpha^{\prime} * \beta\right) \xi(D) \cdot h=\xi^{\prime}(D) \cdot h .\right.\right.
\end{gather*}
$$

Thus $h \in \mathscr{A}(T)_{x^{\prime}}$.
We see that $\mathscr{A}(T)_{\alpha}$ is independent of α in \mathscr{P}; we write $\mathscr{A}(T)$ from now on. If h, h^{\prime} are in $\mathscr{A}(T)$ and f, f^{\prime} are in L_{α}^{1} with

$$
K(f)=\xi \otimes h, K\left(f^{\prime}\right)=\xi \otimes h^{\prime},\left(\alpha=\alpha_{\xi}\right)
$$

then $K\left(f * f^{\prime}\right)=\xi^{2} \otimes h * h^{\prime}=\xi^{\prime} \otimes\left|\xi_{2}^{2}\right|_{2} h * h^{\prime}$, if $\xi^{\prime}=\left|\xi^{2}\right|_{2}^{-1} \cdot \xi^{2}$.
(4.28) As $\xi^{\prime} \in S\left(\mathbf{R}^{k}\right)$, there exists $\alpha^{\prime} \in \mathscr{P}$ with $\alpha^{\prime}=\alpha_{\xi^{\prime}}^{\prime}$.

Thus $h * h^{\prime} \in \mathscr{A}(T)_{\alpha^{\prime}}=\mathscr{A}(T)$ and so $\mathscr{A}(T)$ is an algebra.
(4.29) The map $M_{\alpha}: \mathscr{A}(T) \rightarrow L_{\alpha}^{1} ;\left(\alpha \in \mathscr{P} \cap S\left(H_{k}\right)_{\chi}\right)$

$$
M_{\alpha}(h)=f, \quad \text { if } \quad f \in L_{\alpha}^{1} \quad \text { and } \quad K(f)=\xi \otimes h ; \quad\left(\alpha_{\xi}=\alpha\right),
$$

is well defined (as K is injective).

As L_{α}^{1} is closed, if we provide $\mathscr{A}(T)$ with the norm $\left|\left.\right|_{\alpha}\right.$:

$$
|h|_{\alpha}=\left|M_{\alpha}(h)\right|_{1}
$$

$\mathscr{A}(T)$ becomes a Banach space.
Take another element $\alpha^{\prime}=\alpha_{\xi^{\prime}}^{\prime}$ in \mathscr{P} and let $\beta \in S\left(H_{k}\right)$ be such that:

$$
\pi(\beta) \xi=\xi^{\prime}
$$

Then for any $h \in \mathscr{A}(T)$:

$$
\begin{equation*}
M_{\alpha^{\prime}}(h)=\left(\alpha^{\prime} * \beta\right) \circ M_{\alpha}(h) \tag{4.27}
\end{equation*}
$$

Thus $|h|_{\alpha^{\prime}} \leqq\left|\alpha^{\prime} * \beta\right|_{1} \cdot|h|_{\alpha}$. This shows that the norms $\left|\left.\right|_{\alpha}(\alpha \in \mathscr{P})\right.$ are all equivalent.
If α^{\prime} is as in (4.28) then for $h, h^{\prime} \in \mathscr{A}(T)$:

$$
\begin{gathered}
\left|\left(h * h^{\prime}\right)\right|_{\alpha} \leqq C\left|h * h^{\prime}\right|_{\alpha}=C\left|M_{\alpha^{\prime}}\left(h * h^{\prime}\right)\right|_{1} \\
=C\left|M_{\alpha}(h) * M_{\alpha}\left(h^{\prime}\right)\right| \leqq C\left|M_{\alpha}(h)\right|_{1} \cdot\left|M_{\alpha}\left(h^{\prime}\right)\right|_{1} \leqq C|h|_{\alpha} \circ\left|h^{\prime}\right|_{\alpha}
\end{gathered}
$$

(for some $C=0$, as $\left.\left|\left.\right|_{\alpha}\right.$ is equivalent to $|\right|_{\alpha^{\prime}}$).
Thus $\mathscr{A}(T)$ is a Banach algebra.
(4.30) Proposition: There exists an inclusion preserving bijection between the set of the G-invariant closed ideals in $L^{1}\left(g_{0}\right)_{x}$ and the set of the closed ideals in $\mathscr{A}(T)$.

