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1. Introduction 

The concept of K-functional was introduced and studied by Peetre ([10], [11]). 
If A0 and A1 are normed linear spaces, both contained in a topological vector space A, 
then the K-functional is defined by 

K(Ao, Ax,f 0 = inf{/Ifollao+tllA/lal: f=fo+A,foEAo,AEA~} (1) 

Let Ao=C~,~=space of all 27z-periodic continuous functions with Ilfllc = 
maxxct . . . .  ~ If(x)] and Al=C~=space  of all 2n-periodic functions vanishing at 0 
and with derivatives in C~ with l l f l lc , : -maxx~t-=,=l  I f ' (x ) l .  Peetre obtained ([12]) 
an explicit expression for the K-functional in this case as follows. 

K(C~,~, C~,,,f t)= ~r 2t) (2) 

where o9" is the least concave majorant of the modulus of continuity off .  It is well- 
known that this majorant is equivalent to (of the same order of magnitude as) the 
modulus of continuity of the function. (See, for example, [8]). Such an equivalence 
can also be obtained between the modulus of continuity of r th order and the K-func- 
tional between C~ and the space of all 2re-periodic r-times differentiable functions 
vanishing at 0 along with the first ( r -  1) derivatives. ([13], [2]). The relation between 
the K-functionals and the trigonometric approximation is now evident. 

For weighted approximation on the whole real line by polynomials, we have 
obtained in [7], the direct and converse theorems entirely in terms of the K-functionals. 
Earlier, Freud had introduced a first order modulus of continuity in L p (R) and proved 
that this is equivalent to a suitable K-functional ([5]). He considers weights of the form 
wQ(x)=exp (-Q(x)) where Q(x) is an even, convex, c2(0, ~,) function with 
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Q ' ( x ) ~  as x -~o .  Define, for w a f ~ L P ( R  ), 

eh (L  p, wQ, f,  6) = sup I [ w e ( x + h ) f ( x + h ) - w Q ( x ) f ( x ) l ]  p 

+6 llmin (6-~, Ia ' (x) l )we(x) f (x) l l  , (3) 

f2~(L p, w e, f 6) = inf oh(L p, w e, f - A ,  6) (4) 
AER 

1s p, w e, f ,  6) = inf  {[IwQAllp + Jllw~ f~ltp} (5) 

where inf is over all f l  and f~ with f = f ~  +f2, we fl~ LP (R) f2 is an integral of a locally 
integrable functon f2' such that wo.ff6L~'(R). (We say that f~ is differentiable). 
Freud's theorem then states that under the condition 

l i m ~ p  Q"(x._._.~) 1 (6) 
- Q,(x) ~, < 

there exist positive constants C1 and C2 depending on Q and p only such that 

C1 f21 (L~, we, f ,  6) ~ / ( 1  (LP, we, f ,  6) ~ C~ f21 (L', w e, f 6) (7) 

In the following paper, we reverse this order of thoughts. We shall evaluate the 
order of magnitude of the second order K-functional which plays the role of Zygmund 
modulus of smoothness in our paper ([7]). It is then natural to call the resulting ex- 
pression as the second order modulus of continuity in weighted approximation. 
During the proof, we shall also show that with a slight modification in the definitions 
(3) and (4), the same method also gives the result (7) of Freud. All our results are valid 
for arbitrary rearrangement invariant Banach function spaces on R; thus giving an 
extension of (7) even for the first order modulus of continuity. A discussion of these 
spaces as well as the version of Calderdn's interpolation theorem which we shall be 
using is given in ([1]). 

Acknowledgement. The second author wishes to thank, on behalf of both of us, 
Professor Jaak Peetre for his careful examination of the manuscript and suggestions 
for improving the presentation in this paper. 

2. Main results 

Let 3~ be a rearrangement invariant Banach function space on R. (an r.i. space). 
We denote II I1~ by J] It. Let w be a weight function and wfE3s Define, for r=>l, 
(r integer) 

K,(X, w, f 6) = inf{[Iwf~ll + 61]wf~'){[} (8) 
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where inf is over all f l  and f2 such that f= f~+f2 ,  wf~E~,f2 is r-times differentiable 
i.e. f2 is an r-times iterated integral of  a locally integrable function f~o such that 
wf~(')~.. K, is the r th order K-functional. 

