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Bernt Oksendal 

Abstract 

Stochastic proofs of the Beurling projection theorem and the Hall projection theorem for 
harmonic measure are given. Some d-dimensional versions (for all d> l )  which follow from this 
approach are pointed out. 

I .  Introduction 

If  U is an open subset of  the complex plane C, aE U and E is a Borel subset 
of OU, we let 2 , (E)=2~(E)  denote the harmonic measure of  E w.r.t. U (at 
the point a). (We assume that OU, the boundary of U, has positive logarithmic 
capacity i.e. OU is not polar.) It is well known that ha can be described in terms 

t ~ 0  of Brownian motion, as follows: If  bo, ( ) ,  o94 f2, t denotes Brownian motion 
starting at a with probability law P", then 

= e o ( r u )  E ) ,  

where T v = i n f  { t>0;  b~,(t)~ U} is the first exit time of  U. In Sections 2 and 3 
we use Brownian motion to give proofs of the Beurling projection theorem and the 
Hall projection theorem for harmonic measure. With natural modifications the 
proofs can be applied to give extensions of  these projections theorems to R n, for 
all d >  1. In Section 4 we formulate some such d-dimensional projection theorems 
which are not so easily available via extensions of  the classical proofs. 

We refer the to [1], [2], [3] and [5] for proofs of the Beurling and Hall projection 
theorems and more information about harmonic measure. A survey of  the stochastic 
potential theory can be found in [7] and [8]. 

I am very grateful to A. M. Davie, T. Lyons and J.-M. Wu for valuable cor- 
respondence, and I am indebted to M. Benedicks, B. Dahlberg, M. Ess6n and 
L. I. Hedberg their useful comments. 
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2. The Beurling projection theorem 

Let us first introduce some notation. I f  G is a set G o denotes the interior 
of  G and G' denotes the reflection of  G about the x-axis. The circular projection 
of  a plane set E about a point xo is defined as follows: 

E* = E*(xo) = {]z--x0l; zEE}. 

Let O<=Rl<R2<=oo and let A denote the annulus 

A = {z; R1 <-- Izl <-- R~} 

Theorem 1. (Bending projection theorem.) Let K be a compact subset o f  
A and suppose - R 2 < a < - R I .  Put K*=K*(0)  and define 

U = A~ V =  A~ * 
Then 

~(X)  > ~ ( K  ~) 7 - -  

To prove Theorem 1, we first establish the following, which will also be needed in 
the proof  of  the Hall projection theorem. 

Lemma 1. (Reflection lemma.) Let U c  C be open such that U '= U and let 
a E I = R n U .  Let K c U  be compact and put 

K + = {zE K; Im z => 0} 

K -  = {zEK; I m z  < 0} 

g = (K+)" u X -  
Then 

= 

Proof Put  V = U \ K ,  W = U \ K . .  Consider H = K + u ( K - \ ( K + ) ' ) .  Then 
H ~  K and /7=/~. Therefore it is enough to prove the result for the case when 
(K + ) ' n K -  = 0. Put  D = U \ ( K u K ' ) .  Then by the strong Markov property 

(1) pa(b(Tv)EK) = P"(b(TD)EK)+ fK,\r Pr(b(Tv)EK ) dva(y), 

where va is the distribution of  ba(TD) on OD, i.e. va(B)=pa(b(TD)EB), for B 
a Borel set. 

Now let G = U \ I  and let py be the distribution of  br(T~) on OG. Then 
we dearly have, again using the strong Markov property, 

(2) PY(b(Tv)EK) >= f ,  ex(b(Tv)EK)dpy(x). 

So combining (1) and (2) we obtain 

(3) P~ >=P"(b(T.)EK)+ fK, \K( f  IF'(b(Tv)EK)dl~y(x))dv.(y). 



Projection estimates for harmonic measure 193 

Repeating the argument 0 ) - - (3 )  n times, we obtain 

(4) P"(b(Tv)< K) >= Pa(b(TD)E K) 

+ Z;=I f,,,\,, (f,... f,,,\,, {f, p'~(b(To)~ x) +yk (xk))d,,k_l (yk)...) dva(ya) 

+L,\,,(f,...L,\,,(f,~'~ b (ro)~ K~K) ~,,o(~))... ) avo(yl). 
Since v~,(K'\K)~=~ for all xEL the last term in (4) tends to zero as n ~  and 

the series converges. 
We now apply the procedure (1)--(4) to pa(b(Tw)EK) and obtain similarly 

(except with equality instead of inequality): 

(5) P"(b (Tw)E/~) = P"(b (TD)EK) 

+ Z::l  L L "'" L ( L  PXk(b(TD)E K)dltyk (xk))dVxk_ 1 (Yk)...dva(yi), 
where F=(KuK')\~=K+u(K-)" (since we have assumed ( K + ) ' n K - = 0 ) .  
By symmetry P~(b(TD)EK)=P~(b(TD)EK) for all xEI, and since K' \K= 
( K + ) ' u ( K - )  ' we get by symmetry that each term in (5) is equal to the corresponding 
term in the sum in (4). That  completes the proof  of  Lemma 1. 