Proof. Let \mathscr{I}^{G} denote the first set and \mathscr{I} denote the second set. Define the map $b_{\alpha}: \mathscr{I}^{G} \rightarrow \mathscr{I}$ by

$$
\xi \otimes b_{\alpha}(I)=K\left(I_{\alpha}\right)\left(\alpha=\alpha_{\xi} \in \mathscr{P}\right)
$$

As $M_{\alpha}(b(I))=I_{\alpha}, b_{\alpha}(I)$ is a closed subspace of $\mathscr{A}(T)$; If $\alpha^{\prime}=\alpha_{\xi}^{\prime}$ is another element of \mathscr{P} we have:

$$
\begin{gathered}
\left(\alpha^{\prime} * \beta\right) \cdot\left(I_{\alpha}\right) \subset I \quad(\beta \text { as in } 4.26) \text { and so } \\
\alpha^{\prime} \cdot\left(\beta \cdot I_{\alpha}\right) \subset I_{\alpha^{\prime}} .
\end{gathered}
$$

Thus

$$
\xi^{\prime} \otimes b_{\alpha^{\prime}}(I)=K^{\prime}\left(I_{\alpha^{\prime}}\right) \supset K\left(\alpha^{\prime} \circ\left(\beta \circ I_{\alpha}\right)\right)=\xi^{\prime} \otimes b_{\alpha}(I) .
$$

(4.31) This shows that $b_{\alpha}(I)$ is in fact independent of α. We write $b(I)$ from now on.

If $h \in \mathscr{A}(T)$ and $h^{\prime} \in b(I)$, then for α, α^{\prime} as in (4.28) $L_{\alpha^{\prime}}^{1} \supset M_{\alpha^{\prime}}\left(h * h^{\prime}\right)=$ $M_{\alpha}(h) * M_{\alpha}\left(h^{\prime}\right) \subset L^{1}\left(g_{0}\right)_{\chi} * I \subset I$.

Thus $h * h^{\prime} \in b_{\alpha^{\prime}}(I)=b(I)$. This shows that $b(I)$ is an ideal; b is thus well defined. b is injective: if I and I^{\prime} are in \mathscr{I}^{G} with $b(I)=b\left(I^{\prime}\right)$, then: for any $\alpha \in \mathscr{P}: \alpha * I=\alpha * I^{\prime}$
thus

$$
\begin{gathered}
\alpha *\left(L^{1}\left(g_{0}\right)_{\chi} * I\right)=\alpha *\left(L^{1}\left(g_{0}\right) * I^{\prime}\right. \text { and } \\
\left(L^{1}\left(g_{0}\right)_{\chi} * \alpha * L^{1}\left(g_{0}\right)_{\chi}\right) * I=\left(L^{1}\left(g_{0}\right)_{\chi} * \alpha * L^{1}\left(g_{0}\right)_{\chi}\right) * I^{\prime} .
\end{gathered}
$$

But $\overline{L^{1}\left(g_{0}\right)_{\chi} * \alpha *} \overline{L^{1}\left(g_{0}\right)_{x}}=L^{1}\left(g_{0}\right)_{x}$
Thus $I=I^{\prime}$ (as $L^{1}\left(g_{0}\right)_{x}$ has bounded approximate units). b is surjective: Let E be a closed ideal in $\mathscr{A}(T)$.

Let I be the closure of the vectorspace generated by the spaces $M_{\alpha}(E) ;(\alpha \in \mathscr{P})$.
As $K\left(L_{\alpha}^{1} * M_{\alpha^{\prime}}(E)\right)=(\xi \otimes \mathscr{A}(T)) \cdot\left(\xi^{\prime} \otimes E\right)=\xi \cdot \xi^{\prime} \otimes A(T) * E \subset \xi \cdot \xi^{\prime} \otimes E$

$$
\left(\alpha=\alpha_{\xi} \quad \text { and } \quad \alpha^{\prime}=\alpha_{\xi^{\prime}}^{\prime} \in \mathscr{P}\right)
$$

we see that I is a (closed) ideal in $L^{1}\left(g_{0}\right)_{x}$.
(4.32) As $K\left(\alpha^{\prime} \cdot M_{\alpha}(E)\right)=\left\langle\xi, \xi^{\prime}\right\rangle_{L^{2}\left(\mathbf{R}^{k}\right)} \xi^{\prime} \otimes E$
we see that $\alpha^{\prime} \cdot I \subset I$ and so I is also G-invariant. (4.23) too shows that $b(I)=E$.
Thus b is surjective.
It is clear that b is inclusion preserving. q.e.d.
(4.33) Proposition: $S\left(g_{0}\right)_{\bar{\chi}}$ is contained in $\mathscr{A}(T)$ and dense in $\mathscr{A}(T)$.

