On the spectral synthesis problem for points in the dual of a nilpotent Lie group

Jean Ludwig

1. Introduction

Let A be a *-semi-simple Banach algebra with involution *. One of the main problems concerning the structure of A is the determination of the space \mathscr{I} of the twosided closed ideals of A. Let $\operatorname{Prim}_*(A)$ be the space of the kernels of the topologically irreducible unitary representations of A equipped with the Jacobson topology. For I in \mathscr{I} , let $h(I) = \{J \in \operatorname{Prim}_*(A) | J \supset I\}$; (h(I) is a closed subset of $\operatorname{Prim}_*(A)$) and define for the closed subset C of $\operatorname{Prim}_*(A)$ the subset \mathscr{I}_C of \mathscr{I} by $\mathscr{I}_C =$ $\{I \in \mathscr{I} | h(I) = C\}$. The closed subset C of $\operatorname{Prim}_*(A)$ is called a set of spectral synthesis if \mathscr{I}_C consists only of one point, namely the ideal ker $C = \bigcap_{\mathscr{I} \in C} J$. The spectral synthesis problem has been most intensively studied for the algebra $A = L^1(G)$, where G is an abelian, locally compact group G. The first result was the famous theorem of N. Wiener who showed that the empty set is a set of synthesis in $\operatorname{Prim}_* L^1(\mathbb{R})$. The latest deep results are those of I. Domar. (see for instance [4]).

Almost nothing is known for the algebra $L^1(G)$ is G is not abelian. If G is a connected, simply connected nilpotent Lie group, the dual space \hat{G} is well known and thus also the space $\operatorname{Prim}_{+}(L^1(G))$.

Let φ be the Lie algebra of G and Ad* the coadjoint action of G on φ^* . By Kirillow's theorem and Brown's proof of the Kirillow conjecture ([7], [2]) \hat{G} is homeomorphic with the orbit space $\varphi^*/_{Ad*(G)}$ and [1] tells us that $\operatorname{Prim}_*(L^1(G)) \cong \varphi^*/_{Ad*(G)}$. Thus we may indentify the closed subsets C of $\operatorname{Prim}_*(L^1(G))$ with the closed G-invariant subsets of φ^* . $L^1(G)$ has a remarkable property: For every closed subset C of \hat{G} there exists a twosided ideal j(C) in $L^1(G)$ with the properties:

1) h(j(A)) = A; 2) j(A) is contained in every closed, twosided ideal I of $L^1(G)$ with $h(I) \subset A$ ([11]).

If G is a group of step 1 and of step 2 every point in \hat{G} is a set of spectral synthesis [9]. In this paper we show that in general a point is not a set of synthesis

if G is of step 3. Indeed, we are able to determine explicitly the spaces $\mathscr{I}_{\{T\}}$, for every $T \in \hat{G}$.

In general $\mathscr{I}_{\{T\}}$ contains an infinity of elements.

In [12] it has been shown that for every T in \hat{G} , the algebra ker $T_{j\{(T)\}}$ is nilpotent. The results of this paper make it possible to compute the degree of nilpotency of ker $T_{j\{(T)\}}$ if G is of step 3.

2. Let G be a connected and simply connected nilpotent Lie group and let g be the Lie algebra of G. The exponential mapping is a homeomorphism from g onto G.

We can thus define the Schwartz space S(G) to be the space of all functions f on G such that $f \circ \exp$ is contained in the ordinary Schwartz space S(g) of the rapidly decreasing smooth functions on the real vectorspace g.

S(G) is a dense *-subalgebra of $L^1(G)$. If I is any element of $\mathscr{I}, I \cap S(G)$ is a twosided closed ideal in S(G).

(2.1) Proposition. Let G be a connected, simply connected nilpotent Lie group. For every π in \hat{G} , ker $\pi \cap S(G)$ is dense in ker π .

Proof. We show first, that for every tempered distribution ω on S(G) which annihilates ker $\pi \cap S(G)$ and for every f_1 , f_2 in S(G), there exists a constant C>0 (depending on f_1 and f_2) such that

$$|\langle \omega, f_1 * f * f_2 \rangle| \leq C |\pi(f)|; \quad \forall f \in S(G).$$

 $(|\pi(f)|$ denotes the operatornorm of $\pi(f)$).

(2.2) There exists $k \in \mathbb{N}$ and a realization of π on $L^2(\mathbb{R}^k)$ such that:

a) For every f in S(G) the operator $\pi(f)$ on $L^2(\mathbb{R}^k)$ is described by a Schwartzkernel $K_{\pi}(f)$; that means: there exists a function $K_{\pi}(f)$ in $S(\mathbb{R}^k \times \mathbb{R}^k)$ so that:

$$(\pi(f)\xi)(x) = \int_{\mathbf{R}^k} K_{\pi}(f)(x, y)\xi(y) dy; \quad \forall \xi \in L^2(\mathbf{R}^k)$$
$$\forall x \in \mathbf{R}^k.$$

b) The mapping K_{π} : $S(G) \rightarrow S(\mathbf{R}^k \times \mathbf{R}^k)$ is surjective.

c) If $d\pi$ denotes the representation of the envelopping algebra $U(g)_{\rm C}$ corresponding to π on $L^2({\bf R}^k)$, then

 $d\pi(U(g)_{\mathbf{C}})$ is the algebra of differential operators with polynomial coefficients on \mathbf{R}^{k} . ([15] and [7])

Thus K_{π} defines an algebraical and topological isomorphism also denoted by K_{π} , of the Fréchet spaces $S(G)/_{S(G)\cap \ker \pi}$ and $S(\mathbb{R}^k \times \mathbb{R}^k)$. This allows us to define a tempered distribution $\tilde{\omega}$ on $S(\mathbb{R}^k \times \mathbb{R}^k)$ by:

$$\langle \tilde{\omega}, K_{\pi}(f) \rangle \coloneqq \langle \omega, f \rangle; f \in S(G).$$

There exists a continuous and bounded function w in $L^2(\mathbf{R}^k \times \mathbf{R}^k)$ and a differential operator D with polynomial coefficients such that

$$\langle \tilde{\omega}, g \rangle = \int_{\mathbf{R}^k \times \mathbf{R}^k} w(x, y) Dg(x, y) dx dy; \ g \in S(\mathbf{R}^k \times \mathbf{R}^k)$$

(see [16]).

Now if f_1 , f, $f_2 \in S(G)$, $x, y \in \mathbb{R}^k$:

$$K_{\pi}(f_1 * f * f_2)(x, y) = \int_{\mathbf{R}^k \times \mathbf{R}^k} K_{\pi} f_1(x, u) K_{\pi} f(u, v) K_{\pi}(v, y) du dv.$$

Thus: $DK_{\pi}(f_1 * f * f_2)(x, y) = \sum_{i,j=1}^N \int_{\mathbf{R}^k \times \mathbf{R}^k} F_i^1(x, u) K_{\pi}f(u, v) F_j^2(v, y) \, du \, dv$

for some F_i^1 , $F_j^2 \in S(\mathbf{R}^k \times \mathbf{R}^k)$. Taking

$$f_i^1, f_j^2 (i, j = 1, ..., N)$$
 in $S(G)$ with $K_{\pi}(f_i^1) = F_i^1; K_{\pi}(f_j^2) = F_j^2(i, j = 1, ..., N)$
we get:

we get:

$$\begin{aligned} |\langle \omega, f_1 * f * f_2 \rangle| &= \left| \int_{\mathbf{R}^k \times \mathbf{R}^k} w(x, y) \left(\sum_{\substack{i=1\\j=1}}^N K_\pi(f_i^1 * f * f_j^2) \right)(x, y) \, dx \, dy \right| \\ &\leq \sum_{i,j=1}^N |w|_2 |K_\pi(f_i^1 * f * f_j^2)|_2. \end{aligned}$$