We consider weight functions of the form we(x)=ex p ( - Q ( x ) )  where Q satis- 
fies: 

(*) Q is even, convex, Ca(0, oo) function with Q ' ( x ) ~ o  as x-~o .  Let 

1 

Q; = rain {6-1, (1+ Q,2)-s 
Define, for w e f ~  

co 1 (3s we, f,  6) = sup [] w e (x + h ) f ( x  + h ) -  w e (x)f(x)ll + 5 IIQ; wefll 

~21(~, we , f ,  6) ---- inf co1(~, w e , f - - a ,  6) 
aER 

T a f ( x ) = f ( x + h ) ,  A h f ( x ) = f ( x + h ) - f ( x ) ,  A~ = AI-1A h 

~o~(X, we, f 6) = sup ][A~(wef)H + 6 sup [{Q~Ah(Wef)l ] +6alfQ~2wef[] 

f2 2 (3E, wQ, f 5) = inf to 2 (3~, wQ, f -  a -- bx, 5) 
a . b ~ R  

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

We call f21 and 02 the first and second order modulus of continuity respectively. 

Theorem 1: Let Q satisfy (*). Suppose any one o f  the following conditions holds: 

Q"(x) < 1 (6 bis) limsu p Q,(x)Z 

Q'(2x) 
limsup Q, (x------)- < oo (15) 

Then there exist positive constants Ca and C4 depending only on 3~ and Q such that 
for every f with wefEY., 

Caf21(3E, WQ,f 6) <-- KI(3E, we, f ,  6) <= Caf21(•, we, f ,  6), 0 <= 6 <= 1 (16) 

Theorem 2(a): Suppose Q satisfies (*). In addition, let 
i) Q" be continuous at 0 

ii) lim sup sup Q-' (x + u) ~-= 1,1~_1 Q'(x) <oo (17) 

iii) limsup~= Q,(x)2 <~-QM(x---~) 1 (18) 
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Then there exist positive constants Ca and C6 depending only on Y. and Q such that for 
each f with wo.fEY., 

C~f22(3~, we,f ,  6) <= Ks(Y, wQ, f  63) <= C~f2~(X, wQ, f  6), 0 < 6 ~ 1 (19) 

(b) Suppose Q satisfies (*), (ii) and (iii) above. Then there exists a function Q satis- 
fying (*), (i), (ii), (iii) above such that 

C7 exp (-Q(x))  <= exp ( - a ( x ) )  <- C s exp ( -  Q(x)) (20) 

for some positive constants Cr and C a and for all x. We can choose Q(x)=Q(x) i f  
[xl>=a, for some a > 0  depending upon Q. 

Remarks: (1) The operator T h defined in (12) is an isometry on D (R)  and on 
L=(R). Thus by the version of  Calder6n's theorem given in [1], it is also an isometry 
on 3~; i.e. every r.i. space is also translation invariant. So, formulae (10) and (13) 
are meaningful. It can be shown that under the condition (*), x"wQ(x)CLX(R) 
f3 L = ( R ) c  3E. (See [4] for the first relation and [1] for the second.) Thus, formulae (11) 
and (14) are meaningful. 

(2) It is easy to construct examples where wQf~Y, but WQThf~ Y.. Thus, we have 
to consider Ah(WQf ) and A~(wQf) in (10) and (13) instead of  wQAhf and woA~f, 
which perhaps, would have been more natural. 

(3) It is clear that the order of  magnitude of the K-functionals is unaltered if we 
replace w by an equivalent weight function. Hence, in view of Theorem 2(b), we can 
evaluate the order of magnitude of  Ks(a;, wQ, f ,  6) even if Q" is not  continuous at 0; 
simply by considering f2~(3~, wo, f ,  6) in such cases. 

(4) All conditions on Q are satisfied if Q(x)=lxl ~, c ~ 2 .  I f  l < e < 2 ,  then Q" 
is not continuous at 0, but all other conditions are satisfied. The K-functional is then 
evaluated as we remarked above. 

3. P r e l i m i n a r y  l e m m a s  

In what follows, we assume that Q is even, convex, Cz(O, ~) and Q ' ( x ) ~  as 
x - ~ .  By A<<B we mean that A ~ c B  for some constant c > 0  depending only on 

and Q. 

L e m m a  1: (a) Suppose for some r>=l 

m 1 lim sup Q"(x) _ 0 < 01 < - -  

- =  Q" (x) ~ r 
Then IQ" (x)I" e -r << 1. 

(b) I f  (15) holds then 
Q X 

IQ'(x)l'e-O~x~ << e -  (~-) << 1 for all 

(21) 

r (22) 
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Proof" (a) 

d (Q,(x),e_a(x)) = rQ,(x),+ae_Q(x,[.Q"(x ) 1] 
Q" ( x )  r " 

Hence Q'(x)'e - ~ )  is eventually decreasing and then the claim follows for x->0 by 
boundedness of  Q' near zero and then for all xCR by evenness of  Q. 