We now proceed to prove Theorem 1: 
I f  H is a set, we let H O) be the reflection of  H about the y-axis J~. 

Put 
W1 = A~ R e z  -< 0}. 

Then 

(7) P"(b(Tv)E K) ~= f ,, PY(b(Tv)EK)daa(y ) 

where aa is the distribution of  b(Tw, ). 
By Lemma 1 with U=A ~ reflecting about J1, we have 

(8) PY(b(Tv)E K) ~= PY(b(To.,)E K(1)), 
where K(1)=(KnW1)(1)u[K\W1)], /~(~)=A0\/~(1). 
Therefore, 

(9) P"(b(Tu)EK ) >= f ,  PY(b(To(1,)ER (~)) da.(y) = Pa(b(Te(1,)ER(1)). 

We now repeat the process, at the n'th step first reflecting about the line 

3", = {rei~ rER, 0 = 2-"re} 
and then about  the line 

J, = {tel~ rER, 0 = - 2 - " ~ }  

and each time using Lemma 1 with U = A  ~ 

In the limit we obtain 

P"(b(Tv)EK) >= P"(b(Tv)EK*) as asserted. 
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3. The Hall projection theorem 

We will prove the following version of  the Hall projection theorem: 

Theorem 2 (Hall projection theorem), Let A and a be as in Theorem 1. Suppose 
Rl<rl<r2<R~.  Then there exists a constant c > 0  such that for all compact 
K c  {z; r i<  [zl<r~} we have 

~ y  (K)  >= c . ml  (K*), 

where M = A ~  oo) and m i denotes 1-dimensional Lebesgue measure on R. 
(c does not depend on K.) 

To prove Theorem 2, we first establish the following: 

Lemma 2. Suppose that - -  in addition to the hypothesis o f  Theorem 2 - -  there 
zc 

exists 0<8-<_-- such that 
4 

K ~ {re/~ r => O, 6<-0<=28}.  

Then there exists a constant co, independent o f  (5 and K, such that 

2~m(K) (K*) > c O ml ~ 

Proof o f  Lemma 2. Put Im={rei~ r=>0, 0=6(1+2-~)} ,  and L , ,=  
{rel~ r=>0, 0 = 8 ( 2 + 2 - ' + 1 ) ) ,  m--0,  1,2, . . . .  For Xm-iEIm-x let v~.,-1 be the 
distribution on I= of  bXm-l(Tz.,), where 

Z,, = A n {rd ~ r >= O, 6 (1 + 2-m) _< 0 <-- 6 (1 + 2-m +~)}. 

Let U~={re/~ RI<r<Rz ,  0 < 0 < 8 ( 2 + 2 - " + 1 ) }  and S~--{re/~ r->0, 8 ( I + 2 - " ) _ -  < 
0~6(1+2-m+1)}. Let v" be the distribution of  the first exit of b"(t) from A \ I z .  
Then 

i >-L = PXI (b (TM)<K)  d~a(x1) e x l ( b ( T o ) ~ K )  dva(Xl), (1) P"(b(TM)EK) >- q 

where To is the first exit time of  b*~(t) from the set A ~  We now 
apply Lemma 1 with U - U 1 ,  reflecting about  /1: 

K, = (Kn  Si) (I) u ( K \ S i ) ,  

where for all m E (') denotes reflection of a set E about  /~, and let 1"1 be the 
first exit time of b(t) from A ~  Then 

(2) P~i(b(To)EK) >= P~*(b(T1)EK~ ) for all xEI  a. 