As for any F in $S(\mathbf{R}^k \times \mathbf{R}^k)$, $|F_2|$ is the Hilbert — Schmidt norm of the operator defined by F on $L^2(\mathbf{R}^k)$ we have:

$$|\langle \omega, f_1 * f * f_2 \rangle| \leq \sum_{i, j=1}^N |w|_2 |\pi(f_i^1 * f * f_j^2)|_{\text{H.S.}} \leq \underbrace{\{\underbrace{\sum_{i, j}^N |\pi(f_i)|_{\text{H.S.}} \pi(f_j)\}}_C |\pi(f)|_{\text{H.S.}} |\pi(f)|_{\text{H.S.}} |\pi(f)|_{\text{H.S.}} \leq \underbrace{\{\underbrace{\sum_{i, j=1}^N |\pi(f_i)|_{\text{H.S.}} \pi(f_j)\}}_C |\pi(f)|_{\text{H.S.}} |\pi(f)|_{\text{H.S.}} |\pi(f)|_{\text{H.S.}} \leq \underbrace{\{\underbrace{\sum_{i, j=1}^N |\pi(f_i)|_{\text{H.S.}} \pi(f_j)\}}_C |\pi(f)|_{\text{H.S.}} |\pi(f)|_{\text{H.S.}} |\pi(f)|_{\text{H.S.}} \leq \underbrace{\{\underbrace{\sum_{i, j=1}^N |\pi(f_i)|_{\text{H.S.}} \pi(f_j)\}}_C |\pi(f)|_{\text{H.S.}} |$$

Let now $\varphi \in L^{\infty}(G)$ with $\langle \varphi, \ker \pi \cap S(G) \rangle = 0$. Then: $|\langle \varphi, f_1 * f * f_2 \rangle| \leq C |\pi(f)|$; $\forall f \in S(G)$ (*C* depending on f_1 and f_2). Hence $\langle \varphi, f_1 * \ker \pi * f \rangle = 0$ for all $f_1, f_2 \in S(G)$ and so $\langle \varphi, \ker \pi \rangle = 0$. This implies (by Hahn — Banach):

ker
$$\pi \cap S(G)$$
 is dense in ker π .

q.e.d.

3. The determination of $\mathscr{I}_{\{T\}}$ for a point T in \hat{G} , if G is of step 3. From now on G will denote a connected and simply connected nilpotent Lie group of step 3, that means: if q is the Lie algebra of G,

$$\left[g, \left[g, g\right]\right] \neq 0; \quad \left[g, \left[g, \left[g, g\right]\right]\right] = 0.$$

Let T be a point in \hat{G} and denote by 0 the corresponding orbit in g^* .

Let x be the centre of g and x_0 a subspace of x contained in the kernel of an element l of O.

The subset $z_0^{\perp} = \{ \varrho \in \hat{G} | \varrho \text{ (exp } z_0 \} = Id_{\mathcal{H}\varrho} \}$ is closed in \hat{G} and a set of spectral synthesis in \hat{G} ([11]). Hence, as $T \in z_0^{\perp}$:

(3.1) Every element I of $\mathscr{I}_{\{T\}}$ contains ker (z_0^{\perp}) .

Let $\tilde{g}=g/_{z_0}$, $\tilde{G}=G/_{\exp z_0}$. As $T(\exp z_0)=Id$, T defines an element \tilde{T} of \tilde{G} . If p denotes the canonical projection from G onto \tilde{G}

 $T=\tilde{T}\circ p.$

As $L^1(\tilde{G}) = L^1(G)/_{\ker(\mathfrak{s}_0^{\perp})}$ it follows from 3.1 that.

(3.2) The map $I \rightarrow I \mod (\ker z_0^{\perp})$ is an inclusion preserving bijection from $\mathscr{I}_{\{T\}}$ onto $\mathscr{I}_{\{T\}}$.

If for $l \in O$; l([g, [g, g]]) = 0 and if we put $z_0 = [g, [g, g]]$, then \tilde{g} is an algebra of step 2 and so $[\tilde{T}]$ is a set of synthesis, thus:

$$\{\ker \overline{T}\} = \mathscr{I}_{\overline{T}} \text{ and hence}$$

 $\mathscr{I}_T = \{\ker T\}.$

We suppose from now on that $\langle l, [g, [g, g]] \rangle \neq 0$. It follows also from (3.2) that we can suppose that dim z=1.

Thus we have the following situation:

$$[g, [g, g]] = x \quad \text{and} \quad \dim x = 1.$$

We give now a detailed description of a nilpotent Lie algebra of step 3 satisfying (3.3).

Let $z \in \mathbb{Z} \setminus (0)$. Let $y_1, ..., y_k$ be elements of [g, g] such that $\{y_1, y_2, ..., y_k, z\}$ is a basis of [g, g].

As $[g, [g, g]] = \mathbf{R}z$, there exist $\varphi_1, ..., \varphi_k \in g^*$ such that

 $[u, y_i] = \varphi_i(u)z; \ \forall u \in \mathcal{G}, \quad i = 1, ..., k.$

(3.4) The φ_i 's are linearly independent:

if
$$\sum_{i=1}^{k} c_i \varphi_i = 0$$
 for some $c_1, ..., c_k \in \mathbb{R}$ then:
 $\left[u, \sum_i c_i y_i\right] = \left(\sum_{i=1}^{k} c_i \varphi_i(u)\right) z = 0$ for every $u \in g$.

Thus $\sum_{i=1}^{k} c_i y_i \in x$ and hence $c_1 = c_2 = \ldots = c_k = 0$. This implies:

(3.5) There exist x_1, \ldots, x_k in g, such that

$$[x_i, y_i] = \delta_{ij}z; \quad i, j = 1, ..., k.$$

(3.6) Let $k = \bigcap_{i=1}^{k} \ker \varphi_i$; then $k = \{u \in \mathcal{G} | [u, [\mathcal{G}, \mathcal{G}]] = 0\}$

For
$$l \in O$$
, let $g(l) = \{v \in g | \langle l, [v, g] \rangle = 0\}$.

(3.7) Let $g_0 = g(l) + [g, g]$. (g_0 depends only on O). We show now that:

(3.8) g_0 is the centre of h.

It is clear that [g, g] is in the centre of g. As $[g(l), [g, g]] \subset \ker l \cap z = 0$, g(l) is contained in h. As $[g, [h, h]] \subset [h, [g, h]] \subset [h[g, g]] = 0$.

$$(3.9) [h, h] \subset \mathbf{R}z$$

so $[g(l), h] \subset \ker l \cap \mathbf{R} z = 0$, thus

 $g(1)+[g,g]\subset \text{centre of }\hbar.$

There exists an element l_1 on O such that

$$l_1(y_i) = o; \quad i = 1, ..., k.$$

Let $v \in \text{centre of } h$; put $[x_i, v] = \sum_{j=1}^k c_{ij} y_j + c_i z$.

Then $\langle l_1, [x_i, v - \sum_{j=1}^k c_j y_j] \rangle = \langle l_1, [x_i, v] \rangle - \langle l_1, c_i z \rangle = c_i \langle l_1, z \rangle - c_i \langle l_1, z \rangle = 0$ as $[v - \sum_{y=1}^k c_j y_j, \hbar] = 0$ we see that $v - \sum_{j=1}^k c_j y_j \in \mathcal{G}(l_1)$ and so $v \in \mathcal{G}(l_1) + [\mathcal{G}, \mathcal{G}] = \mathcal{G}_0.$

This proves (3.8).

As $[h, h] \subset \mathbf{R}z$ (see 3.9):

(3.10) There exist u_i, v_j in & (i, j=1, ..., s) such that $\& = \sum_{i=1}^s \mathbf{R} u_i + \sum_{j=1}^s \mathbf{R} v_j + g_0$ and such that

$$[u_i, v_j] = \delta_{ij} z; \quad i, j = 1, ..., s.$$

(3.11) Let now O_0 be the restriction of O to g_0 , $O_0 = G(l/_{g_0})$ for any 1 in O. O_0 is a closed G-invariant subset of g_0^* .

Let $G_0 = \exp g_0$. G acts as a group of automorphisms on G_0 by restriction of the inner automorphisms to G_0 , so G acts on $L^1(G_0)$ too by the formula:

$$f^{g}(x) = f(g^{-1}xg); f \in L^{1}(G_{0}), x \in G_{0}, g \in G.$$

(3.12) For a closed subset C of \hat{G}_0 let \mathscr{I}_C^G be the set of all twosided closed ideals I of $L^1(G_0)$ with h(I)=C, which are G-invariant.