Q'(2x) < K .  Choose M=>I such that x>-M implies (b) Let lira sups_,= Q'(x) 

Q'(2x)<KQ'(x). We have, for x>=2M and an integer r, 

e " ' 
r - Q ( x ) + Q  -fx/2Q ( t ) d t  

Q" (x) e <= 

e e'(x)-~Q'(~) p{(1 ~-~}Q'( )} r! if x > m a x ( 2 M ,  2K) --<r! _<--r!ex -- x <---- - -  : ~ 

If 0=<x<-max (2M, 2K), the claim is clear by boundedness of  Q' and and continuity 
of Q. The result is now proved since Q is even. 1 

Remark: In v i ewof the fac t tha t  Q ' ( x ) ~  as x ~ ,  an application of  Lemma 
1 to a number s slightly larger than r yields that 

IQ'(x)lre -Q<x) -~ 0 as I x l  ~ o .  

Lemma 2: Suppose (21) holds, and Q" is bounded on compact sets in [0, ~). 
�9 Then, we have 

(a) Q'2+Q"<<I +Q'~ (23) 

(b) There exists K such that x>=K implies 

1 + Q'2(x)<<Q'2(x) - Q"(x) (24) 
Proof" (a) 

p2 tt . ~  Q (x)+Q (x)= Q'(x) 2 1+ Q ( ) ~_ (l+01)Q'(x) z (l+O0(l+Q'(x) 2) 

> T. Q " ( x )  if x>=K where K is so chosen that x = ~ Q - - ~ < O ~ .  

For x>-K, the claim follows by the boundedness of  Q" on compact sets. 
(b) Note that Q ' ( x ) ~  as x . . . .  Let x>-K imply Q ' ( x ) > l  and 

Q"(x) 
Q,(x)Z<01. F o r  x>=K, we have 

2 
1 + Q'(x) 2 <= 2Q'(x) 2 <_- 1 - 0-----~ (Q'(x)2- Q'(x))" I 
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Corollary 3: I f  (21) holds, then 

e(2(t) 
f,~(,,  ~)[1 +a'2(x)]e-Q(~) dx (1 -~-Q'(02) 1/2 

where K is prescribed in Lemma 2(b). 

Proof. Let max (t, K ) = L  By Lemma 2(b), 

f ;  (1 +a" (x)*)e -e(~) dx << f ~" [O" (x)-a"(x)]e -Q',' dx 

(By Lemma 1 (a)) 

is bounded 

= Q'(D e-Ofo 

-< ](I+Q'(K)2)I/~e -~ if t <= K 

= [(l+Q'(t)2)l/~e -O(O if t~_K. 
This completes the proof.  II 

Lemma 4: (a) Let f be a differentiable function (i.e. let f be the indefinite inte- 
gral of a locally integrable function), f ( 0 ) = 0  and wof'EL1. Then 

I1(1 +Q'2)a/2weflh << Ilwaf'll 1 (25) 

(b) Let Q satisfy (21). Let f be a differentiable function (in the above sense), 
f ( 0 ) = 0  and ( I + Q ' 2 ) I / ~ w e f ' ~ L L  

II(1 +a'~)wofllx << 11(1 +Q'~)l/2wef'll~ (26) 

Thus, if Q satisfies (21) and f is twice differentiable (i.e. f is a twice iterated inte- 
gral of a locally integrable function), f(O)=f'(O)=O; and wef"EL1, then 

I[(1 +Q'2) wafl[ 1 << [Iwof"ll x (27) 

Proof. (a) Let  ~9 = w e f ' .  We  have: 

[Iwef'lll = {1, (01 + 1r ( -  01} dt (28) 

Further,  since f ( 0 ) = 0 ,  

[Eeem~/( t )d t  if x = > 0 

f(x)=[foXeemq/(-t)dtl '~ if x<=O. 

Let  JO(t)l+lO(-t)J=g(t). We have, 

[l(l+ Q'~)l/~wef l[ 1 = f y [1 + Q'" (x)]l/Zwa(x) {I f (x)[ + [ f ( -x ) ]}  dx 

<-- fo (1 +Q"(x))ll'wQ(x) fo ee(X)g(t) dtdx. (29) 
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Now, clearly, since Q" is bounded near 0, 

(l+Q'(x)')l/"wQ(X) fo eQ(~ << fKo g(t)dt (30) 

where K is so large that Q'(x)>l if x~=K 

f 2  (1 +Q" (x)2)l/~wa(x) f o  ee(~ dx 

= f 2  ee(~ ) f2a,  (t, r)(1 + O' (x)=)l/2w e (x) dx d, 

~176 (t dt < < ~  g ) where t = m a x ( t , K ) < < f o g ( t ) d t .  (31) 

The result follows from (28), (29), (30), (31). 