Therefore 

(3) P"(b(TM)EK) >= f ,  PXi(b(T1)EK~) dv"(x,). 
1 
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Repeating the argument, we get 

(4) ea(b(T,~)~K)>= f,~(f, P-~,(b(T~)~K,)clvX'(x,))av~ 
where K~=(KlnS~)(~)w(KI\S~), T2 is the first exit time from A~ 
and v~, is the first exit distribution of  bXl(t) from A~ After n repetitions 
we have 

(5) P'(b(r~)cK)~f , ,  (f,~(...f,P'o(b(ro)~Ko)d~:o-,(~,))...)d~~ 
where K~=(Ki_lnSi)(i)u(Kj_I\Sj), Tj is the first exit time from A~ 
j = l ,  2 . . . . .  n and v~J-~ is the first exit distribution of  b~l-,(t) from 
A~ 

We now replace the measures v~-~ by the measures p~=-~ defined as foltows: 
For x~_~ between Io and Im we let p~-~  be the distribution of the first 

exit of  b~-~(t) from the set of points in A between Io and Ira. Then dearly 

(6) v~2-~_->p~,,-~ on / ,  

and therefore, by (5) 

(7) P'(b(TM)EK) ~= f,, (f, , . . .(f,  P~o(b(T.)EK.) d,:o-~(x.))..} d~o(~) 
= L ,  ( L . P ~ " ( b ( r . ) ~ . ) d ' : ' ( x ~ ) ~ ~  , 

by the strong Markov property. 
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N A We may assume that K is a finite union of closed discs, K = Ui=l i" 
n so large that 2-"6r~ is less than the smallest of the radii of these discs. 

Then if 

we have 

(8) 

1 
~=i -2 &' 

?'off(~'.)EK.) = 1 

for all x, EE={rei~ rE/~*, 0=6(1+2-")} .  
Combined with (7) this gives 

(9) P"(b(TM)E K) f ,  (e) dva(x). 
1 

Chop the interval [ri, r2] into D = 2  k disjoint intervals 

Choose 

S~, S~ .. . .  , SD of length 

where k is chosen so large that 

e = 2-k ( r2"  r0, 

1 
76-=0<-6.  

Put Gi= {rei~ rESi}. Then if xEIlnGi we have 

(10) 

and therefore 

]./x (E) :> ~x (E("I Gi) >= Cl 
ml (En Gi) 

f, v'~(E)d:(x) = Z ~ f ,  ~:.(F.)dv'(x) >- Z?=I cl. i = 1  l n G i  -~- 

ma (E~ Gi) 
�9 v (11 n G3 

> ~=~ m~(E ) (E) (K*) = c 2 n G  i = c 2 m l  > = c 3 . m l  , 

where the constant c~ is independent of K and 6. That completes the proof of  
Lemma 2. 

Proof of  Theorem 2. We may assume that K is situated in the union of  the 
sectors 

{ 3 4  "2 = -"2-} V~= rei~ r>=O,--.  - - - < 0 < - 4  , n = 0 , 1 , 2  . . . .  

1 . 4-" ~-} Put E , = K n V , ,  J , =  rei~ r_->0, 0 = ~ -  , n = 0 , 1 , 2 , . . .  
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V0 

~ J o .  

For  n = l , 2  . . . .  and xEJ.- t  define 

= rd~ r >= O, 0 ~ 0 <= 4-"  

D.,x = {rd~ Ir-lxll  >= 4-"} 

B..x = A\ [0 ,  = ) \ D . , x .  

Then there exists a constant d l<  1, independent of  xEJ.-1 and n, such that 

(1) 2~xn'X(tgDn, x) <= dl 

Moreover, there exists a constant r/>O, such that for all compact F E W . ,  
xEJ._t and all n we have 

(2) I).~ (F)-- ~, (F)[ --< + (1 -- dl) 

for all x'EJ.-1 with lx-x'l<=q.4 -", where B = A \ [ 0 ,  oo) \F.  For  
define 

or. = inf{t > 0; b~(t)EOAuJ.} 

"r. = inf{t > 0; b~o(t)EOAuE,,wJ.} 

and let cq, 13. be the distribution of  b~,(a.) and b~(z.), respectively. 

197 

all 

n=O,1,2 .... 
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(3) 

Put R~=Uk_~.Ek and 
(4) Ho = {XEJo; PX(b(TM)ERx) > d~}, 

where d3=l-~(1-d l ) ,  and dl is given by (1). 

Then if 
Go = {xE Jo; gist (x, Ho) =< t/. 4-1}, 

Then (as before M = A ~  oo)) 

P"(b( TM)E K) = pa(b(ro)~ Eo)+ f joP~(b( TM)E K) drio(X) 

PX(b (TM)E R1) > d3 

ds= 1 - ~ 1 - 4 )  >d~. 

(7) F1 = RI~{zCK; ]Izl-lwl[ ~ 4 -1 for some wEGo}. 

