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Introduction 

The aim of  the present paper is two-fold. Our first aim is to derive a Hardy- -  
Littlewood type characterization for non-homogeneous Besov spaces defined by Peetre 
[13] in the case 0 < p <  1 via traces of temperatures on the upper halfspace R+ +1, and 
thus we answer a question related to the one raised by Peetre [15; p. 258, Remark]. 
This characterization completes the work of Taibleson [16] and Flett [5] in the 
case l<=p<_-oo, and may be also considered as non-periodic version of another 
result of Flett [6]. The idea of the proof comes from the classical work of GwiUiam [9] 
as was done by Peetre [15] in a characterization of homogeneous spaces via harmonic 
functions (cf. also [6]); other tools are a sub-meanvalue property of temperatures 
proved in section 1, which is similar to a result of Hardy--Litt lewood given in the 
paper of Fefferman--Stein [4], and results from interpolation theory. As a con- 
sequence of  this characterization, we extend some results on translation invariant 
operators on Besov and Hardy spaces to the case 0<p_<-I (cf. [2], [12], [15]). 

Our second (and main) aim concerns pseudo-differential operators. In [15], 
Peetre showed that if aEC~(R"XR"), l<=p<=~o and 

0) [D~D~a(x, r =< C~,p(1 + I~l) -lpl, 

then the associated pseudo-differential operator T =  a(D) is bounded on B~, q(-- oo< 
s<oo, 0<q~oo) .  As for the case 0 < p < l ,  he required a "somewhat stronger" 
assumption on the symbol (cf. [15; pp. 285--287]); however, it is not difficult to 
prove that T is still bounded in this case under the same condition (1). On the 
other hand, Gibbons [7] has proven the boundedness of T on B~ ,q (0<s< l ,  
1 <-p, q<-~) under the foUowing assumption on the symbol: 

(2) 011  ,, (1 + 
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We shall prove in this paper that if 0 < p ,  q<_oo, - o o < s < ~ o  and 

(3) IlD{a(. ,~)ll~ <-- C~(l+l~l) <pt, 

then T=a(D) is bounded on B*p,q (resp. F~,q, p#oo), whenever ~>QB (resp. ~r) 
(see Theorem 3 for details). We also extend the above result of Gibbons to the 
case 0 < p < l  and study symbols satisfying conditions other than (2) and (3). 
Although our emphasis is put on the case 0 < p <  1, some of our results seem new 
even in the case 1 <-p <= co. The proof of the boundedness of T is done by the weU- 
known technique of decomposing a into elementary symbols (cf. [3], [7]). However, 
in comparison to [7] where difference is used to deal with Besov spaces, our method 
relies heavily on the characterization of Besov (and Triebel) spaces via the spectral 
decomposition by Peetre and maximal function techniques ([4], [13], [14], [15], [17]). 
In fact, our point of view is influenced by both [3], and [15] and [17] where (ordinary) 
multipliers are studied. 

The author wishes to thank Dr. Per Nilsson (Lund Institute of Technology) 
for useful information and the critical reading of  an earlier version of  the manuscript. 

1. Notation and preliminaries 

We use R" and ..+R"+I to denote the n-dimensional Euclidean space and the 
upper half-space, respectively; an element of  ~,,+1 will be generally denoted by 
(x, t), where xCR" and t > 0 .  The Fourier transform is defined by 

~f({)  = f({) = f e-'X'r f(x) dx. 

Here x . {=x l{ ,+ . . .+x , { . ,  and the integral is extended over all of R" unless 
otherwise indicated. For a multi-index e = ( e l  . . . . .  e,), let D==(O/Oxl)~,...(OlOx,)=.. 
For convenience, we put D,+,=(O/Ot). The Gauss--Weierstrass kernel for ~'"+~ 
will be denoted by W, i.e., 

Wt(x) = W(x, t) = (4n0 -"/= exp (-lxle/4t), (x, O< R"+ +1. 

For any f~50", the space of tempered distributions (the dual of  5 ~ the Schwartz 
class of rapidly decreasing functions), the function u =  Wt* f is well-defined and 

R "+~ i.e., a solution of the heat equation Axu-D.+,u=O it is a temperature on . .+ , 
on Rn+I" . .+ , we shall usually call u the Gauss--Weierstrass integral of f For a 
measurable function w on R,+I _.+ , we put 

M p ( w ; t ) = l l w ( . , t ) l [ p ,  O < p < = %  

where J1" Jl~, is the L~,-norm (it is only a quasi-norm in case O < p <  1, but we still 
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use the terminology "norm" for the sake of convenience; we shall use this abuse of 
terminology hereafter without explanation). 

Next we recall the definitions of Besov, Hardy and Triebel spaces. Let q/ be 
a function in 5 a such that suppq/={1/2=<[~l~2}, and 2;T=__q/(2-Jr for 

~0.  Let q~ and q/j, j =0,  -4-1, + 2  . . . .  be functions in 5 e given by 

~bj(~) = q/(2-J~), j = 0, _+1, +2,  ..,, 

(~) = 1 -ZT=l  ~J (4). 