Hence $\mathscr{A}(T)$ is dense in $L^{1}\left(g_{0}\right)_{\tilde{x}}$.
Proof. From the equation:

$$
(K f)(D)(x)=\int_{Y} f(D(x+y)) d y \quad \text { it is clear that: }
$$

$$
\begin{equation*}
K\left(S\left(g_{0}\right)_{x}\right) \subset S(\overline{\mathbf{D}}) \hat{\otimes} S\left(g_{0}\right)_{x}(\simeq S(\overline{\mathbf{D}} \times W) ; W \text { as in }(4.17)) \tag{4.34}
\end{equation*}
$$

Let now F in $S(\overline{\mathbf{D}}) \hat{\otimes} S\left(\mathscr{g}_{0}\right)_{x}$.
Define the function $M(F)$ on g_{0} by:

$$
\begin{equation*}
M(F)(x)=\int_{\overline{\mathbf{D}}} F\left(D, D^{-1}(x)\right) d D \tag{4.35}
\end{equation*}
$$

Let W be as in 4.17. $\left(g_{0} \cong W \oplus Y \oplus \mathbf{R} z\right)$.
The formula:

$$
\begin{equation*}
M(F)(w+y+r z)=\int_{-\mathbf{D}} F\left(D, D^{-1}(x)\right) e^{-i\langle D, y\rangle+i r} d D \tag{4.36}
\end{equation*}
$$

proves that $M(F) \in S\left(g_{0}\right)_{x} \subset L^{1}\left(g_{0}\right)_{x}$.

Furthermore for $D \in \overline{\mathbf{D}}, x \in \mathcal{g}_{0}$:

$$
\begin{gather*}
(K(M(F))(D))(x)=\int_{Y} M F(D(x+y)) d y \tag{4.37}\\
=\int_{Y} M(F)\left(D^{-1}(x)+y\right) e^{i\langle D, y\rangle} d y=\int_{Y} \int_{\mathrm{D}} F\left(D^{\prime}, D^{\prime-1}(D(x)+y)\right) d D e^{-i(D, y\rangle} d y \\
=\int_{Y}\left(\int_{\mathrm{D}} F\left(D^{\prime}, D^{\prime-1} \cdot D(x)\right) e^{-i\left\langle D^{\prime}, y\right\rangle} d D^{\prime}\right) e^{-i\langle D, y\rangle} d y \\
=F(D, x) \quad \text { (by the Fourier inversion formula) }
\end{gather*}
$$

We see that $S(\overline{\mathbf{D}}) \hat{\otimes} S\left(g_{0}\right)_{\chi} \subset K\left(L^{1}\left(g_{0}\right)_{\chi}\right)$.
From this it follows easily that $S\left(\mathscr{g}_{0}\right)_{\tilde{\chi}}$ is contained in $\mathscr{A}(T)$.
As $\alpha \circ S\left(\mathscr{g}_{0}\right)_{x}$ is dense in $L_{\alpha}^{1}, S\left(\mathscr{g}_{0}\right)_{\tilde{\chi}}$ is then dense in $\mathscr{A}(T)(\alpha \in \mathscr{P})$. q.e.d

5. The determination of $\mathscr{A}(T)$

We give now an explicit formula for the norm $\mid \|_{\alpha}(4.25)$ for a special α in \mathscr{P}. For h in $S\left(\mathscr{g}_{0}\right)_{\tilde{\chi}} \subset \mathscr{A}(T)(4.33)$, for α in \mathscr{P}, the norm $|h|_{\alpha}$ is given by the expression:

$$
\begin{align*}
|h|_{\alpha}= & \left|M_{\alpha}(h)\right|_{1}=\int_{W \times Y}\left|M_{\alpha}(h)(w+y)\right| d w d y \quad(W \text { as in } 4.17) \tag{5.1}\\
& =\int_{W \times Y}\left|\int \xi(D) h\left(D^{-1}(w)\right) e^{-i\langle D, y\rangle} d D\right| d w d y
\end{align*}
$$