(3.13) Proposition: Let G be a connected and simply connected Lie group of step 3 satisfying (3.3). Let $T \in \hat{G}$. Let O be the G-orbit of T in g^* . If $T(\text{centre }(G)) \neq Id_{\mathcal{H}(T)}$, there exists an inclusion preserving bijection between $\mathcal{I}_{\{T\}}$ and $\mathcal{I}_{(O_{2})}^{G}$ (O_{0} as in (3.10)).

Proof. Let $l \in O$ satisfy: $l(y_j)=0, j=1, ..., k, l(x_i)=0, i=1, ..., k$. We verify immediately that, using (3.5): (3.14) The map: $[g, g] \rightarrow l + h^{\perp} \subset g^*$

 $v \rightarrow \langle l, [\cdot, v] \rangle$ is surjective.

(3.15) Denote by \mathbb{A}^{\perp} the set of the unitary characters of G which are trivial on $H = \exp \mathbb{A}$. For every $\chi \in \mathbb{A}^{\perp}$, zhere exists $v \in [g, g]$, such that $\chi(\exp x) = e^{-i\langle 1, [x, v] \rangle} \forall x \in g$ (this follows from 3.14). As $l + \mathbb{A}^{\perp}$ is a closed G-invariant subset of g^* , it defines a closed subset, also denoted $l + \mathbb{A}^{\perp}$, of \hat{G} .

(3.16) $l + k^{\perp}$ is a set of spectral synthesis by ([5], 5.3).

(3.17) Let $K = \ker (l + \mathbb{A}^{\perp}) \triangleleft L^{1}(G)$. If $z \in \operatorname{centre}(g)$ with $\langle l, z \rangle = 1$, then one computes easily that:

(3.18) $K = \{f \in L^1(G) | \int_{\mathbb{R}} f(g(\exp rz)) e^{-ir} dr = 0 \text{ for almost all } g \in G\}$ and that (3.19) for $f \in L^1(G), \chi \in \mathbb{A}^{\perp}$ one has using (3.18) (3.15) (3.5):

$$\chi \cdot f - f^{\exp v} \in K$$
 if $\chi = \chi(v)$ as in (3.15).

Let now O_1 be the restriction of O to h^* .

From (3.16) we see that K is contained in every element I of $\mathscr{I}_{\{T\}}$ as $T \in l + \mathbb{A}^{\perp}$. Thus (3.19) implies: $\chi \cdot I \subset I$ for every $\chi \in \mathbb{A}^{\perp}$, I in $\mathscr{I}_{\{T\}}$. [5] now implies that there exists an inclusive preserving bijection between $\mathscr{I}_{\{T\}}$ and \mathscr{I}_{O}^{G} .

Now again the map: $g_0 \rightarrow l|_{g_0} + g_0^{\perp} \subset h^*$, $u \rightarrow \langle l|_{g_0}$, $[\cdot, u] \rangle$ is surjective (by 3.10). We can use similar arguments as above, to get: there exists an inclusion preserving bijection between

 $\mathscr{I}_{O_1}^G$ and $\mathscr{I}_{O_0}^G$. q.e.d.

4. The determination of $\mathcal{I}_{O_n}^G$

Let g be as in (3.3) and g_0 as in (3.7).

(4.1) Let $D_i = adx_{i|g_0}$; i=1, ..., k, $(x_i \text{ as in } 3.5)$.

The $D'_i s$ are linearly independent and commuting endomorphisms of g_0 .

Let $\mathbf{D} = \sum_{i=1}^{k} \mathbf{R} D_i$ and let $\overline{\mathbf{D}} = \exp \mathbf{D} \subset Gl(g_0)$.

(4.2) We can realize the 2k+1-dimensional Heisenberg group H_k by defining: $H_k = \overline{\mathbf{D}}X[\mathscr{G}, \mathscr{G}]$ and defining the multiplication of H_k by: $(D, u) \cdot (D', u') = (D \cdot D', u + D(u')); D, D' \in \overline{\mathbf{D}}, u, u' \in [\mathscr{G}, \mathscr{G}]$. The group H_k acts as a group of diffeomorphisms on \mathscr{G}_0 by the formula:

(4.3)
$$(D, u)(x) = D(x) + u$$

(4.4) Now as g_0 is abelian, we may identify the additive group g_0 with G_0 and so $L^1(G_0) = L^1(g_0)$.

We define the (isometric) action of H_k on $L^1(\mathcal{G}_0)$ by:

(4.5)
$$((D, u) \cdot f)(x) = f((D, u)^{-1}(x)); (D, u) \in H_k; f \in L^1(g_0), x \in g_0.$$

On the spectral synthesis problem for points in the dual of a nilpotent Lie group 133

(4.5) allows us to define a representation of $L^1(H_k)$ on $L^1(\mathcal{G}_0)$:

(4.6)
$$\alpha \circ f = \int_{H_k} \alpha(h) h \cdot f \, dh; \ \alpha \in L^1(H_k), \ f \in L^1(\mathcal{G}_0)$$

(4.7) Let $K_0 = \ker (l_0 + z^{\perp}) (l_0 = l|_{a_0}, l \in 0)$

(4.3) tells us that K_0 is invariant under the action of H_k (and of course of G also)

(4.8) Let $L^1(g_0)_{\chi}$ be the algebra of all measurable functions f on g_0 satisfying

1)
$$f(x+rz) = e^{ir}f(x), \forall r \in \mathbb{R}$$
 for almost all $x \in \mathcal{G}_0$

2)
$$|f|_1 = \int_{\mathscr{G}_0/\mathbf{R}_2} |f(x)| \, dx < \infty$$

with the multiplication defined by:

$$f * g(x) = \int_{\mathscr{G}_0/\mathbf{R}_z} f(y)g(-y+x) \, dy, \ f, \ g \in L^1(\mathscr{G}_0)_{\chi}; \ x \in \mathscr{G}_0.$$

The map $P_{\chi}: L^1(\mathcal{G}_0) \to L^1(\mathcal{G}_0)_{\chi}$

 $P_{\chi}f(x) = \int_{\mathbf{R}} f(x+rz)e^{-ir}dr$ is a continuous surjective homomorphism. Thus: (4.9) $L^{1}(\mathcal{G}_{0})/_{K_{0}}$ is isometrically isomorphic with $L^{1}(\mathcal{G}_{0})_{\chi}$.

The dual space of $L^1(\mathcal{G}_0)_{\chi}$ is of course homeomorphic with the subspace $l_0 + z^{\perp}$ of \mathcal{G}_0^* . Let $\tilde{\mathcal{O}}_0$ denote the image of \mathcal{O}_0 in $L^1(\mathcal{G}_0)_{\chi}^{\wedge}$.

(4.10) The map: $I \rightarrow I \mod K_0$ is an inclusion preserving bijection between $\mathscr{I}_{\mathcal{O}_h}^G$ and $\mathscr{I}_{\mathcal{O}_h}^G$.

Let us return for one moment to H_k .

It is well known that there exists exactly one representation π of H_k^{\wedge} with $\pi(\exp rz) = e^{-ir} Id(r \in \mathbf{R})$.

Let $J = \ker \pi$. Then:

(4.11) ker $\pi = \{\alpha \in L^1(H_k) | \int \alpha((D, u+rz)) e^{-ir} dr = 0$, for almost all $(D, u)\}$. Using (4.11) and (4.5) one computes easily that:

 $(4.12) \text{ ker } \pi \circ L^1(\mathcal{G}_0) \subset K_0.$

Thus we can define a representation of $L^1(H_k)_{\chi} = L^1(H_k)_{/J}$ on $L^1(\mathcal{G}_0)_{\chi}$ by the formula (4.6).

The algebra $L^1(H_k)_{\chi}$ has many projectors:

(4.13) Let ψ be the character of $\mathbf{R}z + Y(Y = \sum_{i=1}^{k} \mathbf{R}y_i)$: $\psi(y+rz) = e^{-ir}$, $y \in Y$, $r \in \mathbf{R}$.

If $\pi = \operatorname{ind}_{[g,g]}^{H_k} \psi$, π acts on $L^2(\mathbf{R}^k)$ and π fulfils the conditions of (1.1).