(b) Let ~0 (t) = (1 +Q'~(t))l/2we(t)f'(t). 
Then 

II(l +Q'~)l/~wef'ih = f ~  {lO(t)[+fO(-t)[}dt (32) 

II(1 +Q,2) % f h  = f o  [1 + Q'2(x)] %(x){If(x)l  + l f ( -  x)l} dx 

x e Q(t) 
=< fs (I+Q'(x)~)wQ(x) f2 (l+Q'(t)2) v~ g(t)dt (33) 

where g ( t) = I~h ( t) l + I@ ( -  t) l. 
Now, as before, 

eQ(t) 
X g(t) dt dx << f r  o g(t) dt (34) f~(l+a'(x)2wQ(x)f~ (1 .t_O, (l)~)1/2 

where we choose K so large that Q'(x)> 1 and (24) holds for x>=K. 

o~ e Q(t) 

(1 +Q'(x)2)wa(x) f 2  (1 +Q'(t)2) 1/2 g(t)dtdx 

f 2 eO(~ oo (l +Q,(t)2)l/~ fmax(t,x)(l +Q'(x)~)wQ(x)dxdt g(t)dt (35) 

by Corollary 3. 
The proof is now complete in view (32), (33), (34), (35). II 

Out next task is to obtain the analogue of the above lemma for L% 
The following lemma will play a role similar to that played by Corollary 3 in 

the proof of Lemma 4. 
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Lemma 5: (a) Let (21) hold. Then 

[1 + O'(x)Z] "1~ w e (x) f; 
is bounded. 

eQ(t) 

r - - 1  

(1 +Q'(t)~) 

dt 

(b) Let (15) hold. Then the conclusion above is valid for all r (r integer, >=1). 

Proof. (a) Clearly, it suffices to show the boundedness if x ~ K  for a suitably 
r~qX'~ 1 

chosen largeK. We choose K so that >~.  ~ t J ,~ and Q ' ( x ) > l .  Now, x=~Q,(---x)~< ~ <  7 

by Lemma ! (a), it suffices to show that 
eO(t) 

(l+Q'(x)~)'/~we(x) f~ ,-~ dt 
(1 +Q'(t)~) 

is bounded for x>=K; 
eQ(O 

hence to show that Q'(x)'wQ(x)f~ Q,(t),_~ dt is bounded. But 

eO(t) ll  Y 

z =  I- d K  Q,(t) ~-1 
Q'(t) eQ(O 

- - d t :  f~ Q'(t)* - - d t =  e~ eQ(rO b x reQ(~ 
Q,(x)~ Q,(K)~ f ~  dt Q'(t),+ 1 

eQ(x ) n Q (t) _ e ~  
< F x req( 0 a t  ~ - - - t - r 0 1 I .  
- O ' ( x ) ,  O ' ( x ) ,  

Thus, the claim is proved since r~ 1. 

(b) Let l imsupx,~ Q'(2x) CM. 
Q'(x) 

Again it suffices to show that 

[Q'(x)l" e-e(~) f o 

Choose K so large that 

and Q ' ( 2 )  > 1. 

eQ(t) 
dt 

r - - 1  

(1+ Q'(t)2) 

is bounded for x>=K (in view o f  Lemma l(b)). We have for x>=K, 

Q'(x)" e-Q<x) f~/~ 
e Q ( t )  

r - 1  

[1 + Q'(t)~] --~- 

dt <= Q'(xye-e(x) f~/, eQCt)Q'(t) dt 

(.~_)] _ eQ x M "  Q'(x)'e-OX~) [eQ(X)--eQ -< M'(1 (~-)-q(~) - -  , = ) < :  . (36) 
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By Lemma l(b), 

is bounded. 
Further 

Q'(x)" e- e(x) f 2  ee(~ r-~ dt (37) 

[1 + Q'(t)~] - - r  

Q'(x)'e-Q(x) f;/2 eQt~ r-x dt 

[1 + Q'(t)~] - g -  

<<Q'(x)re-e(~) f]/~ Q,(t),_leQ(t) dt ~ Q'(x)'e-e(~)Q'(1)" Jf:'/~O'(t~eQ(~ ~ "" 

, -e(~) ee(-~) ee(1) , ,e-e(~)+e(-~) << Q'(x) e [ - ] << Q (x) << 1 (38) 

by Lemma l(b). 
The claim is proved by (36), (37), (38), 1 

Lemma 6: (a) Let either (6) or (15) (hypothesis of Theorem 1) hold. Let f be 
differentiable, f ( 0 ) = 0  and wef'EL=(R). Then 