Now $(\exp D)(w)=w+D(w)+\frac{1}{2} D^{2}(w) ; w \in W, D \in \mathbf{D}$.
As $D(w) \in Y+\mathbf{R} z$, put $D(w)=\sum_{i=1}^{k} a_{i}(D, w) y_{i}+b(D, w) z$.
Thus: $|h|_{\alpha}=\int_{W \times Y}\left|\int_{\mathbf{D}} \xi(\exp D) h(w) e^{-i\langle D, y\rangle-i b(D, w)+\frac{i}{2}\left\langle 1, D^{z}(w)\right\rangle} d D\right| d y d w$

$$
=\int_{W}|h(w)||\beta(w, y)| d y d w
$$

where $\beta(x, y)=\int_{D} \xi(\exp D) h(w) e^{-i\langle D, y\rangle-i b(D, w)+\frac{i}{2}\left\langle 1, D^{2}(w)\right\rangle} d D$.
We choose the function $\xi(\exp D)=e^{-|D|^{2}}$ where $|D|^{2}=\sum_{i=1}^{k} d_{i}^{2}$, if $D=\sum_{i=1}^{k} d_{i} D_{i}$.
(5.3) For $w \in W$, let $A(w)$ be the $k \times k$ matrix $\left\{a_{i j}(w)\right\}_{i, j=1}^{k}$ where $a_{i j}(w)=$ $\left\langle 1, D_{i} D_{j}(w)\right\rangle$.

As $D_{i} D_{j}=D_{j} D_{i} 1 \leqq j, i \leqq k$, it follows that the matrix $A(w)$ is symmetric and can thus be diagonalized. Let $U(=U(w))$ be an orthogonal matrix, such that $U^{-1} A U=T=\left\{t_{i j}\right\}_{1 \leqq i, j \leqq k}$ and $t_{i j}=\delta_{i j} c_{j}$.

Write $D=\sum_{i=1}^{k} d_{i} D_{i}$ and make the change of variables $D \rightarrow U(D)$ in $\beta(n, y)$. Then:

$$
\beta(w, y)=\int_{\mathrm{D}} e^{-|D|^{2}} e^{-i\langle U(D), y\rangle-i b(U(D), w)+\frac{i}{2}\left\langle l,(U(D))^{2}(w)\right\rangle} d D .
$$

But:

$$
\begin{equation*}
\left\langle l, \frac{1}{2} U(D)^{2}(w)\right\rangle=\sum_{j=1}^{k} d_{j}^{2} c_{j}\left(i f D=\sum_{j=1}^{k} d_{j} D_{j}\right) \tag{5.4}
\end{equation*}
$$

Let us put:

$$
\begin{equation*}
\left\langle D_{j}, U^{*}(y)\right\rangle+b\left(U\left(D_{j}, w\right)\right)=b_{j} \tag{5.5}
\end{equation*}
$$

Then:

$$
\begin{gathered}
\beta(w, y)=\prod_{j=1}^{k} \beta_{j}(w, y) \quad \text { where } \\
\beta_{j}(w, y)=\int_{-\infty}^{\infty} e^{-d_{j}^{2}+i\left(\frac{1}{2} c_{j} d_{j}^{2}-b_{j} d_{j}\right)} d(d j) . \text { As: }
\end{gathered}
$$

$$
\beta_{j}(w, y)=\int_{-\infty}^{\infty} \exp \left\{\left(-1+\frac{1}{2} i c_{j}\right)\left(u-\frac{1}{2}\left(\frac{i b_{j}}{1-\frac{1}{2} i c_{j}}\right)\right)^{2}+\frac{1}{4}\left(\frac{i b_{j}}{1-\frac{1}{2} i c_{j}}\right)^{2}\right\} d(d j)
$$

$$
=\left(1-\frac{1}{2} i c_{j}\right)^{-\frac{1}{2}} \exp \left\{\frac{1}{4}\left(\frac{i b_{j}}{1-\frac{1}{2} i c_{j}}\right)^{2}\right\}
$$

$$
\left|\beta_{j}(m, y)\right|=\exp \left\{-\frac{1}{4} b_{j}^{2} \cdot\left(1+\frac{1}{4} c_{j}^{2}\right)^{-1}\right\}\left(1+\frac{1}{4} c_{j}^{2}\right)^{-\frac{1}{4}}
$$