For
$$fin S(H_k)$$
: $K_{\pi}(f)(D, D') = \int_{Y+\mathbf{R}_z} f(D'^{-1} \cdot D, u) e^{i\langle D', u \rangle} du; D, D' \in \overline{\mathbf{D}};$

here $\langle D, u' \rangle = \Sigma d_i u'_i - u'_0$, if $D = \exp(\Sigma d_i D_i)$ and $u' = \sum_{i=1}^k u'_i y_i + u'_0 z$.

(4.14) For $\xi \in S(\overline{\mathbf{D}})$, $|\xi|_2 = 1$, let α_{ξ} be the (unique) element of $S(H_k)_{\chi} = S(H_k)/_{\ker \pi \cap S(H_k)}$ with $K_{\pi}(\alpha_{\xi}) = \xi \otimes \overline{\xi}$, that means: $\pi(\alpha_{\xi})$ is the projector on $\mathbf{C}\xi$. Thus α_{ξ} is a projector in $L^1(H_k)_{\chi}$.

(4.15) Let \mathscr{P} be the set of all α_{ξ} in $S(H_k)_{\chi}$, such that $\pi(\alpha_{\xi})$ is a one dimensional projector (on the subspace $C\xi$, $|\xi|_2=1$) As $\{\pi\}$ is a set of synthesis in $\hat{H}_k([9])$, for every $\alpha \in \mathscr{P}$, the ideal $L^1(H_k)_{\chi} * \alpha * L^1(H_k)_{\chi}$ is dense in $L^1(H_k)_{\chi}$.

(4.16) Let $L^1(\mathcal{G}_0)_{\tilde{\chi}}$ be the algebra of all the measurable functions h on \mathcal{G}_0 satisfying:

1)
$$h(x+y+rz) = e^{ir}h(x)$$
; for all $y \in Y$, $r \in \mathbb{R}$ for almost all $x \in g_0$.

2)
$$\int_{\mathscr{I}_{0/\mathbb{R}_{z+Y}}} |h(x)| \, dx = |h|_1 < \infty$$

(4.17) Remark: Let W be a subspace of $\mathscr{G}(l)$ such that $W \cap (Y + \mathbf{R}z) = 0$ and such that $\mathscr{G}_0 = W + (Y + \mathbf{R}z)$; then the restriction map $f - f/_W$ is an isometric isomorphism of the algebra

$$L^{1}(g_{0})_{\tilde{\chi}}$$
 onto $L^{1}(W) = L^{1}(g(l) + [g, g]/[g, g]).$

(4.18) Let $C = C(\overline{\mathbf{D}}, L^1(\mathcal{G}_0)_{\tilde{\mathbf{z}}})$ be the Banach algebra of all bounded continuous functions from $\overline{\mathbf{D}}(\cong \mathbf{R}^k)$ into $L^1(\mathcal{G}_0)_{\tilde{\mathbf{z}}}$ (with pointwise multiplication).

Let C_{∞} be the closed subalgebra of the functions vanishing at infinity.

(4.19) Let p be the projection from $L^1(g_0)_{\chi}$ onto $L^1(g_0)_{\chi}$ defined by:

$$p(f)(x) = \int_{Y} f(x+y) dy$$

(4.20) Proposition: The map $K: L^1(\mathcal{G}_0)_{\chi} \to C(\overline{\mathbf{D}}, L^1(\mathcal{G}_0)_{\chi})$

$$Kf(D) = p(D^{-1} \cdot f)$$

is a continuous and injective homomorphism of

$$L^1(g_0)_{\chi}$$
 into C_{∞} .

Proof. As for any $f \in L^1(\mathcal{G}_0)_{\chi}$, $D \in \overline{\mathbf{D}}$, $|Kf(D)|_1 = |p(D^{-1} \cdot f)|_1 \le |D^{-1} \cdot f|_1 = |f|_1$, K is a bounded operator.

If $\{D_n\}$ is a sequence in $\overline{\mathbf{D}}$, converging to D, $D_n^{-1} \cdot f$ converges to $D^{-1} \cdot f$ in $L^1(\mathcal{G}_0)_{\chi}$, for any f, and so $K(f)(D_k)$ converges to K(f)(D); thus K(f) is continuous for any f. It is clear that K is a homomorphism.

For $(D', u') \in H_k$, $f \in L^1(\mathcal{G}_0)_{\chi}$:

$$K((D', u') \cdot f)(D) = p((D^{-1} \cdot (D', u')) \cdot f) = p((D^{-1} \cdot D', D^{-1} \cdot u')f).$$

For x in g_0 , we have:

$$p((D^{-1} \cdot D', D^{-1}u') \cdot f)(x) = \int_{Y} f((D'^{-1} \cdot D(x+y) - D'^{-1}(u')) dy$$
$$= \int_{Y} f(D'^{-1} \cdot D(x+y-u') + \langle D, u' \rangle z) dy$$
$$= e^{i\langle D, u' \rangle} \int_{Y} f(D'^{-1} \cdot D(x+y)) dy = e^{i\langle D, u' \rangle} K f(D'^{-1} \cdot D)(x)$$

if $\langle D, u' \rangle = \sum_{i=1}^{k} d_i u'_i - u'_0$, where $D = \exp\left(\sum_{i=1}^{k} d_i D_i\right)$ and

$$u' = \sum_{i=1}^{k} u'_i y_i + u'_0 z.$$

Thus:

(4.21)
$$K((D', u') \cdot f)(D) = e^{i\langle D, u' \rangle} Kf(D'^{-1} \cdot D); \ D, D' \in \overline{\mathbf{D}}, \ u' \in Y + \mathbf{R}z$$

For $\alpha \in L^1(H_k)_{\chi}$, we get:

$$K(\alpha \circ f)(D) = p\left(D^{-1} \int_{H^k} \alpha(D', u')(D', u') \cdot f \, du' \, dD'\right)$$
$$= \int_{\overline{\mathbf{D}}} \int_{\mathbf{R}^{z+Y}} \alpha(D', u') e^{i\langle D, u' \rangle} \, du') \, Kf(D'^{-1} \cdot D) \, dD' = \int_{\overline{\mathbf{D}}} \tilde{\alpha}(D, D') \, Kf(D') \, dD'.$$

(4.22) if we write
$$\tilde{\alpha}(D, D') = \int_{Y+\mathbb{R}_z} \alpha(D'^{-1} \cdot D, u') e^{i\langle D, u' \rangle} du'.$$

Thus

(4.23)
$$K(\alpha \cdot f) = \int_{\overline{D}} (K_{\pi} \cdot \alpha)(D, D') Kf(D') dD' \quad (\text{see}(4.13)).$$

As $S(H_k)_{\chi}$ is dense in $L^1(H_k)_{\chi}$ and as $L^1(H_k)_{\chi}$ has bounded approximate units we get:

(4.24)
$$K(S(H_k)_{\chi} \cdot L^1(g_0)_{\chi}) \text{ is dense in } K(L^1(g_0)_{\chi}).$$

On the other hand, if $\alpha \in S(H_k)_{\chi}$, it is clear from (4.21) (4.22) that $K(\alpha \cdot f) \subset C_{\infty}$ for every $f \in L^1(\mathcal{G}_0)_{\chi}$. Thus (4.23) implies that $K(L^1(\mathcal{G}_0)_{\chi}) \subset C_{\infty}$.

We show now that K is injective.

If K(f)=0 for some f in $L^1(g_0)_{\chi}$ then for almost all x in g_0 , for all D in $\overline{\mathbf{D}}$:

q.e.d.

$$0 = (Kf(D))(D^{-1}(x)) = \int_Y f(x+D)(y) \, dy = \int_Y e^{i\langle D, y \rangle} f(x+y) \, dy.$$

But then $f(x) \equiv 0$ for almost all x in g. Thus K is injective

(4.25) Proposition: There exists a subalgebra $\mathscr{A}(T)$ in $L^1(\mathscr{G}_0)_{\tilde{\chi}}$, such that for every $\alpha = \alpha_{\xi} \in \mathscr{P}$:

$$K(\alpha \circ L^1(\mathscr{G}_0)_{\mathbf{x}}) = \xi \otimes \mathscr{A}(T).$$

 $\mathscr{A}(T)$ is a Banach algebra under the equivalent norms $| |_{\alpha}$:

$$|h|_{\alpha} = |f|_1$$
 if $K(f) = \xi \otimes h$ and $f \in \alpha \cdot (L^1(g_0))_{\chi}$ $(\alpha = \alpha_{\chi} \in \mathscr{P}).$

Proof: For $\alpha \in \mathcal{P}$, $I_{\alpha} = \alpha \cdot I$ is a closed subspace of $L^{1}(\mathcal{G}_{0})_{\chi}$ for every twosided closed ideal in $L^{1}(\mathcal{G}_{0})_{\chi}$ (as $\alpha * \alpha = \alpha$).