Following Peetre ([13], [14], [15]) and Triebel ([17], [18]), we define 

B~, q = { f 6  S/" ; Ilflt~;,~ = II r  fllp + (~'7=1 ( 2is II q/j* fllp)q) 1/q < ~},  

/7~,r = {f65a';  Ilfllb;,~ = (~ 'T=--  (2Jsllq/j*fllp)q) ~/~ < ~ } ,  

F;~,q = {f6SP'; [/file;,~ = II@*f//.+(f(z;= ! (2Jslq/j * f (x)Oq)Pladx) l lP<~},  

e '  {f~se,; II/ll;:,,, = ( f  ( z $ . : _ .  . - ,1/1, _ }  t,,,1 = (2 j: lq/S * f ( x )  l)r l'iq dx j  < , 

where - : < s < ~  and 0<p,  q ~ .  The following characterizations of  Hardy 
and local Hardy spaces will be used as their definitions ([4], [8]). 

n~'  = { f C . ~ ' ;  I l f l l , , .  = 11o2L I ~ , . f ( x ) l l l ,  <-), 

h p = { fE  Se'; I l f l l h "  = IloSTp<, l +, . f  (x) l l l,, < - ) ,  

where 0 < p < o o  and q~t(y)=t-"@(ylt).  
It was observed in [18; pp. 72--73] that the L f n o r m  in the definition of B~,~ 

(p~o , )  can be replaced by the F~ the latter is equivalent to the hP-norm 
by [1]. As for the space By, q (p~oo), Peetre [15] showed that the Lp-norm can be 
replaced by the HP-norm. The following Fourier and ordinary multipliers' criteria 
for Besov and Triebel spaces are useful for our purpose. Hereafter, immaterial 
constants are denoted by C, c . . . .  ; they are not necessarily the same on any two 
consecutive occurrences. 

Lemma 1. (Cf. [17], [181.) Let  0 < p ,  q<=~ and - ~ < s < ~ .  
(i) I f  m is sufficiently smooth and f -=-m, then 

l IT*f liB; ~ =< C{ sup sup (1 + Ixl)m [D~m(x)l}llfll~, L , 
' k,I~NL, x~R" 

IIT*flIF#,~ < C sup sup ( l+]x[)i~llO~m(x)l}l l f l lrg, ,  p ~ ,  

where N n and N F are positive integers that depend on s, p, q and n. 
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(ii) I f  0B=max (s, n ip - s )  and 0v=max (s, n/rain (p, q ) -s ) ,  then 

[]af[]~,, ~ C[la[la~. ]JfJ[s~. .,  Q >on,  

[[afl[rLq ~= C[la[[~, [[f[[rL , O > Or, P ~ .  

Our preliminary result is a sub-mean-value property for temperatures. 

/~n+l (x, t)ER~_ +1 and r>O be such Lemraa 2. Let u be a temperature on ~.+ , 
that r2<t. Let R ,={(y , s ) ;  t-r2~=s~=t, ]xj--yj]<=r/2, j = l  . . . . .  n} and U,= 
R,\Rr/~.  Then 

{.(x ,  tl" (C. /r"+2)f f  urlU(y,s)l" dyds, 0 < p 

Proof. It is easily seen that the result for the case l~=p<r follows from that 
for the ease 0 < p <  1 by H61der's inequality. (Note also that a proof  in the former 
case can be obtained as in Hattemer [10; Lemma 5] where a proof for p = 2  was 
given.) We may therefore assume that 0 < p <  1 in the rest of  the proof. W e  imitate 
the arguments given by Fefferman--Stein [4]. It is no loss of generality to assume 
that u can be extended to be continuous on R"X[0, ~[, (x, t )=(0  . . . . .  0, 1) and 
f fv,  lu(y, s)lPdyds =1. For each O < r < l ,  let 

K, = {(y, s); s = 1 - r  2, lyjl <= r/2, j = 1, . . . ,  n } u  ~) {(y, s)ER,; 
j= l  

1--r 2 <= s <= 1, lYjl = r/N}, 

= [u (y .  s)l, dS.(y, o < q < = ,  

M=(r)  = sup lu(Y, s)l, 
K. 

where dS, is the (Lebesgue) surface measure on K, properly normalized (cf. [10]). 
We may assume M=(r)=> 1 for 0 <  r <  1, since the result would follow otherwise by 
maximum principle. Let 0 < 0 < r < l .  By known properties of temperatures (of. 
[10]), there exists a kernel H,  such that for (z, 6)EK o, 

a) = f (y, s))u(y, s)dS;(y, s), 

where dS" is the measure dS~ suitably oriented. Since 

M~ (r) <_- ~G (r)'M~ (r) ~-', 
and 

]H,((z, 6), (y, s))I ~ C(1-or -O -2", (y, s)~K, and (z, 6)~K 0 

by the explicit formula for H, given in [10], it follows that 

Mo~ (0) <= CMp (r)PM~ (01-9(1 -- or- l )  -2". 
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Taking o = r  ~ (2>1 to be chosen later), and using Jensen's inequality and the 
condition f f  VllU(Y, s)l'dy ds= l ,  we  see that 

f~ /21ogMo.(r)r - ldr  <= C~ + ( 1 - p )  f~ /21ogM~(r )r - ldr .  