Thus $\quad|h|_{\alpha}=\int_{W}|h(w)| I_{j=1}^{k} \exp \left\{\left(-\frac{1}{4} b_{j}^{2}\left(1+\frac{1}{4} c^{2}\right)^{-1}\right)\right\}\left(1+\frac{1}{4} c_{j}^{2}\right)^{-\frac{1}{2}} d y d w$.
Make the changes of variables $y \rightarrow U(y)$ and $y_{j} \rightarrow y_{j}-b\left(U\left(D_{y}\right), w\right)$.
Then:

$$
\begin{gather*}
|h|_{\alpha}=\int_{W}|h(w)| \prod_{j=1}^{k} \int_{\mathrm{R}} \exp \left\{\left(-\frac{1}{4} y_{j}^{2}\right)\left(1+\frac{1}{4} c_{y}^{2}\right)\right\}\left(1+\frac{1}{4} c_{j}^{2}\right)^{-\frac{1}{2}} d y_{j} \tag{5.6}\\
=\int_{W}|h(w)| \prod_{j=1}^{k}\left(1+\frac{1}{4} c_{j}^{2}\right)^{\frac{1}{4}} d w
\end{gather*}
$$

The numbers $\left(1+\frac{1}{4} c_{j}^{2}\right)$ are the eigenvalues of the matrix

$$
1+\frac{1}{4} A^{2}(w)
$$

Thus:

$$
\begin{equation*}
|h|_{\alpha}=\int_{W}|h(w)|\left\{\operatorname{det}\left(1+\frac{1}{4} A(w)^{2}\right)\right\}^{\frac{1}{4}} d w \tag{5.7}
\end{equation*}
$$

Let us write:

$$
\begin{equation*}
\omega(w)=\operatorname{det}\left(1+\frac{1}{4} A(w)^{2}\right)^{\frac{1}{4}} \tag{5.8}
\end{equation*}
$$

As $\mathscr{S}\left(\mathscr{g}_{0}\right)_{\tilde{x}}$ is dense in $\mathscr{A}(T)$ we get:

$$
\begin{gather*}
\mathscr{A}(T)=\left\{\left.h \in L^{1}\left(g_{0}\right) \tilde{x}| | h\right|_{\alpha}=\int_{W}|h(w)| \omega(w) d w<\infty\right\} \tag{5.9}\\
=\left\{\left.h \in L^{1}(W)| | h\right|_{\omega}=\int_{W}|h(w)| \omega(w) d w<\infty\right\}
\end{gather*}
$$

(5.10) Theorem: Let g be a nilpotent Lie group of step 3. Let $G=\exp _{g}$ be simply connected. Let $T \in \hat{G}$ and let $0=g^{*}$ be the G-orbit corresponding to T.

Let $g_{0}=g(l)+[g, g](l \in O)$.
Let d_{1}, \ldots, d_{k} be a supplementary basis of g to g_{0}.
For $w \in \mathscr{g}_{0}$, define the $k \times k$ matrix $A(w)$ by

$$
A(w)=\left\{a_{i j}(w)\right\}_{i j}=\left\{\left\langle l,\left[d_{i},\left[d_{j}, w\right]\right]\right\rangle\right\}_{i, j}
$$

Let $\quad \omega(w)=\left(\operatorname{det}\left(1+\frac{1}{4} A(w)^{2}\right)\right)^{\frac{1}{4}}$.
Let Q_{ω} be the set of polynomials q on g_{0} such that $q \cdot \omega^{-1}$ is bounded on g_{0}.
There exists an inclusion reversing bijection between $\mathscr{I}\{T\}$ and the space Q_{ω} (inv) of the translation invariant subspaces of Q_{ω} different from (0).

Proof. If $T\left([[G, G], G]=\mathrm{Id}_{\chi \pi}, A(w)\right.$ is the O-matrix and $\mathscr{I}_{\{T\}}=\{\operatorname{ker} \pi\}$.
The theorem is then obvious.
We may thus suppose that T is not trivial on $[[G, G], G]$. By (3.12) $\mathscr{I}_{\{T\}}$ is isomorphic with $\mathscr{I}_{\tilde{\sigma}_{0}}^{G}$.