(4.26) Put $L^1_{\alpha} = (L^1(\varphi_0)_{\alpha})_{\alpha}$. For $f \in L^1_{\alpha}$, $\alpha \cdot f = f$ and thus by (4.23)

$$K(f)(D) = \int K_{\pi}(\alpha)(D, D') K(f)(D') dD' = \xi(D) \cdot \int_{\mathbb{R}^k} \overline{\xi(D')} K(f)(D') dD', \text{ if } \alpha = \alpha_{\xi}.$$

Put $\mathscr{A}(T)_{\alpha} = \{h \in L^{1}(\mathscr{G}_{0})_{\chi} |$ there exists f in L^{1}_{α} with $h = \int_{\mathbb{R}^{k}} \overline{\zeta(D')} K f(D') dD' \}$. Then $\zeta \otimes \mathscr{A}(T)_{\alpha} \supset K(L^{1}_{\alpha})$. If on the other hand $h = \int_{\mathbb{R}^{k}} \overline{\zeta(D')} K f(D') dD' \in \mathscr{A}(T)_{\alpha}$, then for $f' = \alpha \cdot f \in L^{1}_{\alpha}$:

$$K(f') = \xi \otimes \int_{\mathbf{R}^k} \overline{\xi(D')} Kf(D') dD' = \xi \otimes h.$$

Thus $\xi \otimes \mathscr{A}(T)_{\alpha} = K(L^{1}_{\alpha}).$

(4.26) If α' is another element of \mathscr{P} and $\alpha' = \alpha'_{\xi'}$ $(|\xi'|_{\alpha} = 1)$ then there exists $\beta \in S(H_k)_{\chi}$ such that

$$\pi(\beta)\xi = \xi'.$$
 ([15]).

Let $h \in \mathscr{A}(T)_{\alpha}$. There exists $f \in L^{1}_{\alpha}$, such that $Kf = \xi \otimes h$. Let $f' = \alpha' * \beta \circ f = \alpha' \cdot (\beta \circ f)$. Then:

(4.27)
$$f' \in L^{1}_{\alpha'} \text{ and } Kf'(D) = \int K_{\pi}(\alpha' * \beta)(D, D')Kf(D')dD'$$
$$= \left(\int K_{\pi}(\alpha' * \beta(D, D')\xi(D')dD'\right) \cdot h = \left(\pi(\alpha' * \beta)\xi(D) \cdot h = \xi'(D) \cdot h\right).$$

Thus $h \in \mathscr{A}(T)_{\alpha'}$.

We see that $\mathscr{A}(T)_{\alpha}$ is independent of α in \mathscr{P} ; we write $\mathscr{A}(T)$ from now on. If h, h' are in $\mathscr{A}(T)$ and f, f' are in L^{1}_{α} with

$$K(f) = \xi \otimes h, \ K(f') = \xi \otimes h', \ (\alpha = \alpha_{\xi}),$$

then $K(f*f') = \xi^2 \otimes h * h' = \xi' \otimes |\xi^2|_2 h * h'$, if $\xi' = |\xi^2|_2^{-1} \cdot \xi^2$. (4.28) As $\xi' \in S(\mathbf{R}^k)$, there exists $\alpha' \in \mathscr{P}$ with $\alpha' = \alpha'_{\xi'}$. Thus $h * h' \in \mathscr{A}(T)_{\alpha'} = \mathscr{A}(T)$ and so $\mathscr{A}(T)$ is an algebra.

(4.29) The map $M_{\alpha}: \mathscr{A}(T) \to L^{1}_{\alpha}; (\alpha \in \mathscr{P} \cap S(H_{k})_{\chi})$

$$M_{\alpha}(h) = f$$
, if $f \in L^{1}_{\alpha}$ and $K(f) = \xi \otimes h$; $(\alpha_{\xi} = \alpha)$,

is well defined (as K is injective).

As L^1_{α} is closed, if we provide $\mathscr{A}(T)$ with the norm $| |_{\alpha}$:

$$|h|_{\alpha} = |M_{\alpha}(h)|_{1}$$

 $\mathscr{A}(T)$ becomes a *Banach space*.

Take another element $\alpha' = \alpha'_{\xi'}$ in \mathscr{P} and let $\beta \in S(H_k)$ be such that:

$$\pi(\beta)\xi=\xi'.$$

Then for any $h \in \mathscr{A}(T)$:

$$M_{\alpha'}(h) = (\alpha' * \beta) \circ M_{\alpha}(h) \quad (4.27).$$

Thus $|h|_{\alpha'} \leq |\alpha' * \beta|_1 \cdot |h|_{\alpha}$. This shows that the norms $||_{\alpha} (\alpha \in \mathscr{P})$ are all *equivalent*. If α' is as in (4.28) then for $h, h' \in \mathscr{A}(T)$:

$$\begin{split} |(h*h')|_{\alpha} &\leq C|h*h'|_{\alpha} = C|M_{\alpha'}(h*h')|_{1} \\ &= C|M_{\alpha}(h)*M_{\alpha}(h')| \leq C|M_{\alpha}(h)|_{1} \cdot |M_{\alpha}(h')|_{1} \leq C|h|_{\alpha} \circ |h'|_{\alpha} \end{split}$$

(for some C > 0, as $| |_{\alpha}$ is equivalent to $| |_{\alpha'}$).

Thus $\mathscr{A}(T)$ is a Banach algebra.

(4.30) Proposition: There exists an inclusion preserving bijection between the set of the G-invariant closed ideals in $L^1(g_0)_{\chi}$ and the set of the closed ideals in $\mathcal{A}(T)$.

q.e.d.

Proof. Let \mathscr{I}^G denote the first set and \mathscr{I} denote the second set. Define the map $b_{\alpha}: \mathscr{I}^G \to \mathscr{I}$ by

$$\xi \otimes b_{\alpha}(I) = K(I_{\alpha}) (\alpha = \alpha_{\xi} \in \mathscr{P}).$$

As $M_{\alpha}(b(I)) = I_{\alpha}$, $b_{\alpha}(I)$ is a closed subspace of $\mathscr{A}(T)$; If $\alpha' = \alpha'_{\xi'}$ is another element of \mathscr{P} we have:

$$(\alpha' * \beta) \cdot (I_{\alpha}) \subset I$$
 (β as in 4.26) and so

 $\alpha' \cdot (\beta \cdot I_{\alpha}) \subset I_{\alpha'}.$

Thus

$$\xi' \otimes b_{\alpha'}(I) = K'(I_{\alpha'}) \supset K(\alpha' \circ (\beta \circ I_{\alpha})) = \xi' \otimes b_{\alpha}(I).$$

(4.31) This shows that $b_{\alpha}(I)$ is in fact independent of α . We write b(I) from now on.

If $h \in \mathscr{A}(T)$ and $h' \in b(I)$, then for α, α' as in (4.28) $L^1_{\alpha'} \supset M_{\alpha'}(h * h') = M_{\alpha}(h) * M_{\alpha}(h') \subset L^1(\mathscr{G}_0)_{\chi} * I \subset I.$

Thus $h * h' \in b_{\alpha'}(I) = b(I)$. This shows that b(I) is an *ideal*; b is thus well *defined*. b is injective: if I and I' are in \mathscr{I}^G with b(I) = b(I'), then: for any $\alpha \in \mathscr{P} : \alpha * I = \alpha * I'$ thus

$$\alpha * (L^1(g_0)_{\chi} * I) = \alpha * (L^1(g_0) * I' \text{ and}$$

$$\left(L^1(\mathcal{G}_0)_{\chi} * \alpha * L^1(\mathcal{G}_0)_{\chi}\right) * I = \left(L^1(\mathcal{G}_0)_{\chi} * \alpha * L^1(\mathcal{G}_0)_{\chi}\right) * I'.$$

But $\overline{L^1(g_0)_{\chi} \ast \alpha \ast L^1(g_0)_{\chi}} = L^1(g_0)_{\chi}$ (4.15).

