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Introduction 

This note deals with Banach spaces X which have so-caUed UMD-property,  
which means that X-valued martingale difference sequences are unconditional in 
L~(1 <p<oo) .  These spaces were recently studied in [2], [3], [4] and we refer the 
reader to them for details not presented here. Let us recall following fact (see [2]). 

Theorem. For a Banach space X, following conditions are equivalent: 
(i) X has U M D ,  

(ii) There exists a symmetric biconvex function ~ on X •  X satisfying if(0, 13)>0 
and [(x,y)<-]lx+yll i f  Ilxll<_-l-<_llylt. 

I f  X has U M D ,  then the same holds for subspaces and quotients of  X, X* 
and for the spaces L~ ( l < p < ~ , ) .  It is shown in [1] that if l < p < ~  and L}(0, 1) 
has an unconditional basis, then X is UMD.  Conversely, it is not difficult to see 
that if X is a UMD-space possessing an unconditional basis, then the spaces 
L}(0, 1) (1 < p <  co) have unconditional basis. 

In [3], it is proved that if X is U M D ,  then certain singular integrals such as 
the Hilbert transform are bounded operators on L} (1 < p <  ~). Our first purpose 
will be to show the converse, i.e. Hilbert transfolm boundedness implies UMD.  

From [1], we know that U M D  implies super-reflexivity. Another, more direct 
argument will be given in the remarks below. In [7], an example is described of  
a superreflexive space failing UMD.  We will show that superreflexivity does not 
imply U M D  also for lattices, a question left open by [7]. 

At this point, the class U M D  seems rather small, in the sense that the only 
basis examples we know about are spaces appearing in classical analysis. 
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1. Hilberttransform and martingale difference sequences 

Denote D the Cantor group and 1-1 the circle group (equipped with their 
respective Haar measure). Let 3(( be the Hilbert transform acting on LP(1-I). 
It will be convenient to introduce following definition: 

For l < p < ~ ,  say that the Banach space X has property (hp) provided 
,~  acts boundedly on L]( /7) ,  i.e. 

Ilaf(f)llv <= Cllfllp for f E L ~ ( H ) .  

In [3], a classical approach is used to derive (hv) from the p-boundedness of  the 
martingale transforms acting on L}(D) .  We will explain here a reverse procedure. 

As a consequence, each of the properties (hp) is equivalent to UMD. The 
main point is following fact 

L e m m a l .  Denote for  k = l , 2  . . . .  /Tk= /T X ... X I-I. Assume given for  each 

k =  1, 2 . . . .  a function ~kCL](H k) and a scalar function q~kEL=(/7), fg~=0. If  
X satisfies (hp), one has the inequality 

I lS'~(01,  ..., 0~)~(~o,)(0k+l)llp --< cIIS'~k(01, ..., 0k)~ok(0~+i)llp, 

( 2 ; ' = ~ = 1  for  some integer n). 

Proof. By  an approximation argument, we can assume the q~k-functions to be 
X-valued polynomials, say 

I~l = I ~ 1 1 + . . . + 1 ~ 1  --< Nk if ~'ESpec~k c Z k 

where Nk is some positive integer. 
Define inductively an increasing sequence (rig) of integers, taking 

n 1 = 0, 

nk+a = nkNk+ 1. 

For fixed (0~, 0~ . . . .  ), notice that 

~ ( ~ ( O ~ + n ~  . . . .  , O~ +n~)~o~(O~+~ +n~+~,p)) 

= q~(O~+n~r . . . .  , Ok+nkO)~r 

since it concerns the product of a function with spectrum contained in ]--nk+~, nk+~[ 
and a function with spectrum contained in nk+l(Z\{O}). So, if X has (hp), we get 

f II z" ~ (o, + nl ~ , . . . ,  Ok + nk ~9) ~ (q~k) (Ol: + 1 + nl, + 1 ~')J] p m (de) 

- f l [  c p S,'q~k(Ol+nl~ , ..., Ok+nk~)CPk(Ok+l+nk+l~)llPm(dtp) 

and integration on ~O clearly leads to the required conclusion. 
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Lemma 2. Let X be (hp) and consider for each k =  1, 2 . . . .  a function AkE L~(D ) 
depending on the first k Rademachers el, e~ . . . . .  e k. Then 

llIT~g+lAk(ex, -.., ~k)~g+lll, - <  C 2 I I S / A k ( ~ I  . . . .  , ~k)~k+l[lp,  

for all sequences ~k :+__1. Consequently, X possesses UMD.  

Proof. Considering again H N, one can replace D by H N, writing 

ek=sign cos 0k (sign = sign function). 
So, define 

~k(01 . . . . .  0k) : Ak(Sign c o s  0 1  . . . .  , sign cos Ok) 
and let 

~0 k (0) : sign cos 0 

for each k. 
Thus ~k is even in 01 . . . . .  0k and Ae(~Ok) is an odd function. Thus, applying 

Lemma 1 and replacing Ok by ~kOk, it follows 

IlS'~k+l~k(01 . . . .  ,0~)Xe(~0k)(0~+l)ll, <= CllS'~'k(01 . . . . .  0k)~0k(0k+~)llp" 

But, again by Lemma 1 

[ ] z ~ " 0 ~ k + l l ~ k ( 0 X  . . . .  , Ok)~l)k ( Ok + l)H p ~ CI]~-~' O~k + l~[)k (01 . . . .  , 0k),~(q)k)(0k+l)llr 

Thus, the desired inequality is obtained. 
Remark that the method extends to more variables and allows to translate 

inequalities for polydisc in inequalities for multiindexed martingales. 