Thus, we obtain 

1 
( / 2 )  f11/2)~ log M~ (r) r-1 dr -< C~ + (1 - p) f:/2 log M= (r) r-1 dr. 

If  ~. is chosen so that 1/2>1 - p ,  then we derive that 

f~12 log M~ 1 , (r)r-  dr ~_ Cp. 

Hence, there exists ro, 1/2<ro< 1 such that 

M= (ro) --<= C,,  

which implies the lemma by maximum principle for temperatures. 

2. Hardy--Littlewood type characterization of Besov spaces 

In this section, we shall assume that O<p<=l, O<q<_-~ and - ~ < s < ~ .  

Theorem 1. Let f be a tempered distribution, u be its Gauss--Weierstrass 
integral and k be a non-negative integer greater than s/2. 

(i) I f  fEB•,q, then 

~p,q(f) = sup  [ lU( ' ,  t)[[h p +  (~[tk--s/21[Dkn+lU(" , t)[[h,]qt -1  dtlllq< 
2~_t~1]2 

(ii) Conversely, i f  

B ; , , ( f ) =  sup mp(u;t)-~[flo[tk-s/2mp(Dk+lU'~t)]qt-ldt) l]q<~176 
2~t_~112 

then fEB~, q. 
Furthermore, ~; ,q( . )  and B~,q(.) are norms equivalent to each other and to 

II .HB;,~. 

Proof. Let 00 = �9 and 0i ( j = l ,  2, ...) be the functions in the definition 
of B;, ~ given in section 1. We observe the following easy consequence of Lemma 1 : 

For any non-negative integer m and real number 2, there exist constants 
Cm and C~ such that for  all gEh p and t<=l, 

(4) IID2+aW~*gllh, <= Cmt-~llgllh, <= Cmt-r" (ZT=0 II~,j.gll~',) lip, 

IlJXWt * gllhp <= C x (1-k tx/z) ll gl[h, . 

(Here (/~h)^=O+l~l~)-~/~ for hESe'.) 
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This observation readily implies that 

(5) 

( f 2 " OJlh l"-  at) ~ (ZT=o JID .+ lu(. , 2--J)Hhp)q) 1/q , 

where F(h)~G(h) for h in some class H means that there exist C~ and C~ 
such that C~G(h)<- F(h)~-C2G(h), hEH. 

We begin with the proof of (i). Assume first that s<O. Let so and s~ be negative 
numbers such that so/2<s/2<sl/2<k. Let fEB~t,q, i = 0 ,  1. Then 

IlDi+xu(., 2-J)llh, -- [I Js 'W( �9 , 2 -j-~) -*n~+xW(., 2 - j - i )  * J-S'fllnp 

< C 2-j(si/a-k) Ilfll 
= Bpi, p 

for j = O, 1, 2 . . . .  by (4). Consider the map 

T: f~-~ {D,k+lu(., 2-J)}7:0. 
Then the above shows that T maps B~,,p into l~/2-k(hp). (Here l~(A)={{aj}~=o; 
[]{aj}l[t~(A)={Z~=o(ZJ~ltajl[A)q)l/q<oo}, where - - o o < 2 < ~ ,  0<q<--oo and A is 
a quasi-Banach space with norm [I �9 ]la.) Hence T: B~,q'--,-l*ql2-k(h p) by interpolation 
(cf. [15; Chap. 5, Theorem 3 and Chap. 11, Theorem 10]). Since the proof of  the 
fact that 

sup Uu(., t)llh,~ ~ Ilu(., 1/2)llh. -<-- CllfilB;,,. 

is similar (in fact simpler), part (i) in case s < 0  follows from (5). Next, let s=>0 
and So/2<s/2<sx/2<k. Then the result for the case s < 0  implies that 

liD. ~ (" )l[ < CIIAkfl[ < C'llfll ~7. ~'" 2 - - J ( k - - s i / 2 )  +1 u , 2 - J  hP ~ B , 2k = B ,q  

Thus the desired result for s=>0 follows by interpolation as above. The proof of 
(i) is hence complete. 