Thus I=I' (as $L^1(\mathcal{G}_0)_{\chi}$ has bounded approximate units). b is surjective: Let E be a closed ideal in $\mathcal{A}(T)$.

Let *I* be the closure of the vectorspace generated by the spaces $M_{\alpha}(E)$; $(\alpha \in \mathscr{P})$. As $K(L^{1}_{\alpha} * M_{\alpha'}(E)) = (\xi \otimes \mathscr{A}(T)) \cdot (\xi' \otimes E) = \xi \cdot \xi' \otimes A(T) * E \subset \xi \cdot \xi' \otimes E$

$$(\alpha = \alpha_{\xi} \text{ and } \alpha' = \alpha'_{\xi'} \in \mathscr{P})$$

we see that I is a (closed) ideal in $L^1(g_0)_{\chi}$.

(4.32) As $K(\alpha' \cdot M_{\alpha}(E)) = \langle \xi, \xi' \rangle_{L^{2}(\mathbb{R}^{k})} \xi' \otimes E$

we see that $\alpha' \cdot I \subset I$ and so I is also G-invariant. (4.23) too shows that b(I) = E.

Thus b is surjective.

It is clear that b is inclusion preserving.

q.e.d.

(4.33) Proposition: $S(g_0)_{\tilde{\chi}}$ is contained in $\mathscr{A}(T)$ and dense in $\mathscr{A}(T)$. Hence $\mathscr{A}(T)$ is dense in $L^1(g_0)_{\tilde{\chi}}$.

Proof. From the equation:

 $(Kf)(D)(x) = \int_{Y} f(D(x+y)) dy$ it is clear that:

(4.34)

$$K(S(\mathscr{G}_0)_{\chi}) \subset S(\mathbf{D}) \,\widehat{\otimes}\, S(\mathscr{G}_0)_{\chi} \big(\simeq S(\mathbf{D} \times W); W \text{ as in } (4.17)\big).$$

Let now F in $S(\overline{\mathbf{D}}) \otimes S(g_0)_{\chi}$.

Define the function M(F) on g_0 by:

(4.35)
$$M(F)(x) = \int_{\overline{D}} F(D, D^{-1}(x)) dD.$$

Let W be as in 4.17. $(g_0 \cong W \oplus Y \oplus \mathbf{R}z)$. The formula:

(4.36)
$$M(F)(w+y+rz) = \int_{\overline{D}} F(D, D^{-1}(x)) e^{-i\langle D, y \rangle + ir} dD$$

proves that $M(F) \in S(g_0)_{\chi} \subset L^1(g_0)_{\chi}$.

Furthermore for $D \in \overline{\mathbf{D}}$, $x \in \mathcal{G}_0$:

$$(4.37) \qquad (K(M(F))(D))(x) = \int_{Y} MF(D(x+y))dy$$
$$= \int_{Y} M(F)(D^{-1}(x)+y)e^{i\langle D, y \rangle}dy = \int_{Y} \int_{D} F(D', D'^{-1}(D(x)+y))dDe^{-i\langle D, y \rangle}dy$$
$$= \int_{Y} \left(\int_{D} F(D', D'^{-1} \cdot D(x))e^{-i\langle D', y \rangle} dD' \right)e^{-i\langle D, y \rangle}dy$$
$$= F(D, x) \quad \text{(by the Fourier inversion formula)}$$

We see that $S(\overline{\mathbf{D}}) \otimes S(g_0)_{\mathbf{r}} \subset K(L^1(g_0)_{\mathbf{r}})$.

From this it follows easily that $S(\mathcal{G}_0)_{\tilde{\chi}}$ is contained in $\mathscr{A}(T)$. As $\alpha \circ S(\mathcal{G}_0)_{\chi}$ is dense in L^1_{α} , $S(\mathcal{G}_0)_{\tilde{\chi}}$ is then dense in $\mathscr{A}(T)(\alpha \in \mathscr{P})$. q.e.d

5. The determination of $\mathscr{A}(T)$

We give now an explicit formula for the norm $|\cdot|_{\alpha}$ (4.25) for a special α in \mathscr{P} . For h in $S(\mathscr{G}_0)_{\tilde{z}} \subset \mathscr{A}(T)$ (4.33), for α in \mathscr{P} , the norm $|h|_{\alpha}$ is given by the expression:

(5.1)
$$|h|_{\alpha} = |M_{\alpha}(h)|_{1} = \int_{W \times Y} |M_{\alpha}(h)(w+y)| \, dw \, dy \quad (W \text{ as in } 4.17)$$
$$= \int_{W \times Y} \left| \int \xi(D) h(D^{-1}(w)) e^{-i\langle D, y \rangle} \, dD \right| \, dw \, dy.$$

Now $(\exp D)(w) = w + D(w) + \frac{1}{2} D^2(w); w \in W, D \in \mathbf{D}.$

As $D(w) \in Y + \mathbb{R}z$, put $D(w) = \sum_{i=1}^{k} a_i(D, w) y_i + b(D, w) z$. (5.2)

Thus:
$$|h|_{\alpha} = \int_{W \times Y} \left| \int_{D} \xi(\exp D) h(w) e^{-i\langle D, y \rangle - ib(D, w) + \frac{i}{2} \langle 1, D^{2}(w) \rangle} dD \right| dy dw$$

$$= \int_{W} |h(w)| |\beta(w, y)| dy dw$$

where $\beta(x, y) = \int_{D} \xi(\exp D) h(w) e^{-|D|^2} where |D|^2 = \sum_{k=0}^{\infty} \frac{1}{2} \int_{D} \frac{1}{2} \int_{D}$

We choose the function $\xi(\exp D) = e^{-|D|^2}$ where $|D|^2 = \sum_{i=1}^k d_i^2$, if $D = \sum_{i=1}^k d_i D_i$. (5.3) For $w \in W$, let A(w) be the $k \times k$ matrix $\{a_{ij}(w)\}_{i,j=1}^k$ where $a_{ij}(w) = \langle 1, D_i D_j(w) \rangle$.

As $D_i D_j = D_j D_i$ $1 \le j, i \le k$, it follows that the matrix A(w) is symmetric and can thus be diagonalized. Let U(=U(w)) be an orthogonal matrix, such that $U^{-1}AU = T = \{t_{ij}\}_{1 \le i, j \le k}$ and $t_{ij} = \delta_{ij}c_j$.

Write $D = \sum_{i=1}^{k} d_i D_i$ and make the change of variables $D \rightarrow U(D)$ in $\beta(n, y)$. Then:

$$\beta(w, y) = \int_{\mathbf{D}} e^{-|D|^2} e^{-i\langle U(D), y \rangle - ib\langle U(D), w \rangle + \frac{i}{2} \langle l, \langle U(D) \rangle^2 \langle w \rangle \rangle} dD.$$

Jean Ludwig

 $\left\langle l, \frac{1}{2} U(D)^2(w) \right\rangle = \sum_{j=1}^k d_j^2 c_j (if D = \sum_{j=1}^k d_j D_j).$

But:

(5.4) Let us put: (5.5) Then:

$$\beta(w, y) = \prod_{j=1}^{k} \beta_j(w, y)$$
 where

 $\langle D_j, U^*(y) \rangle + b(U(D_j, w)) = b_j.$

$$\beta_j(w, y) = \int_{-\infty}^{\infty} e^{-d_j^2 + i(\frac{1}{2}c_j d_j^2 - b_j d_j)} d(dj).$$
 As:

$$\begin{split} \beta_j(w, y) &= \int_{-\infty}^{\infty} \exp\left\{ \left(-1 + \frac{1}{2} ic_j \right) \left(u - \frac{1}{2} \left(\frac{ib_j}{1 - \frac{1}{2} ic_j} \right) \right)^2 + \frac{1}{4} \left(\frac{ib_j}{1 - \frac{1}{2} ic_j} \right)^2 \right\} d(dj) \\ &= \left(1 - \frac{1}{2} ic_j \right)^{-\frac{1}{2}} \exp\left\{ \frac{1}{4} \left(\frac{ib_j}{1 - \frac{1}{2} ic_j} \right)^2 \right\}, \\ &|\beta_j(m, y)| = \exp\left\{ -\frac{1}{4} b_j^2 \cdot \left(1 + \frac{1}{4} c_j^2 \right)^{-\frac{1}{2}} \right\} \left(1 + \frac{1}{4} c_j^2 \right)^{-\frac{1}{4}}. \end{split}$$