1] (1 + Q'(x)Z) 112 w e (x)f(x)ll • << II Wo (x)f'(x)ll-~ (39) 

(b) Let (18) in the hypothesis of Theorem 2 or (15) hold. Let f be differentiable, 
f ( 0 ) = 0  and wef'EL=(R). Then 

I]( 1 +Q'(x)2)We(x)f(x)[l= << II(1 +Q'2)l/2wef'l[2 (40) 

In particular, i f  f is twice differentiable, f ( 0 ) = f ' ( 0 ) = 0  and wef"  E L•(R) then 

II (1 + Q,2) we f[ I = << II wef"ll = (41) 

Pro@ (a) Let O(x)=we(x)f ' (x  ). If  x > 0  

(1 +Q'(x)2)V2we(x)lf(x)] <= (1 +Q'(x)2)i/Zwe(x) f ~ ee(Olql(t) I dt 

II Oil = (1 + Q'(x)2) 1/2 w e (x) f o ee(t) dt (42) 

Clearly (42) also holds if x_-<0. Thus (39) follows from Lemma 5. (5a if (6) 
holds, 5b if (15) holds) 

(b) Let ~k (x) -- ((1 + Q,2)1/~) wQf'(x). As before, 

(l +Q'(x)Z)wQ(x)lf(x)l <= flOll=(l+ Q'(x)~)we(x) f ~ ee(~ (1+--Q-~o)l/2 dt. 

The conclusion then follows from Lemma 5(a) if (18) holds and 5(b) if (15) 
holds, l 
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Applying Lemmas 4(a) and 6(a) to the operator 

T: g ~ (1 +Q'(x)~)l/~WQ(X)f ~ eQ(t)g(t)dt 

we see by the version of Calder6n's theorem given in [1] that under the hypothesis of 
Lemma 6(a), (39) holds in an arbitrary r.i. space �9 for differentiable funct ionsfwith  
f ( 0 ) = 0  and wQf'EY.. Similarly, if (18) is satisfied, and f is a twice differentiable 
function with f ( 0 ) = f ' ( 0 ) = 0  and wQf"EY, we have inequality (41) even in the 
norm of X. 

For small enough 6, we can solve the equation Q'(x ) :6  -1. We call the grea- 
test such solution x~. 

Lemma 7: (a) Let (21) hold. Then 6Q'(xo+r6) and consequently 

6 [1 + (Q'(xn+r6))2] ~/~ 
is bounded as 640. 

(b) I f  (15) holds, then the above conclusion holds for all r. 

Proof. (a) 
1 1 1 

Q'(xa + r6) Q" (x~) Q'(xn + r6) 

if ~ is small enough. 

= fx~+,~ Q"(t) dt < r016 ~, Q'(t) 2 

1 
Hence 6Q'(x~+r6)<:, ~ < +~.  

1 - -  rff  1 

(b) I f6  is So small that x,+r6<=2x~ and - -  -Q'(2x~)<-M Q'(x6) - - -  (say), we have 

6Q'(x~ + r6) : Q'(xa + r6) <: __Q'(2xa) <_- M. I 
Q'(x~) = Q'(x~) 

Let us now summarize the results obtained so far. 

Proposition 8: 
(a) Lemma 7. 
(b) Lemma 2(a) : Under the assumptions (i) and (iii) of  Theorem 1, 

H -k- t~ Q (x)_Q (x) << l+Q'2(x),  xER. 

(c) Let the hypothesis of  Theorem 1 hold. Let f be differentiable, f ( 0 ) =  0 and 

wef" E i~. 
Then 

1[(1 +Q'2)I/~wQfI]x << llwqf'[]~ (43) 
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(d) Let (18) (hypothesis (iii) of  Theorem 2) hold. Let f be twice differentiable, 
f ( 0 ) = f ' ( 0 ) = 0  and wo.f"63E. Then 

[[(Q" +Q'2) woT[[~ << [[(1 +Q'2) wQfl[ ~ < <  [[waf#[[~ (44) 

Lemma 9: Let for each tE[a, b], g( . ,  t)C3~. Let g(x, t) be jointly measurable. 
Then Ilg(', t)[l~ is measurable and 

: b I 
I[f2g(x, t )at= < fs I g(., 011~at (45) 