Conversely, assume that the asst:mption in (it) is satisfied. Keeping j = l, 2, ... 
fixed for a moment, let t=2 -~j. For simplicity, we write v for Dk+l u. Then 

t~j* f = f goj* v( . ,  t), 

where (oj(~):-~(~)(-tl~lZ) -k exp ([~]2t). Noting that ~pj(x)=t-n/2(P(X/]/-{) with 
q(~)=~'(~)(--[~]2) -k exp (1~[2), we obtain 

[~j*f(x)l <-- ? Z ,  c z- 7'* (/0 v* (x-l /7/ t ,  t), 
where 

~*(~) = sup I~(t~+Y)l, 
YEIo 

v*(z, t) = sup [v(z+y, t)l, 
y ~ I0, ~/~" 
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and I0 (resp. I0,f;) denotes the cube with center at the origin and with length of  
side 1 (resp, 1/~). Hence, it follows that 

I[~j*/ll .  <-- Cp,~.tkmp(v*; t). 

Assume first that p<-q. For any xCR" and yCIo, Vt, Lemma 2 gives 

[v(x+y, t)[ p < C2 j("+~) P f Iv(z, 2)l"dzd2. 
= J t/2 I : : - ~ [ ~ - l / ~  

Thus 

u,(v*; 0 ~ c ( f  ~,5 i , ( , ' ,  a),~-lda) 1" . 

Jensen's inequality then implies that 

(z7 )1 )) 11,  S =  =1 (2Jsll~hJ*fllp) q /q ~ C k-*/=Mp(v; 2 q2-1d2 

Next, let q<p. Then, again an application o f L e m m a  2 with q instead of  p gives 

Mp(v*; t) q "~ c f'~n Mp(v; J,)q~,-ld2. 

Hence, it follows from Minkowski's inequality that 

s <: c(f 2 
Since the estimate for II #P *flip is similar, we conclude that fEB~,q, and the proof  
of  the theorem is thus complete. 

Remark 1, (i) Results similar to those in Theorem 1 hold for homogeneous 
spaces. More explicitly, if fE/i~,q, and u and k are as above, then 

and conversely, if 

( f f  ~-~ ~ . t)]qt-ldt) llq It i . ( O . + l u ,  < o% 

then f~/~,q  and the last quantity is equivalent to [If[Ih;,, Using harmonic 
functions instead of  temperatures, Peetre [15] has given a similar characterization 
for /~, ~ (s<  1). Our proof  of  Theorem 1 (ii) is a modification of  his. 

(ii) A theory of  Besov spaces in the case 0 < p < l  can probably be developed 
on the basis of  the characterization given in (ii) of Theorem 1 as was done by 
Taibleson [16] and Flett [5] in the case l<-p<_-~o. In particular, if 2 > s  and u is 
the Gauss~Weierstrass integral of an fCSP', then fCB~,q if and only if 

sup II,(', 011.+(f~[,*-*lls-*ur 
2_~t_->1/2 

furthermore, the above quantity is equivalent to I[f][B;,,. The proof  of  these 
assertions is similar to that of  Theorem 1. 
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3. Translation invariant operators 

Using the characterization of  Besov spaces given in Theorem 1 and the known 
technique from previous papers ([2], [12]), we extend many results on translation 
invariant operators to the case 0<p<_-1. For quasi-Banach spaces X and Y such 
that 5 : c X ,  and X and Y are embedded in 5:', let Cv(X, Y) denote the set 
of  all bounded and translation invariant operators from X into Y, i.e., 

Cv(X, Y) = {TES:'; [IT*q~l/r ~ Cll~Ollx for all q~Gg~ 

Theorem 2. I f  0<p<_-q<-l, 0<r ,  s~-~  and - ~ < s 0 ,  s l<  ~,  then 
(i) Cv(B~o,s, n sl a c B  ~,-~0+"(I/p-a)" 

, ~ q ,  r /  q ,  ~ 

(ii) so s I _ s l - s  + n ( l / p - 1 )  Cv(Bp,s, Bq,,)-Bq, = o i f  s~r ;  
(iii) Cv(h p, B~o ) c B  qo+~(alp-1); 
(iv) Cv(h p, B so ) = R  ~0+"(1/p-1) i f  either r~_2 or p < q  and r>=p; - - q ,  r /  - - q ,  oo 

(v) Cv(h ~, hq)~ R n(llp-1)" / - - q ,  ~ , 

(vi) Cv(h p, hq)---B~!~ p-~) i f  p < q <  1; 
(vii) Cv(h p, hx)=Cv(h p, L~)---B~I~P-~) , p <  1. 
The assertions (i) and (ii) remain true in case 0 < p ~  l~=q<=oo. 

Remark 2. (i) Theorem 2 is still valid for homogeneous spaces, that is, if we 
replace non-homogeneous Besov spaces and local Hardy spaces by homogeneous 
Besov spaces and Hardy spaces, respectively, then the corresponding statements 
of  Theorem 2 hold. 

(ii) Note that the assertion (ii) of  Theorem 2 for p = q  and r=s  was obtained 
earlier by Peetre [15] (cf. also [18]). The author was informed by Per Nilsson that 
a sharpened version of  Theorem 2 (ii) was also obtained by him independently. 