Then if MI=A~ co) we have by (1) and (3) 

(8) P"(b( TM)E K) >= rio(Eo) + f .,~ TM)E R1)drio 
=> flo (Eo) + f ao P" (b (TM) E RI) dri o + f Jo\~o P x (b (TM 1) E F1) drio 

=>- ri o (Eo)+d a ri o (G )+ f o px (b(TM )E o -  f co px (b(TM)E F1)dri o 

>- po + (a3- dl) rio (Go) + f ,o ?~ (b (TM1) E 1:'1) dflo 

= rio (Eo) + (d3- d~) flo (Go) + fJo P x (b (TM1) E F1) dao- fJo px (b (TM1) E F1) d (Go - rio) 

>= rio (Eo) + (d3- dO rio(Go) + f.ro P x (b (TMI) E F1) d~o- d2 rio (Eo). 

Since ao(Jo)=flo(Jo)+rio(Eo), this gives 

(9) P"(b(TM)E K) >= (1-d2)rio(Eo)+(d3-dl)rio(Go)+ f joW(b(TM~)E F~)dao 

--> ~lrio(Eou Go) +P~ (TM: F), 
where c1=~(1 -all). 

By Lemma 2 we conclude that 

(10) P ~ (b (TM) E K ) => c~ [m I (Eo*) + ml (G~')] + P" (b (TM,) E F~) 

Since rnl(a*)>=n.ml((R,\FO*), we get 

(11) Pa(b(TM)EK) >= ca[ml(E~)+ml(R'~\F~)]+P~(b(TM1)E F1) 

We now start with the term P"(b(TMI)E F1) and repeat the process t 3)--(11) above etc. 
After sufficiently many iterations we get 

(12) P"(b(TM)EK) => yc~.t ml(K*), 

and the proof is complete. 

(5) 
we have by (2) 

(6) 

for all xEGo, with 

Put 
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4. Projection estimates in R d 

Both the classical proofs and the proofs given in w 2 and w 3 apply to certain 
d-dimensional situations, for any d=>2. Here we mention some d-dimensional 
projection theorems which follow naturally from the proofs given in w 2 and w 3, 
but would be harder to obtain by extending the classical proofs. (For r > 0  let 
A, denote r-dimensional Hausdorff measures.) 

Theorem3.  Define R: Rd"~R d-1 by 

R ( x l  . . . . .  = . . . .  , 

Suppose B c R + X R  d-2 is open (where R+={xCR;x>=O}) and let A=R- I (B) ,  
a=( - - a l ,  0 . . . . .  0)6A (al>0). Then i f  K is a compact subset o f  A, we have 

(i) 2~\K(K)>--_2aa\R(K)(R(K)) (Extension of  Beurling theorem). 
I fdist(K,  gA)=6>O and L={(x, 0 . . . . .  0)~Rd; x_>0}, then 

(ii) 2~\K\Z(K)>c.  Ad_x(R(K)), 
where c only depends on 6. (Extension o f  Hall theorem.) 

Similarly one can prove the following: 

Theorem 4. Define P: R"-~R d-1 by 

e ( x  1 . . . .  , Xd) = ( X  1 . . . . .  X d - 1 ) ,  

Suppose B c R  a-1 is open and let A=P- I (B) ,  a=(0  . . . .  O, aa)EA where %>0. 
Then i f  K is a compact subset o f  A such that 

(xa, ..., Xn)C K ~ Xa < 2an, 
we have 

(i)).~a\K(K) >=2~\PCK)(p(K)) (Extension o f  Beurling theorem). 
Furthermore, i f  S<-O<a<R and 

{ ( x l ,  . . . ,  xd)E ; S < x d < R }  

we have 

(ii) 2aa\X(K) >= c . Ad_~(P(K)), 

where c only depends on S, R and the distance from K to ~A. (Extension o f  
Hall theorem.) 

The proofs of Theorem 3 and 4 follow the same line as the proof given in the 
two preceding paragraphs and are omitted. 

Finally we mention that one can also obtain the following: 

Theorem 5. (Radial projection theorem.) Let B be the unit ball in R a, d~_2 

and let K c B  be compact, OI K. Let K = ; xE be the radial projection 
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of  K into the boundary S of  B. Then there exists a constant c>0 depending only 
on the dimension d such that 

(1) 2OB\K (K) -> c. 2d_x(K*) 

Remarks: 

1) In the case d = 2  this result has been obtained independently by T. Lyons 
and J. Taylor, who have proved that such an estimate holds for all symmetric 
spaces of rank 1 (private communication). 