Proo/~ The measurability assertion is found in [9]. Let 3U be the associate space 
of 3~. Since 3~ has the Fatou property, 

f~  g(x, t)dt �9 = sup fRlh(x)} f2  Ig(x,Oldtdx ([14]) 
I lhl l~,=l  

= s u p  f b f  lh(x)l]g(x ' t ) ldxdt< = s u p  f~} lg( ' , t ) l l~dt=fbl lg( ' ,OIl~.  | 
~lh[l~,=l*" a d R [ lhl l~ ,=l  a 

4. Lower estimates 

Observe that, by triangle inequality, 

r we, f l+f~,  6) <= r162 wQ,fl, 6)+o9,(3r we,f~, 6) r = 1, 2. (46) 

Further, since 6Q'~_l, we have for wQf~3r 

r162 w e, f ,  6)<< Llwef[l~. (47) 

From here onwards, 3r and Q are fixed. Their mention will be suppressed; for 
example, ro,(X, we, f ,  6)~_co,(f, 6), I] �9 ]]~-JI" 17. 

Lower estimate in Theorem 1 

Let f = f ~ + f 2  be an arbitrary decomposition with wef163E, f2 differentiable, 
wof~Y. .  Let 

f~*(x) = f2(x)- f2(0) ;  f *  = A+A*. 
Then 

~Ql(f, 6) <= o91(f*, 6) ~ o91(A, 6) + fnl(A*, 6) << IlwoAI] +o91(fz*, 6) 
(By (47)). 

We have 

6Ha'nwof*l[ ~ 611(l +a'2)V2wQf~[I << 61lwef~'ll = 6[Iwef~l [ (49) 

by Proposition 8(c). 
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Let Ih[ ~_~5. Using Lemma 9, translation invariance of II �9 11 and then Proposition 
8(c), we have 

IIAh(w~f~*)ll = f ~  (wJ2*) ' (x+u) du = Fo [ -Q'wQf*  +wQf~](x+u) du 

<---- ]hi {llQ'wQf~*l] + ILw~f2'll} << 6 I[w~f~'ll (50) 
The estimate 

~e'~l(f~ 8) << Kl(f ,  8) (51) 

follows from (48), (49), (50) if we observe that f=f~  +f2 was an arbitrary decom- 
position. 

Lower estimate in Theorem 2a 

Let f = f l + f 2 ,  wQfl~Y. , fs  be twice differentiable, waf~'~3E. Let f2*(x)= 
f2(x) - f~(O)- f~(O)x  and f*=f l+ f2* .  We have 

f2s(f, 8) ~ cos(f*, 8) <_-- cos(f~, 8) +co2(f2", 8) << IlwoAII +cos(A*, 8). (52) 

Using Lemma 9, translation invariance of II �9 I[, convexity of Q and Proposition 
8(c) and 8(d) we get, for Ih[-<_8, 

II h~(w~f2*)ll = f'o (wQf*)"(x + ul + uz) clu, du2 

= f'o [(o ' s -  o") 2Q'weA* + weA*"] (x + ul + us) dul du2 

<< Ihl2{l[(a"+a'2)wQf2*l] +lla'waf~'ll + IlwQf~"l[} << 6Sllwof2"[I. (53) 

By Proposition 8(d) 

6211Q~2wef2*11 =< 8211(l+a'2)weKll << 6Sllwef2"[]. (54) 

Further, using assumption (ii) (inequality (17)) translation invariance and Pro- 
position 8(d), 8(c) we get for Ih]<=6~_l, 

6[IO'~Ah(wQf~)ll <= ,5 ' h , ,  Q,(x) f o (wQf~ ) (x + u) au 

,, h 

= 8 Q~(x)f~ ( -Q 'wof~+wo. f2*) ' (x+u)du  

<-_ 8 Qg(x) f~ hI I(a'woA*l + lweA*'l)(x+ u) du 

<< 8 f~h~ [(~ + Q,,)]wofUl + (1 + Q'2)~IwQ./'~:'I] (x + u) du 

<= 82{1[(1+ a'S)waf2*ll + If(l+ a'~)~wof2*'l[} << 62 I lwJ~"l l .  (55) 

Observe that f=f~  +fz was an arbitrary decomposition; so that (52) (53), (54) 
and (55) imply 

f22( f ,  8) << Ks(f,  82) (56) 
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5. Upper estimate 

Let x~ be the greatest positive solution of the equation 1 + Q'(x'~) ~ =6-L Note 
x'~x~ where Q' (x~)=J-L Put 

Then 

wo(x~f(x) if [xl <-- x; 
O(x) = otherwise 

0 if Ix I N x; 
wQ(x)f(x)--O(x)= wQ(x)f(x) if }xl>=xa. 