Before proceeding on with the proof  of  Theorem 2, we need a 1emma. 

Lemma 3. (i) I f  k is a non-negative integer and 1]p+ l[p '=l ,  then 

s k Bp, q(D,+xW(., 2)) ~ C(1 +2-k-~/2-"/~P'), 0 < 2 <  oo and - - o o < s <  ~.  

(ii) I f  0 < p < q < = ~  and so -n /p=s~-n /q ,  then 

B~~ c B2,, 0 < r < = ~ ,  

h p = F~ c B "(~/~-~/p) q , P  , q ~ o %  

o < B~ c h p c Bp,~,  p 2 
(cf. [11, [111, [15], [181). 

(iii) I f - -~o<s<o%0<p<- - I  and 0<q<_-~o, then 

Ill* gliB;,, <= Cl[f[[~;,,llgllG',~-~, 

for all fEBr, q and n(llp--1) gEBp,~ (cf. [15], [181). 
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(iv) I f  k is a non-negatlve integer and 2>0,  then 

2 k-"/2p' if n/(n+2k) < p < oo 
[ID,k+IW( ", 2)[[np ~ (l+2)_k_,/2p, if 0 < p < n/(n+Zk), 

[fD,k+lW( ",2)[[h. =< C(1+1og((2+1)/2)) if p = n/(n+Zk) 

(cf. [2]). 

Proof. The proofs of (ii), (iii) and (iv) are given in the referred papers. The 
assertion (i) follows from Theorem 1 and routine computations if  one notes that 
for any t>0 ,  Dk+lW(x, t )=t-kW(x ,  t)P([x[2/4t), where P is a polynomial of 
degree k. 

Proof o f  Theorem 2. We begin with the proof of  (i). Let 0<2_<-1, T be in 
$ s 1 Cv(B~o,s, Bq,,) and k be a non-negative integer such that k+so/2+n/2p'>O. 

Put f=Dk,+~W(., 2) and u =  Wt* T. Then it follows from Lemmas 1 and 3 (i) that 

ctf~ ) 2 -k-*~ _--> cB~,r ( T . f )  ~ vttm-sl/211nk+"~n+lm"t:'' 2 + t)lJhq)" t -1 dt lit 
/2 

> e ~ , . - ~ / 2  n k + , . . . :  22)11 = ~ ' ~  ~ n + l  u k "  , hq, 

where m is a non-negative integer greater than s~/2. Thus 

s u p  ]k+m--(sx/2--s~ T~k+m"( 
"~ --n+1 "k', "Z)llhq < C. 

0<~,~1 

Similarly, it can be seen that 
sup Ilu(., t)Hh, <= C. 

2 _ ~ t ~ 1 1 2  

The proof of  (i) is hence complete on account of Theorem 1 since k+m>(s~-so+ 
.(1/,o-1))/2. 

The equality in (ii) follows from (i) and Lemma 3 (ii) and (iii). 
The inclusion relation in (iii) is deduced from (i) by noting that B ~  p, 

whereas the equality in (iv) is derived by using the following two inclusion relations 
given by Lemma 3: 

hP c B~ ~ B~ r >- 2, 

h p C B~,(lp/q-1/p) C B~,(r l lq- l lp) ,  p < q and r _-> p. 

Next, let TECv(h p, h q) and k be a non-negative integer such that n/(n+2k)<p. 
Put f=Dk.+xW(.,  ~), 2>0,  and u = W t . T .  Then it follows from Lemma 3 (iv) 
that 

llD,k+~ u(., :t)llhq <= C llfllh- "" C~ "~'-"(I-~/p)/2. 
Thus 

k sup 2k-"(a/P-1)12[lD,+lU(. , 2)llhq --<- C.  
0 < 2 - < ~  
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Similarly, we see that 

Ilu(', 1/2)lib, <= C, 

and hence the proof of (v) is complete. 
The proofs of (vi) and (vii) can be done in the same spirit as that of  (iv). 

4. Pseudo-differential operators 

In this section and the next one, we shall assume, unless otherwise indicated, 
that - ~ < s < ~  and 0 < p ,  q<=~,. Let a=a(x ,~ )  be a bounded continuous 
function on R"XR",  which is infinitely differentiable with respect to 4. Thepseudo- 
differential operator T =  a(D) with symbol a is defined by 

r f ( x )  = a (D) f ( x )  = (2~)-" f e'x'r ~)f (~)d~, fC5s 

(All symbols hereafter are assumed to satisfy the above conditions.) We say that 
T is bounded on X if IITfJIx~_CJIfJIx for all f ~ 5  e, where X is a quasi-Banach 
space of (tempered) distributions containing 50; we also sometimes, by a slight 
abuse of  terminology, say that a is bounded on X. Our aim in this section is to 
prove the following theorem. 