Thus
$$|h|_{\alpha} = \int_{W} |h(w)| \prod_{j=1}^{k} \exp\left\{\left(-\frac{1}{4} b_{j}^{2} \left(1 + \frac{1}{4} c^{2}\right)^{-1}\right)\right\} \left(1 + \frac{1}{4} c_{j}^{2}\right)^{-1} dy dw.$$

Make the changes of variables $y \rightarrow U(y)$ and $y_j \rightarrow y_j - b(U(D_y), w)$. Then:

(5.6)
$$|h|_{\alpha} = \int_{W} |h(w)| \prod_{j=1}^{k} \int_{R} \exp\left\{\left(-\frac{1}{4}y_{j}^{2}\right)\left(1+\frac{1}{4}c_{y}^{2}\right)\right\} \left(1+\frac{1}{4}c_{j}^{2}\right)^{-4} dy_{j}$$

$$= \int_{W} |h(w)| \prod_{j=1}^{k} \left(1+\frac{1}{4}c_{j}^{2}\right)^{4} dw.$$

The numbers $\left(1 + \frac{1}{4}c_j^2\right)$ are the eigenvalues of the matrix

$$1+\frac{1}{4}A^2(w)$$

Thus:

(5.7)
$$|h|_{\alpha} = \int_{W} |h(w)| \left\{ \det \left(1 + \frac{1}{4} A(w)^{2} \right) \right\}^{\frac{1}{2}} dw$$

Let us write:

(5.8)
$$\omega(w) = \det\left(1 + \frac{1}{4}A(w)^2\right)^{\frac{1}{4}}$$

As $\mathscr{G}(g_0)_{\tilde{\chi}}$ is dense in $\mathscr{A}(T)$ we get:

(5.9)
$$\mathscr{A}(T) = \left\{ h \in L^{1}(\mathscr{G}_{0})_{\tilde{z}} | |h|_{\alpha} = \int_{W} |h(w)| \omega(w) \, dw < \infty \right\}$$
$$= \left\{ h \in L^{1}(W) | |h|_{\omega} = \int_{W} |h(w)| \omega(w) \, dw < \infty \right\}$$

(5.10) Theorem: Let \mathcal{G} be a nilpotent Lie group of step 3. Let $G = \exp \mathcal{G}$ be simply connected. Let $T \in \hat{G}$ and let $0 = \mathcal{G}^*$ be the G-orbit corresponding to T.

Let $g_0 = g(l) + [g, g]$ $(l \in O)$.

Let $d_1, ..., d_k$ be a supplementary basis of g to g_0 . For $w \in g_0$, define the $k \times k$ matrix A(w) by

$$A(w) = \{a_{ij}(w)\}_{ij} = \{\langle l, [d_i, [d_j, w]] \rangle\}_{i,j}.$$

Let $\omega(w) = \left(\det\left(1 + \frac{1}{4}A(w)^2\right)\right)^{\frac{1}{4}}$.

Let Q_{ω} be the set of polynomials q on g_0 such that $q \cdot \omega^{-1}$ is bounded on g_0 .

There exists an inclusion reversing bijection between \mathscr{I} {T} and the space $Q_{\omega}(inv)$ of the translation invariant subspaces of Q_{ω} different from (0).

Proof. If $T([[G, G], G] = Id_{\chi\pi}, A(w)$ is the O-matrix and $\mathscr{I}_{\{T\}} = \{\ker \pi\}$. The theorem is then obvious.

We may thus suppose that T is not trivial on [[G, G], G]. By (3.12) $\mathscr{I}_{\{T\}}$ is isomorphic with $\mathscr{I}_{\mathcal{O}_{\alpha}}^{G}$.

Under the canonical isomorphism from $L^1(\varphi_0)_{\vec{\lambda}} \to L^1(W)$ (4.17) the dual vectorspace of $L^1(\varphi_0)_{\vec{\lambda}}$ is $L^{\infty}_{\omega}(W) = \{\varphi \colon W \to \mathbf{C} | \varphi \text{ measurable } \varphi \cdot \omega^{-1} \text{ bounded} \}$

Let $l \in W^*$ be the restriction of l to W.

If $I \in \mathscr{I}_{\{\overline{O}_0\}}^G$ then $b(I) \subset \mathscr{I}_{\{\overline{I}\}}$: (see 4.31 for the definition of b) because for any $\alpha = \alpha_{\xi} \in \mathscr{P}, f \in I_{\alpha},$

$$\widehat{K(f)(D)}(\tilde{l}) = \xi(D) \int \overline{\xi}(D) \widehat{P(D^{-1} \cdot f)}(\tilde{l}) dD'$$
$$= \xi(D) \int \overline{\xi(D)} \widehat{D'^{-1} \cdot f}(l) dD' = \xi(D) \int \overline{\xi(D)'} \widehat{f} \cdot (D' \cdot l) dD' = 0$$

From (4.36) we see also that $b^{-1}(\mathscr{I}_{\{\bar{l}\}}) \subset \mathscr{I}_{\{\bar{G}_0\}}^G$. Thus:

$$(5.11) b(\mathscr{I}^{G}_{\{\vec{O}_{0}\}}) = \mathscr{I}_{\{i\}}$$

(5.12) The smallest ideal $j(\tilde{l})$ contained in $\mathscr{I}_{\{l\}}$ is the ideal generated by the elements h in $\mathscr{S}(W)$ whose Fourier transforms \hat{h} have compact support disjoint from the point $\{\tilde{l}\}$.

As j(l) is contained in every element of $\mathscr{I}_{\{l\}}$, by Hahn — Banach:

(5.13) there exists an inclusion reversing bijection between the set $\mathscr{I}_{\{l\}}$ and the space of the translation invariant weak * closed subspaces of $L^{\infty}_{\omega}(W)$ contained in $\{j(\tilde{l})\}^{\perp}$ different from (0).

Let us denote this space by $\mathscr{I}_{\{n\}}^{\infty}$.

If $\varphi \in I^{\perp}$ for some $I \in \mathscr{I}_{\{l\}}$, then $\varphi \in j(\tilde{l})^{\perp}$ and the restriction φ_r of φ to $\mathscr{S}(W)$ is a temperate distribution. The Fourier transform $\hat{\varphi}_r$ of φ_r is a temperate distribution of $\mathscr{S}(W^*)$ which annihilates every element k of $\mathscr{D}(W^*)$ with $k((\tilde{l}))=0$ (5.12). Thus

(5.14) $\tilde{\varphi} = \sum_{j} c_{j} \delta_{\{l\}}^{(j)}$, where the c_{j} 's are constants and $\delta_{\{\}}^{(j)}$ denotes the *j*-th derivative of the Dirac measure at the point $\{l\}$ ([16]).

Thus:

(5.15) $\varphi(w) = e^{-i\langle l, w \rangle}(p(w))$ where p denotes a polynomial on g_0 . As $\varphi \in L^{\infty}_{\omega}(g_0)$, p must be an element of Q_{ω} .

On the other hand, every p' in Q_{ω} defines an element φ of $j(\tilde{l})^{\perp}$ by (5.15). Thus there exists a bijection between $j(\tilde{l})^{\perp}$ and Q_{ω} and the theorem follows from this. q.e.d

(5.16) Examples: Let $g_{r,k}$ be the Lie algebra with the basis elements

$$d_1, ..., d_k, w_1, ..., w_r, y_1, ..., y_k, z. \ (r \le k)$$

Let $\xi_{r+1}, ..., \xi_k$ be elements of W^* different from 0. Let $\xi_j(1 \le j \le r)$ be defined by $\xi_j(w_s) = \delta_{j,s}, s = 1, ..., r$. The Lie multiplication of $g_{r,k}$ is given by:

$$\begin{split} [d_i, w_p] &= \xi_i(w_p) y_i; \ 1 \leq i \leq k, \ 1 \leq s \leq r; \\ [d_i, y_j] &= \delta_{ij} z \quad 1 \leq i, j \leq k. \end{split}$$

g is a step 3 nilpotent Lie algebra.