But if lxl>x;, (I+Q'(x)~))~/~>=6-L Thus, Q'~(x)=6-L Hence 

(57) 

0 if Ixl <= x; 
we(x) f (x)- -O(x)= J'Qg(x)'wa(x)f(x ) if Ix[ > x ;  

r ~ 1 any integer. (58) 
Hence 

]lwQf-Oll <= ~'llOj'wQfll, r => 1. (59) 
Put 

= (x) (x + t) dt (60) (x) ( i l l  

~o~ (x) = ~-2w~l(x) fo  ~ f2  [2~k (x + ~ ) - - ~  (x + t l  +t~)] dt~ dtz. (61) 

Clearly, using Lemma 9 and (59), for r = 1, 2 

Ilwef-wa%ll <-- ]lwef-~][ +l [w~%-~l[  <= 6'llO':wafll + sup I[A~@I[ 
{h[~_a 

<= ~q[a;~waf[I + sup IlA'h(wef){I + 2"[[wef-~,l[ 

<< sup [IA'h(woflt +6"]]Q;'wef H <= co,(f, J) r = 1, 2 (62) 

Upper estimate in Theorem 1 

[6~o~(x)] = a'(x) w~l(x) f~  ~,(xwt) dt+w~X(x)Aa~k(x)[ 

Q'(x) w~l (x) f'o A, 0 (x) ~ t + I Q" (x) w ~.x (x) • (x) I + w ~ (x) I A ~ ~ (x) I. 

Therefore 

~llwQ~ll <= Q" f~ d,O dt +~llO'Oll+llAa~,ll. 

(63) 

(64) 
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We shall estimate each term on the right hand side of  (64) separately. Note 
that Attp=O if ]xl=-x~+6. Otherwise 

IQ'(x)] <= (1 + Q'(x)2)l]2 ~ (1 + Q'(x;+6)3) 112 -<= (1 + Q'(xn +6)3) '/2 

<< 6-1 (By lemma 6). 

Then by Lemma 8, (59), 

Q'f2 A'O dt << tslup IIA,OI[ << sup I[Ah(W~f)l[ q-IlwQf-Oll N_~o 

<< sup I]An(wQfll +6 []Q; waf][ <- oh(f,  6). (65) 

Also if ]x]>x'~ then ~ = 0 .  Otherwise 

]Q'(x)l <-= (1 +Q'(x)~) 1/2 <= (1 +Q'(x;)2)a/2 <= 6-1. 

S o, Q; (x) -- (1 + Q' (x) 2)1/3 ~IQ '(x) I. 
Hence 

'w 6 ' < 611Q'~[I <= 6[]QA~,[] ~ 611Q~ ofH +[Iwof-~Ol] << ]lQ6wQf[I = oga(f, 6) (66) 

[IA~q~ll <-- sup IlAn(w~f)ll +2llwQf-~01l << sup IlAh(w~/)[I-t-6llQ;WQfll <= col(f, 6). 
Ihi_~a Ihl-~a 

(67) 
Inequalities (64), (65), (66), (67) imply 

61[wQ4,~ll << o~l(f, 6). 
Hence from (62) 

K~(f  6) <= [[wQ(f-~pl)[ [ +6llwe~ol[I << co~(f, 6). (68) 

Observe now that Kl(f ,  6)=Kl(f--a,  6) for all aER. This completes the proo f 
of  Theorem 1. 1 

Upper estimates in Theorem 2a 

We have, 

14~ ~0 , t  " 1 ",It  w " 2 ' w  ' ,2 " w (69) Q 2----wQ(w~ wQ~p2 ) =(Q~P2) + Q(Q~P2) +(Q + Q ' )  Qq~, 

where q~z is defined in (61). 
We shall estimate IIwQ~p~ll by estimating the norm of each of the terms on the 

right hand side separately. Using Proposition 8(b): 

62 II(Q" + Q'~)weq~ll << 6 ~ I](l+ O'2) wQ~p~ll 

I ,~,~, c ' /"A~  [{ <: ( 1 + ~  JJ0,/0"~!,+', r +6~[[(l+a'2)~Oll" (70) 
2 
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P I f  [xl=xo+2O, integrand in the first term is zero. Otherwise, l+Q'2(x)<= 
Q'a(x'~+26)<<6 -~ (by Lemma 7(a)). So, 