Under the canonical isomorphism from $L^{1}\left(g_{0}\right)_{\tilde{z}} \rightarrow L^{1}(W)$ (4.17) the dual vectorspace of $L^{1}\left(g_{0}\right)_{\tilde{x}}$ is $L_{\omega}^{\infty}(W)=\left\{\varphi: W \rightarrow \mathbf{C} \mid \varphi\right.$ measurable $\varphi \cdot \omega^{-1}$ bounded $\}$

Let $l \in W^{*}$ be the restriction of l to W.
If $I \in \mathscr{I}_{\left\{\sigma_{0\}}\right\}}^{G}$ then $b(I) \subset \mathscr{I}_{\{t\}}$: (see 4.31 for the definition of b) because for any $\alpha=\alpha_{\xi} \in \mathscr{P}, f \in I_{\alpha}$,

$$
\begin{gathered}
\widehat{K(f)(D)}(\eta)=\xi(D) \int \bar{\xi}(D) \widehat{P\left(D^{-1} \cdot f\right)}(\tilde{l}) d D^{\prime} \\
=\xi(D) \int \overline{\xi\left(D^{\prime}\right)} \widehat{D^{\prime-1} \cdot f}(l) d D^{\prime}=\xi(D) \int \overline{\xi(D)^{\prime}} \hat{f} \cdot\left(D^{\prime} \cdot l\right) d D^{\prime}=0
\end{gathered}
$$

From (4.36) we see also that $b^{-1}\left(\mathscr{I}_{\{n)}\right) \subset \mathscr{I}_{\left\{\tilde{\sigma}_{0}\right\}}^{\mathrm{G}}$. Thus:

$$
\begin{equation*}
b\left(\mathscr{I}_{\left\{\tilde{o}_{0}\right\}}^{G}\right)=\mathscr{I}_{\{\imath\}} \tag{5.11}
\end{equation*}
$$

(5.12) The smallest ideal $j(\mathbb{Z})$ contained in $\mathscr{I}_{\{1\}}$ is the ideal generated by the elements h in $\mathscr{S}(W)$ whose Fourier transforms \hat{h} have compact support disjoint from the point $\{\tilde{l}\}$.

As $j(l)$ is contained in every element of $\mathscr{I}_{\{\{ \}}$, by Hahn - Banach:
(5.13) there exists an inclusion reversing bijection between the set $\mathscr{I}_{\{j\}}$ and the space of the translation invariant weak * closed subspaces of $L_{\omega}^{\infty}(W)$ contained in $\{j(\tilde{l})\}^{\perp}$ different from (0).

Let us denote this space by $\mathscr{I}_{\{i j}^{\infty}$.
If $\varphi \in I^{\perp}$ for some $I \in \mathscr{I}_{\{i l}$, then $\varphi \in j(\mathscr{l})^{\perp}$ and the restriction φ_{r} of φ to $\mathscr{S}(W)$ is a temperate distribution. The Fourier transform $\hat{\varphi}_{r}$ of φ_{r} is a temperate distribution of $\mathscr{S}\left(W^{*}\right)$ which annihilates every element k of $\mathscr{D}\left(W^{*}\right)$ with $k((\mathscr{l}))=0$ (5.12). Thus
(5.14) $\tilde{\varphi}=\sum_{j} c_{j} \delta_{\{j\}}^{(j)}$, where the c_{j} 's are constants and $\delta_{\{ \}}^{(j)}$ denotes the j-th derivative of the Dirac measure at the point $\{\}\}$ ([16]).

Thus:
(5.15) $\varphi(w)=e^{-i\langle l, w\rangle}\left(p(w)\right.$ where p denotes a polynomial on $\left.g_{0}\right)$.

As $\varphi \in L_{\omega}^{\infty}\left(g_{0}\right), p$ must be an element of Q_{ω}.
On the other hand, every p^{\prime} in Q_{ω} defines an element φ of $\left.j(l)\right)^{\perp}$ by (5.15). Thus there exists a bijection between $j(l){ }^{\perp}$ and Q_{ω} and the theorem follows from this. q.e.d
(5.16) Examples: Let $g_{r, k}$ be the Lie algebra with the basis elements

$$
d_{1}, \ldots, d_{k}, w_{1}, \ldots, w_{r}, y_{1}, \ldots, y_{k}, z . \quad(r \leqq k)
$$