2. An example 

From [9] we know that each superreflexive lattice can be obtained as complex 
interpolation space between a Hilbert space and some lattice. Therefore, one could 
hope to prove U M D  for this class of  spaces. The next example shows however 
that this is not  possible. 

Proposition. For l < p < q < ~ ,  there is a lattice X satistying an upper-p and 
lower-q estimate and failing UMD. 

The reader is referred to [6] for definitions and basic facts. We will construct 
finite dimensional lattices X with upper-p and lower-q constant 1 and for which 
the bound for martingale transforms acting on L~(D) goes to infinity. The final 
lattice is then obtained as /P-direct sum (again D stands for the Cantor  group or 
a finite Cantor group). The following definition wiU be useful. 
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Say that a collection 9.I of  subsets of  D is a translation invariant paving iff 
(i) AEg~, B~A=~B~9.I, 

(ii) AE~, gED=:>Ag~9~ (Ao=g-translate of  A). 
Let l < p < q < ~  and define following function lattice X=Xp,  q(~) on D 

[[fllx = sup (X[tfza,[[~) a/q. 

Here the supremum is taken over all disjoint collection {A~} of 9.I-members. 
(;(a denotes the indicator function of  the set A.) The proof of  following facts is 
standard and left as exercice to the reader. 

Lemma 3. 
(i) X has upper-p and lower-q estimates with constant 1, 

(ii) ]lfllx=l]fo]lx for all g~D, 
(iii) [Ifl[x -< [If I[ ~/q supu []fzal[ 1-p/q. 

D e n o t e "  some transform. For  a fixed 9EX, define ~EL~(D) by ~(g)=q~a" 
Then ~(g)=(q3)o and the norm of " acting on L~(D) is thus minorated by the 
ratio [Iq~[lx Ik011x 1. In order to introduce 9.i and r we need following additional 
lemma 

Lemma4.  For each e>0,  there exist cpELV(D) and a measurable subset 
M c D  satisfying 

(i) II~0]lp= 1, 
(ii) II%ZMI[p<~ for each g6D, 

(iii) IIS(~0)zMIIp~ 1/2 
(denoting S the Walsh--Paley square function). 

Let us first show how to conclude. 
Define 9~ as the class of measurable subsets A of D contained in some 

translate Mg of M. By Lemma 3 (iii) and Lemma 4 (ii) 

II~011x --< ~l,p/q 
while from Lemma 4 (iii), for some transform ~, one has 

X ~ M p = ' ~ "  

So II~]lp.>ev/q-l~oo for e~0.  

Proof of Lemma 4. Fix a positive integer n and consider D = { 1 , - 1 }  ~". 
Define for k =  1, 2 . . . . .  n 

R~- = (1 "~-81)... (1 + ek)(1 --~k+l)"" (1 - e,)(1 +e,+a).. .  (1 q-Sn+k_l)(1 +8n+k), 

R f  = (1 +ex)... (1 + ~k)(1 --ek+0"" (1 --e,)(1 +e,+a).. .  (1 +en+k_l) (1 --en+k). 
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Take 
n + k  

~o = n-1/PZ~ :12  ~' R~,  

ZM = ~ = t  2--~"+k~Rk -" 

Thus [[(o[[p= 1. One also checks easily that 

[I S(cP)ZMI[ ~, = E II S(rP) 2 - ~  +k)R~-I[g => 21 1 2-~-(,+k)2_ p 2(p_~)(,+k ~ 
n 

and thus 

IIS(~0)X 11 > ~ M p = ~  

To verify (ii) of  Lemma 4, fix gCD and distinguish following cases 
(a) gk # 1 for some coordinate k = 1, 2 . . . . .  n. 

Then it is easy to see that (R+)gRf#O for at most 2 pairs (k, 1). 
(b) gk= 1 for all k = 1, 2 . . . . .  n. 

Then (R+)gRT=0 for k# l  and (R+)gRT#O for at most 1 value of  k. 
Therefore I[~oozMllp<=2n-1/P~O for n~oo. 

3. Some further remarks 

L x ~L x norm of  Assuming X a UMD-space and denoting 113r ~11~,1 the 0o 
the Hilbert-transform, one obtains in terms of the Hilbert-matrix 

IZ-.i'~; t (x*' x*) l < n]t'gQ~,lmax l]xiFI max : = -  

fo r  each n and all sequences (xi)l~_,_<-., * (Xi)l~j<_ . in X and X* (resp.). 
Fixing 6>0 ,  define N~ as the largest positive integer for which there exists 

a sequence (xzh~_w_-. =N~ in the unit ball of  X such that 

dis t  ( c o n y  (x  I . . . .  , x j ) ,  c o n v  (Xj+l  . . . . .  xn)) ~ 

for each j = 1 . . . .  , n. 
From the preceding, we get 

61ogN~ <_-1[3r ( . )  

Since in particular N~<~o for each 6>0 ,  X must be superreflexive (cfr. [5]). 
In [7], interpolation is used to construct a superreflexive space for which left 

hand side of ( . )  is unbounded for 6-*0. It might be interesting to determine 
the worse bound on the Hilbert transform for dim X=d<~o. In particular, what is 

sup sup(fi log N~)? 
dimX=d ~>0 
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