,~. ra ra 2 dq dtJ[ ( I + Q ) J o J o  A'l+t~ ~(x) 
2 

<<6-'l f~ "~ '~  A~l+t, tp(x)dtxdt~ << sup HArd,OIl (Lemma9) 
It f_6 

<_- sup lid, ~ (w~f)[I + 4 ][w~f- r 
Itl~a 

<< sup [[A~t(wQf)[{ +62[[Q~2wo.f{I ((59) with r = 2) ~ co , ( f  6). (71) 
Itt~-a 

i f  Ixl>xS, ~,=0. Otherwise Q,~(x)= (1 + Q'~(x)) ~/~. So, 

6~l[(l+Q'2)lp[[ :< 62[[Q,~1[ <_- 6Z[fQ~wQf[[ +[{wQf-~[[ 

<<: 6211Q'~wo.fl[ <= oh(f, 6). (72) 

Hence from (70) and (71) ,  

6~ I[ (Q" + Q'~) we q~2ll << wz ( f  tS) (73) 

6'(wQ~o~)'= f ~ [ 4 A ~ b ( x + 2 ) - A z ~ k ( x + t ) ] d '  

= f~ [A, q,-  ~+, q, + 2Z~+~q,- 2a,_ q,] (x)dt, 

Observe, again, that 62(woq~2)'(x) is zero if lx[>x'~+26 and otherwise, by 
Lemma 7, [I+Q'~(x)]I/2<<6-L Thus, [l+Q'2(x)]l/Z<<Q'~(x) if [x[<-x;+26. Then 

a'll(w.~o,)'Q'll <= Oq(we~o,)'(,+a'~)~"ll << (1 +Q")~/,f0 ~ [z,+, ~-z__, ~] d,ll 
2 g 

+ I(~+Q")~'*f' ~ [z~ 0-zL~0] ~ ' l  
By Lemma 9, and our observation above, we now get 

6zll(w~q~)'Q'l[ << sup 6[[QgAt~[[ + sup [[A~OI[ 

<< 6 sup IIQg.4t(wof)l [ + sup [IA~,(wJ)H + I lwef - r  I << ~o~ (f, ~). (74) 
ltl~_a [tl~_a 

(Using (59) to estimate the last term) 

~l[(w~ ~"11 = II 8a~ ~ -  A~II << sup IIZ,~ll 

<< sup IIA~(wj)ll + IIw~f-r << o~(f ,  ~). (75) 
[tl-~O 
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(Using (59) with r=2 ) .  From (73), (74), (75) and (69) it follows that 

Finally, (76) and (62) with r - -2  imply that 

To 

(76) 

K~(f, ~) << ~o~(f, ~). 

complete the proof, observe that for all a, hER, K 2 ( f  6 ) = K 2 ( f - a - b x ,  6), 
so that the above inequality proves Theorem 2a. 

There are many ways in which the function Q in Theorem 2b can be construc- 
ted. We give one construction. Observe that since Q'(x)~oo  as x~oo,  there 
exists a > 0  such that Q" (a )>0  (Q is convex). We distinguish three cases; in each 
case, Q ( x ) = Q ( x )  if x~=a and Q(x)=~)([x]) if x_~0. We define Q on [0, a] as 
follows: 

Case I: Q ( a ) = Q ( a )  

(x) = Q (a) + Q' (a) (x - a) + Q'2(a) (x - a) z § 4 ~  (Q" (a) - aQ" (a)) (x - a) 4 . 

Case 11." Q ' (a)<aQ~ 

1 ~/2AQ"(a)  
Let A = O ' ( a ) -  aO"(a), c =  

a " a a2 " a 
k = Q ( a ) -  Q (  ) + - ~ Q  ( ) .  

f cx 2 Ad  . 

Case 111: 2Q'(a)~_aQ"(a) 

O ( x )  = 

~/  2Aa 
d = Q"(a) 

Put 

if 0~_x<_-- d 

if d ~ = x < a .  

Q(a) 2 Q'(a) 2 0 ~ x <- aQ"(a ) -  2Q'(a) 
3 Q"(a) '  - Q"(a) 

Q"(a) 2 [ aQ"(a) - 2Q'(a)] z 
Q"(a) ] 

2 Q'(a) 2 if aQ"(a)-2Q'(a)  ~ x _-< a. 
+Q(a)  3 Q"(a) Q"(a) 

The remaining assertions are now easy to verify. (For the verification of  (20), 
observe that [Q(x)-Q_.(x)I~_M for some M > 0  and aU xER because of  continuity 
of  Q and L).) | 
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Remark :  A careful  examina t i on  o f  the p r o o f  shows tha t  bo th  T he o re m 1 and  

Theo rem 2 are  val id  if  we define the  K-func t iona ls  by  tak ing  inf  over  all f~, f~ such 

tha t  f = f l + f 2 ,  j~ has  c o m p a c t  suppo r t  and  is once (resp. twice) differentiable,  

w e f  ~ (resp. ~"" ~3E w~j~ )~ , wa f~r  
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