Let $\xi_{r+1}, \ldots, \xi_{k}$ be elements of W^{*} different from 0 .
Let $\xi_{j}(1 \leqq j \leqq r)$ be defined by $\xi_{j}\left(w_{s}\right)=\delta_{j, s}, s=1, \ldots, r$.
The Lie multiplication of $g_{r, k}$ is given by:

$$
\begin{gathered}
{\left[d_{i}, w_{p}\right]=\xi_{i}\left(w_{p}\right) y_{i} ; 1 \leqq i \leqq k, 1 \leqq s \leqq r} \\
{\left[d_{i}, y_{j}\right]=\delta_{i j} z \quad 1 \leqq i, j \leqq k}
\end{gathered}
$$

g is a step 3 nilpotent Lie algebra.
Let $l \in g^{*}$, such that $l(z)=1$. Then:

$$
g_{0}=g(l)+[\mathscr{g}, g]=W+Y+\mathbf{R} z \quad\left(Y=\sum_{i=1}^{k} \mathbf{R} y_{i}\right)
$$

For $w \in W=\sum_{i=1}^{r} \mathbf{R} w_{i}$

$$
a_{i j}(w)=\left\langle l,\left[d_{i}\left[d_{j}, w\right]\right]\right\rangle=\delta_{i j} \xi_{j}(w) .
$$

Thus $\omega(w)=\operatorname{det}\left(1+\frac{1}{2} A(w)^{2}\right)=\prod_{y=1}^{k}\left(1+\frac{1}{2} \xi_{j}^{2}(w)^{1 / 4}\right)$.
If $r=k, w=\sum_{i=1}^{k} t_{i} w_{i}$

$$
\omega(w)=\Pi_{j=1}^{k}\left(1+\frac{t_{j}^{2}}{2}\right)^{\frac{1}{4}}
$$

Then $Q_{\omega}=\mathbf{R} 1$ and then T corresponding to 1 is a point of synthesis in $\hat{G}_{r, k}$. If $r<k, \xi_{r+1}=\sum_{j=1}^{r} a_{j} \xi_{j}$ and not all the a_{j} 's are zero.

So

$$
\left|\xi_{r+1}(w)\right| \leqq \sum_{j=1}^{r}\left|a_{y}\right|\left|\xi_{j}(w)\right| \leqq C\left(\sum_{j=1}^{r}\left|\xi_{j}(w)\right|^{2}\right)^{\frac{1}{2}} \leqq C^{\prime \prime}\left(\prod_{j=1}^{r}\left(1+\frac{1}{4}\left|\xi_{j}(w)\right|^{2}\right)^{\frac{1}{2}}\right)
$$

$$
\text { for some constants } C, C^{\prime}>0 .
$$

And

$$
\begin{gathered}
\left|\xi_{r+1}(w)\right|=\left|\xi_{r+1}(w)\right|^{\frac{1}{2}}\left|\xi_{r+1}(w)\right|^{\frac{1}{2}} \leqq C^{\prime \prime}\left(\prod_{j=1}^{r}\left(1+\left.\frac{1}{4} \xi_{j}(w)\right|^{2}\right)^{\frac{1}{4}}\right)\left(1+\frac{1}{4}\left|\xi_{r+1}(w)\right|\right)^{\frac{1}{2}} \\
\leqq C^{\prime \prime} \prod_{j=1}^{k}\left(1+\frac{1}{4}\left|\xi_{j}(w)\right|^{2}\right)^{\frac{1}{4}}=C^{\prime \prime} \omega(w) \quad \text { for some constant } C^{\prime \prime}>0 .
\end{gathered}
$$

Thus Q_{ω} contains an element, namely ξ_{r+1}, which is not a constant thus $T \in \hat{G}_{r, k}$ corresponding to 1 is not a set of synthesis.

If $r=1$

$$
\omega\left(t w_{1}\right)=\prod_{j=1}^{k}\left(1+C_{k} t^{2}\right)^{\ddagger} \quad \text { for some } C_{1}, \ldots, C_{k}>0 .
$$

Thus $w(t)=0\left(t^{\frac{k}{2}}\right)$ and thus $\operatorname{dim} Q_{\omega}=\left[\frac{k}{2}\right]+1$.
Furthermore $\operatorname{ker} T \geqq(\operatorname{ker} T)^{2} \supseteqq \ldots \supseteqq(\operatorname{ker} T)^{\left[\frac{k}{2}\right]+1}$ are the only elements of $\mathscr{I}_{\{T\}}$.