Theorem 3. (i) I f  0 > 0 B = m a x  (s, n / p - s )  and [IDea(., r <=Cp(1 + I~1) -lal, 
then T = a(D) is bounded on B~p, q. 

(ii) I f  0 > 0 v = m a x  (s, n/min (p, q ) - s )  and [IDea(., r 
then T = a(D) is bounded on F~, q (p ~ ~). 

Since the proof of  the theorem is rather long, we shall break it into steps. 

L The case where a is an elementary symbol 

A symbol o" is called an elementary symbol if it can be written in the form 

a(x,  4) = ,~=o  rag(X)~k(~), 

where /bk(~)=q3(2-kO, k = l ,  2 . . . .  for a q~Se such that supp q~c{2-a==[~lN2 a} 
for some A=>I, q~t~5 e and supp~0c{[~l<=2a}, and SUpkl[mkllB~,<r (Q being 
as in Theorem 3). 

Let a be an elementary symbol with the above properties. Then the associated 
pseudo-differential operator is given by 

Tf (x )  = a (D) f (x)  = Z~~ m h (x) ~o h - f  (x). 
$ S We shall prove that T is bounded on Bp, ~ and F~,, ~. Since the estimate for ~/'o * T f  

is simpler (recall that we put ~k0= �9 for simplicity), we only consider ~'k* T f  for 
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k =  1, 2 . . . . .  The above gives 

$k * Tf(x) = Z;h=O ~lk * [(Ipj * mh) (~h * f) l  (x) 

: f ~-a~b (Y) ~ ,  h=0 (~J * mh)(X--2--ky)(q~h * f ) ( x - -  2--ky) dy. 

A simple geometric consideration on the supports of ~k and [(~j*mh)(Cph*f)] ̂ 

shows that the terms on the above sum vanish except for those where [j-h[~_ 
k + 2 A + 2 .  As in [17], we shall only consider three model cases; the other being 
similar. 

S~(x) = Z ~ = o f  ~ - l ~ ( y ) ( t p j .  mk)(X--2--ky)(q~k* f ) (x - -2- -ky)  dy, 

(6) S~(x) = ~ = o f  ~- l~(y ) (~bk .mn)(X- -2-ky) (~Oh. f ) (x - -2-ky)dy ,  

S~ (x) = Zh=k f ~--1~ II (Y)(~lh "~ mh)(X-- 2-k y)(qg* * f )  (X--2--k Y) dy. 

Before proceeding on with the proof, we recall the following maximal function's 
inequality initially developed by Peetre [14] (cf. also [4]) in the study of the space 
_F~,,q. The present form is taken from [17] or [18]. 

Maximal function's inequality: Let ~ be a function in 5e such that supp ~ c  
{2-R<--I~I---<2R}, R being a positive number. Let ~tj, j = 0 ,  l, 2 . . . .  , be functions 
in 5 a given by 

~j(~) = 7*(2-J{), j = 1, 2, ..., 

supp ~o c {l{I ---< 2R} �9 

For each j = O, 1, 2 . . . .  , define 

I % * f ( x - z ) [  
7-'yf(x) = zeR.sup 1 +2Jalzl x ' fC5 e', 2 > O. (7) 

Then 
(8)  

(9)  

where 

II { 2j* ~ff}]l < Ilfll 2 > n/p, tJLp) = CC~, B~,, q, 

11{2J* ~'f}llL,,(,~) <= CC~,[Ifl[Fg, , p r 2 > n/min(p, q), 

C~, = sup sup (l+lxl)S~l[lD~T(x)l+lD~q'(x)l] 

and N is a positive integer depending on s, n, p and q. 
Let 21 and 22 be positive numbers such that 21>nip (n/min (p, q) when we are 

concerned with the F-space). Then, an easy argument implies that 

IS,~ (x)l  * k , <- C~p k f ( x )  ~.~=o ~b j ink(x), 

IS~(x)[ =< C ~ = 0  ~mh(X)~o~f(x),  

IS~ (x)[ = C Z~=k 2(h- k) (,q + &) ~,~ mh (X) r 
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where * q~kf, (resp. * �9 .. r ...) are maximal functions defined similarly to (7) 
with 2=21 (resp. 22). Then, it follows from the assumption on {mk} that 

IS~x)l <= C~p~f(x) Z;=o II0ff mkl[ = ~ C'q~f(x),  

2 ks IS~, (x)] <= C2 k(Isl +,-0) (Z~~ qg~f(x)),)l/, 

and 
2*lS~(x)] < c ~'= 9-o.h+(h-k)(al+a=-s)2hs~o~f(x) 

= ~ . . a h = k  - -  

=< C'2-k (z~ + a, +a {Q- a~ - z~ +,) -,) (~,h= o ( 2h* ~o'df(x))~) ~la, 

where e>0,  0<a<l,  ~, and 2~ are chosen so that lsl+a-o<0, o-A,-&+s>0 
and 2 , + 2 ~ + 6 ( O - 2 , - 2 2 + s ) > s ,  and a=p (resp. q) if we are concerned with the 
B-space (resp. F-space). The boundedness of  T=rr(D) on /:~,~ then follows 
from these estimates and (9). On the other hand, choosing s i (i=O, 1) so that 
So<S<Sl and Q>max (si, n/p-sO, we derive from the estimates gi'ven above for 

�9 , Hence, the desired result for S~, S~ and S~ and (8) that T is bounded on Bp, p. 
Besov spaces follows by interpolation. 