Let $l \in g^*$, such that l(z) = 1. Then:

$$g_0 = g(l) + [g, g] = W + Y + \mathbf{R}z \quad \left(Y = \sum_{i=1}^k \mathbf{R}y_i\right)$$

For $w \in W = \sum_{i=1}^{r} \mathbf{R} w_i$

$$a_{ij}(w) = \langle l, [d_i[d_j, w]] \rangle = \delta_{ij} \xi_j(w).$$

Thus $\omega(w) = \det \left(1 + \frac{1}{2} A(w)^2\right) = \prod_{y=1}^k \left(1 + \frac{1}{2} \xi_j^2(w)^{1/4}\right).$

If r = k, $w = \sum_{i=1}^{k} t_i w_i$

$$\omega(w) = \prod_{j=1}^k \left(1 + \frac{t_j^2}{2}\right)^{\ddagger}.$$

Then $Q_{\omega} = \mathbb{R}^1$ and then *T* corresponding to 1 is a point of synthesis in $\hat{G}_{r,k}$. If r < k, $\xi_{r+1} = \sum_{j=1}^r a_j \xi_j$ and not all the a_j 's are zero. On the spectral synthesis problem for points in the dual of a nilpotent Lie group 143

So

$$|\xi_{r+1}(w)| \leq \sum_{j=1}^{r} |a_{y}| |\xi_{j}(w)| \leq C \left(\sum_{j=1}^{r} |\xi_{j}(w)|^{2} \right)^{\frac{1}{2}} \leq C'' \left(\prod_{j=1}^{r} \left(1 + \frac{1}{4} |\xi_{j}(w)|^{2} \right)^{\frac{1}{2}} \right)$$

for some constants C, C' > 0.

And

$$\begin{aligned} |\xi_{r+1}(w)| &= |\xi_{r+1}(w)|^{\frac{1}{2}} |\xi_{r+1}(w)|^{\frac{1}{2}} \leq C'' \left(\prod_{j=1}^{r} \left(1 + \frac{1}{4} |\xi_{j}(w)|^{2} \right)^{\frac{1}{2}} \right) \left(1 + \frac{1}{4} |\xi_{r+1}(w)| \right)^{\frac{1}{2}} \\ &\leq C'' \prod_{j=1}^{k'} \left(1 + \frac{1}{4} |\xi_{j}(w)|^{2} \right)^{\frac{1}{2}} = C'' \omega(w) \quad \text{for some constant } C'' > 0. \end{aligned}$$

Thus Q_{ω} contains an element, namely ξ_{r+1} , which is not a constant thus $T \in \hat{G}_{r,k}$ corresponding to 1 is not a set of synthesis.

If r=1

$$\omega(tw_1) = \prod_{j=1}^k (1 + C_k t^2)^{\frac{1}{2}}$$
 for some $C_1, ..., C_k > 0.$

Thus
$$w(t) = 0(t^{\frac{k}{2}})$$
 and thus dim $Q_{\omega} = [\frac{k}{2}] + 1$.

Furthermore ker $T \stackrel{\text{$\cong$}}{\cong} (\ker T)^2 \stackrel{\text{\cong}}{\cong} \dots \stackrel{\text{\cong}}{\cong} (\ker T)^{\left\lfloor \frac{\kappa}{2} \right\rfloor + 1}$ are the only elements of $\mathscr{I}_{\{T\}}$.

If r=2, k=4 and $\xi_3 = \xi_1, \xi_4 = \xi_2$ then:

$$\omega(t_1w_1 + t_2w_2) = \left(1 + \frac{1}{2}t_1^2\right)^{\frac{1}{2}} \left(1 + \frac{1}{2}t_2^2\right)^{\frac{1}{2}} = \left(1 + \frac{1}{2}(t_1^2 + t_2^2) + \frac{1}{4}t_1^2t_2^2\right)^{\frac{1}{2}}$$

 Q_{ω} has the following basis: $\{1, t_1, t_2, t_1t_2\}$ and the elements of $Q_{\omega}(inv)$ are: $\{\mathbf{R}_1, \mathbf{R}(t_1+ct_2)+\mathbf{R}_1, \mathbf{R}t_2, Q_w | c \neq 0\}$.

Thus $Q_w(inv)$ has an infinity of elements.

6. Final remarks

(6.1) The computations become much more difficult if G is no longer of step 3. No general results are known.

(6.2) In [12], it has been shown that for any point T in the dual of nilpotent connected Lie group, the algebra ker $(T)/_{j(T)}$ is always nilpotent. The exact degree of nilpotency of this algebra is unknown (in general). It can be estimated by the degree of growth of G is T is in general position. (see [12]). Suppose now that there exists an ideal & in g, such that $\langle l, [\&, \&] \rangle = 0$ (l in the orbit O of T) and such that $l + \&^{\perp} \subset O$.

Let $l_0 = l_{/k}$ and $O_0 = G \cdot l_0 \subset k^*$.

Let $H = \exp h$. Using theorem 2.4 of [5], it can be shown that the degrees of nilpotency of ker $T/_{j(T)}$ and ker $O_0/_{j(O_0)}$ coincide.

144 Jean Ludwig: On the spectral synthesis problem for points in the dual of a nilpotent Lie group

As $[\hbar, \hbar]$ is an ideal in g on which l disappears, we may as well suppose that $[\hbar, \hbar]=0$, that means that \hbar is abelian.

The determination of the degree of nilpotency is thus reduced to the study of the G-orbit O_0 of the element l_0 in the dual of the abelian group \mathscr{A} . It follows from [8] that the degree of nilpotency of ker $O_0/_{j(O_0)}$ is less than dim $\left[\frac{O_0}{2}\right] + 1$.

References

- 1. BOIDOL, J. et. al., Räume primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1-13.
- BROWN, I. D., Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 Série 4 (1973), 407–411.
- DIXMIER, J., Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Etudes Sci. Publ. Math. 6.
- 4. DOMAR, Y., On the spectral synthesis problem for (n-1)-dimensional subsets of \mathbb{R}^n , $n \ge 2$, Arkiv f. mat., 9 No 1.
 - HAUENSCHILDT, W., LUDWIG, J., The injection and the projection theorem for spectral sets. Mh. Math. 92, 167-177 (1981).
 - 6. HÖRMANDER, L., Linear Partial Differential Operators, Springer Verlag, 1976.
 - KIRILLOV, A. A., Unitary representations of nilpotent Lie groups, Uspehi Math. Nauk 17 (1962), 57–110.
 - KIRSCH, W., MÜLLER, D., Zum Syntheseproblem für Bahnen Lie'scher Gruppen im Rⁿ, Arkiv f. mat. Vol 18 (1980) No 2.
 - 9. LEPTIN, H., Ideal theory in group algebras of locally compact groups, *Invent. Math.* **31** (1976), 259-278.
- LUDWIG, J., A class of Symmetric and a class of Wiener group algebras. J. Functional Analysis 31 (1979), 187-194.
- 11. LUDWIG, J., Polynomial growth and ideals in group algebras. Manuscripta Math. 30 (1980), 215-221.
- 12. LUDWIG, J., On primary ideals in the group algebra of a nilpotent Lie group, to appear in *Math. Ann.*
- 13. REITER, H., Classical Harmonic Analysis and Locally compact Groups, Oxford Clarendon Press 1968.
- HEY, H. J., LUDWIG, J., Der Satz von Helson Reiter f
 ür spezielle nilpotente Lie-Gruppen, Math. Ann. 239 (1972), 207—218.
- Howe, R. E., On a connection between nilpotent groups and oscillatory integrals, *Pacific J. Math.* 73 № 2 (1977), 329-363.
- 16. SCHWARTZ, L., Thérie des Distributions, Hermann, Paris, 1966.

Received April 29, 1981

Jean Ludwig Fakultät für Mathematik Universität Bielefeld Universitätsstr. 25 4800 Bielefeld 1