If $r=2, k=4$ and $\xi_{3}=\xi_{1}, \xi_{4}=\xi_{2}$ then:

$$
\omega\left(t_{1} w_{1}+t_{2} w_{2}\right)=\left(1+\frac{1}{2} t_{1}^{2}\right)^{\frac{2}{2}}\left(1+\frac{1}{2} t_{2}^{2}\right)^{\frac{1}{2}}=\left(1+\frac{1}{2}\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{1}{4} t_{1}^{2} t_{2}^{2}\right)^{\frac{1}{2}}
$$

Q_{ω} has the following basis: $\left\{1, t_{1}, t_{2}, t_{1} t_{2}\right\}$ and the elements of Q_{ω} (inv) are: $\left\{\mathbf{R}_{1}, \mathbf{R}\left(t_{1}+c t_{2}\right)+\mathbf{R}_{1}, \mathbf{R} t_{2}, Q_{w} \mid c \neq 0\right\}$.

Thus Q_{w} (inv) has an infinity of elements.

6. Final remarks

(6.1) The computations become much more difficult if G is no longer of step 3. No general results are known.
(6.2) In [12], it has been shown that for any point T in the dual of nilpotent connected Lie group, the algebra $\operatorname{ker}(T) / /_{(T)}$ is always nilpotent. The exact degree of nilpotency of this algebra is unknown (in general). It can be estimated by the degree of growth of G is T is in general position. (see [12]). Suppose now that there exists an ideal h in g, such that $\langle l,[h, h]\rangle=0\left(l\right.$ in the orbit O of T) and such that $l+h^{\perp} \subset O$.

Let $l_{0}=l_{l^{\hbar}}$ and $O_{0}=G \cdot l_{0} \subset h^{*}$.
Let $H=\exp h$. Using theorem 2.4 of [5], it can be shown that the degrees of nilpotency of $\operatorname{ker} T /_{j(T)}$ and $\operatorname{ker} O_{0} / j\left(o_{0}\right)$ coincide.

144 Jean Ludwig: On the spectral synthesis problem for points in the dual of a nilpotent Lie group

As $[h, h]$ is an ideal in g on which l disappears, we may as well suppose that $[h, h]=0$, that means that h is abelian.

The determination of the degree of nilpotency is thus reduced to the study of the G-orbit O_{0} of the element l_{0} in the dual of the abelian group h. It follows from [8] that the degree of nilpotency of $\operatorname{ker} O_{0} /_{j\left(O_{0}\right)}$ is less than $\operatorname{dim}\left[\frac{O_{0}}{2}\right]+1$.

References

1. Boibol, J. et. al., Räume primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1-13.
2. Brown, I. D., Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 Série 4 (1973), 407-411.
3. Dixmier, J., Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Etudes Sci. Publ. Math. 6.
4. Domar, Y., On the spectral synthesis problem for ($n-1$)-dimensional subsets of $\mathbf{R}^{n}, n \geqq 2$, Arkiv f. mat., 9 № 1.
5. Hauenschildt, W., Ludwig, J., The injection and the projection theorem for spectral sets. Mh. Math. 92, 167-177 (1981).
6. Hörmander, L., Linear Partial Differential Operators, Springer Verlag, 1976.
7. Kirillov, A. A., Unitary representations of nilpotent Lie groups, Uspehi Math. Nauk 17 (1962), 57-110.
8. Kirsch, W., Müller, D., Zum Syntheseproblem für Bahnen Lie'scher Gruppen im $\mathbf{R}^{\boldsymbol{n}}$, Arkiv f. mat. Vol 18 (1980) No 2.
9. Leptin, H., Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976), 259-278.
10. Ludwig, J., A class of Symmetric and a class of Wiener group algebras. J. Functional Analysis 31 (1979), 187-194.
11. Ludwig, J., Polynomial growth and ideals in group algebras. Manuscripta Math. 30 (1980), 215-221.
12. Ludwig, J., On primary ideals in the group algebra of a nilpotent Lie group, to appear in Math. Ann.
13. Reiter, H., Classical Harmonic Analysis and Locally compact Groups, Oxford Clarendon Press 1968.
14. Hey, H. J., Ludwig, J., Der Satz von Helson - Reiter für spezielle nilpotente Lie-Gruppen, Math. Ann. 239 (1972), 207-218.
15. Howe, R. E., On a connection between nilpotent groups and oscillatory integrals, Pacific J. Math. 73 № 2 (1977), 329-363.
16. Schwartz, L., Thérie des Distributions, Hermann, Paris, 1966.