Note that the proof gives 

[IT[I <= Csup [ [ m k [ [ B  e . 

Remark 3. Though there is a direct proof for Besov spaces (cf. section 5), we 
adopt here the above proof based on maximal function technique and interpolation 
theorems, since it gives a unified approach to both Besov and Triebel spaces. Our 
proof is to some extent modelled after the one given by Triebel for ordinary mul- 
tipliers (cf. [17]). 

H. The case a has compact support 

Lemma 4. Let a be a symbol such that 

t r ( x ,~ )=O for I~[_-->t, 

]]DcPa( ", ~)]ls~,. -< Cpt-SPl, 

for some fixed t > 0  and let m be a positive integer. Then there exist a sequence 
o f  functions {ak}keZ, and a constant C such that 

sup Ilak[lB~,. ~ C, 

o" (x, ~) = ~'k e z" (1 + l k[ 2) - - m n  ak (X) eik" r (p (~/t), 

where (p~6 o, r on {[41<=1} and q~=O on the complement o f  {~; -zc<--~j<--n, 
j = l , . . . , n } .  Moreover, i f  a(x, .)  is supported in a ring {Vt<-l~[-<_t}, O<V<I,  
then q) can be chosen to be supported in a ring centered at the origin. 
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The proof  of  the 1emma is similar to that of  [3; Chap. II, Lemme 4 and Co- 
rollaire] by using Poisson summation formula. 

Let a be a symbol satisfying the properties in Lemma 4 with t = 1 (for the 
sake of simplicity). We shall prove that the associated pseudo-differential operator 
T = o-(D) is bounded on B;, q and F;, q. By the decomposition given in Lemma 4, 
we see that 

Tf(x) = ~k  c z- (1 + ]k] 2) -nm a, (X) (~o, . f )  (X), 

where O,(~)=e ik" r First, we note that 

(10) sup (1+ [~[)t~l lO, Ok(4)[ <_ CN(I+ ]kl) N, I~1 <-- N 
~ER n 

for any kEZ" and positive integer N. 
We begin with the Besov spacecase.  Since the proof  for the case p=>l is 

simpler, we assume that 0 < p < - l .  If  p<-q, then the above representation for 
Tf, Minkowski's inequality, (10) and Lemma 1 imply that 

(Zj~=o (2J~[lOj. TUlip)q) p/q <- (Z;=o 2Jsq (Zk (1 + [kl2)-""pl[~Pj.(a~,(ge.f))llf,)q/p) p/q 

=< ~k  (1 + [k 12) -"~P ( ~ j  (2 j~ l[ Oj * (ak (q~k *f))[lp)q) m 

<---- C ( Z k ( l +  [kl~)(NB-"m)~')llfll~1,,~ <- C'llfll~; ~, (m sufficiently large). 

An inequality similar to the above can be also obtained in the case p>q.  The 
proof  for the B-space case is thus complete. 

As for the F-space, we consider only the case 0<q_-<l and O<p<-q, since 
the other cases are similar. Observing that 

(ZT=0 I~PJ * Tf(x)lq) 1/~ ~ (ZkEZ" (1 + Ik19 .nmq ( 2 j  IIPj * [ak (qgk *f)]  (x)]q)) l/q, 
we obtain 

II {2~' ~kj * Tf}l[L,(,p <- C (Zk (1 + [kp) -"m, f ( Z j 2  jsq [r [ak(q)k *f) ]  (x) Iq) m dx)' i, 

<-~ C' (Ze (1 + IklZ)(N~'-"m)P) vp II/IlF; <= C"I[NIIF;, 
~ 

(m sufficiently large) 
by Lemma 1 and (10) again. 

The proof  of  the boundedness for symbols with compact supports is thus complete. 

IlL Proof o f  Theorem 3 

We write 
.(x, r = o(x, O~o(~)+Z/=l o(x, ~)$j(4) 

= ,o(X, 4 )+Z~Z~ , j (x ,  4) = ~o+~. 
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The boundedness of zo(D) is given by step II. Each -r j, j = 1, 2 . . . . .  satisfies the 
assumptions of Lemma 4 with t = 2  i+~ and constants {Ca} independent of j. 
Therefore, it follows that 

zj(x, 4) = ~kCZ" (1 + Ikp)--'"aj,k(X)e~2-J-~k'r 

sup []aj, k[IB~,= ~ C. 
j,k 

Further, we may assume that 9 is supported in a ring centered at the origin. Setting 

~k(~) = elk'r 1 + [klZ) -"~ 
we see that 

sup (l+l~l)t,llD,~k(~)[ _<- C~ for ]~1 <- 2too > N, 
~CR" 

where N is the integer appearing in the maximal function's inequality given in 
step I, and {C,} is independent of k. Put 

ak(X, ~) = Z f = l  aj, k(X)~k(2--J~)" 
Then 

�9 (x, 4) = Z ~ c z .  (1 + Ikl2)-"~m-mo~a~(X, 4)" 

The boundedness of operators with elementary symbols and the proof in step II 
imply that "c(D) is bounded on Bp, q and F;,q. 

Corollary. I f  a is a symbol in the class S ~ that is, a satisfies the condition 
(1), then or(D) is bounded on Bp,, and F;,q (pr 

Remark 4. Per Nilsson kindly informed the author that he was able to obtain 
o 0 < 6 < 1 ,  h p. (A symbol the boundedness of symbols in the class S~.~, on 

~rEC=(R"XR ") is in the class S~ J if [D~D~a(x, O]<_-C=,a(l+l~l)-Ial+al=l.) Then, 
by using the relation hP= k~, ~, he has established the boundedness of these symbols 
on Besov spaces. The proof of his result has been given in "Pseudo differential 
operators on Hardy spaces" (Technical report No. 12-1980, Lund). 

5. More on pseudo-differential operators 

Our aim in this section is to extend the result of Gibbons [7] to the case 0 < p <  1 
and study symbols satisfying conditions other than those in section 4. We shall 
be rather brief since proofs are similar to those in section 4 in the spirit. Our first 
result is 
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Theorme 4. I f  a is a symbol satisfying 

[IO~ (a �9 ,4)11 ~ ,~  < Ca (1 + [ ~ [ ) - I a l _ _ _  (1 <=q =< oo,) 

[IO~a(. if)l[ ~+o<=G(I+I~[) -lal ( 0 < q < l )  ' g ~ j  q 

for some e>0,  then T=a(D) is boundedon B~,q for s>max(O,n(l/p-1)) .  

Proof. We give detailed proofs for only elementary symbols. Again, three 
model cases in (6) will be sufficient to illustrate the complete proof. First, we see that 

H s rl. -- IIS=0 ma(  .f)]lb 
<= C (~ff=0 II~bj* mkl[~)I[~ok*fl[p =< C'll~ok*fllp. 

(Here we use Lemma 8 in [15; Chap. 11] if 0 < p < l . )  Hence it follows that 

I[ {2k*sg'}{lt,{Lp) <= Cllfl[n~,,q. 

The rest of the proof is carried out only for the case 0<p<= 1, since the case p=>l 
is simpler. As for S~,, we see that 

< C  k II S~llp = (Zn=0 II ~ *  mh]l ~ II ~h*fll~)x~P" 

If  O<q<--p so that q/p~_l, then we see that 

k, 2 <--C ~o _< . 11{2 S;~}[It,<L~,) (.~s C'[IfIIB;,~ 

If  p>q, then Minkowski's inequality gives the same inequality. 
Finally, we estimate S~. Since 

lIs~l[ <: czkn(1-1/P) (-~7= 2h"<V"-*)"l]0 * mhll~ I}~h * f l lg)  xtp 
P =  k h 

we obtain ][{2kss~}[] < CUfl[ t~ (Lp) : B~, q 

as above. Here we must have s>n(I/p-1) .  

Remark 5. The proof shows that for any elementary symbol a, the condition 
sup~ [Imj[[B*,<oo is sufficient to ensure the boundedness of a(D) for all q. This 
suggests that the number e>0  appearing in the assumption in case 0 < q <  1 could 
probably be dropped; we only need this stronger assumption to guarantee that 
SUPk~z"IlaklIB~,, <=C in the decomposition of symbols with compact supports in 
Lemma 4, and thus the difficulty is of a technical nature. 

Similar arguments give 
$ Theorem 5. Let a be a symbol and 1 <-p<= ~o. Then a(D) is bounded on Bl,,q 

in the following two cases: 
(i) s > nip and 

IlOePa(.,g)][~r =< Cp(l+[g]) -lal (1 =< q_<_~o), 

IlOePa( ", g)l[sg,*; -< G( I+[~[ )  -I"1 (0 < q < 1) 
for some e>0.  
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(ii) s=n/p>O and 

I[Dc~a( ", r C~(l+l~[) -tpl (q 1), 

IIO~(" 4)11 .§ G(I+ICI) -lal (0 < q <  1) Bp, q 

for some ~>0. 

As in Remark 5, the number e>0 in the assumption in case 0 < q < l  could 
probably be dropped. Moreover, the boundedness of elementary symbols can be 
also given for 0 < p < l .  
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