2) It would be interesting to find the best constant c in (1). 

Proof. We apply the same procedure as in Sections 2--3, except that we replace 
reflection about hyperplanes by reflection (inversion) about spheres. Thus, the 
reflection lemma (Lemma l) is replaced by the following: 

x 
Lemma 3. (Spherical reflection lemma.) Define I :  Ra-~R d by I (x)= Ix[2 ; 

xERa\{O}. Let U c R  a be open such that I (U)=U,  dist(O, U)>O, and let aES, 
the unit sphere in R n. Let K c  U be compact and put 

Then 

KI=KmB, where 

K z = K \ B ,  

R =I(KOuKz.  

B= {xERd; Ix[ <- 1}, 

2~\r (K)  -> 3 ~-a. 2~ \ ~  (K), 
where 6 = dist (0, K). 

Proof. Proceeding as in the proof of Lemma 1, we put D =  U\ (K w I (K ) ) ,  
G = U \ S  and obtain 

(2) 2~\ r (K)  => P"(b(TD)EK) 

+ ZT=, f ( f , (... f ( f , e'.(b( K) dl,,.(x.)) dv,._, (y,) ...) dva(Yl) ) 

where vx is the distribution of b*(To), I~y is the distribution of br(TG) and 
E = I ( K ) \ K  =I(K1)wl(K~) (assuming I(KI)nK~= 0). Similarly, 

(3) 2 ~ (K) = P a (b (TD) E K)  

+ 0o 

where F = ( K u I ( K ) ) \ K  = KIwi(K2). 



(4) 

and 

(5) 
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So the proof of Lemma 3 will be complete if we can show that 

P~(b(T~)C K~) >-6'-a.P~(b(T~)eI(go) for all x~S 
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f s f(x) d#y(x) <: f s f(x)d#~(r) (x ) for all yE KI, 

and all continuous functions f 
Statements (4) and (5) are consequences of the following result: 

Lemma 4. Let V be an open set with I ( V ) =  V, dist (0, V)>0. Then i f  X c  V 
is compact and yE V we have 

<- - - -~  ")~i(,) (I(X)). 6 = d i s t ( O , X ) .  

Proof of  Lemma 4. Let H denote the Kelvin transformation on the space 
C(W) of (real) continuous functions on the closure of W = V \ X  defined by 

1 ( x /  
(6) (Hf)(x) = ~ . f  ; f~C(W). 

Then if g is harmonic in W, Hg is harmonic in I(W). If  y~W we define the 
measure fly on OW by 

(7) f f(x) d[ly(x) = f (Hf)(x) d21~ ) (x) 

Then for g harmonic in I(W) (and continuous in I(W)) 

f = f Hg. ,,w, d~.l(y) -~ Hg(I(y)) = ly[2-ag(y) 

Therefore ]y[a-2fly represents the point y for the functions gEC(W) harmonic 
m W. Since fly is carried by 0W, we must by uniqueness have 

Jyld-% = ~7, 
i.e. 

(8) f f d2W= ly[a-~ f f dfl,= [y[a-~ f Hf .  d2]~); fEC(W) 

This implies that, letting f =Zx (the characteristic function of X) 

< _ _  i/w) I ~ .~ . .  = . Z . .  ( ( X ) ) ,  

as asserted in Lemma 4. 



202 Bernt Oksendal 

We now observe that if in Lemma 4 we put V = D  and let yES,  we obtain (3). 
I f w e p u t  V = G  and y~K~ (so that  lYl_-<l) we obtain 

f s  f(x) day (x) ~ [yl f f (x) dp,(y) (x) <~ f/(x) a~,(~) (x), 

which is (4). That completes the proof  of  Lemma 3. 
We are now ready to complete the proof  of Theorem 5: 
First of all we note that it has been proved by T. Lyons ([6], Theorem 4.1) 

that the estimate (1) holds if the compact K has a distance ~fi to S (with C 
depending on fi). Lyons used Brownian motion in his proof. Subsequently an 
alternative, non-probabilistic proof  has been found by F. Fuglede ([4], Lemma 2). 
Based on this result, we may assume that 

(9) a = dist (0, K) > * ~ ' - ~ .  

Second, we note that it is sufficient to establish the estimate (1) under the extra 
assumption that there exists Q< 1 such that 

(10) K c  {x; O = <= Ixl ~_ 0}, 

2 1 with the constant e not depending on O, 0 -->~-. (This will be the analogue of 

Lemma 2 of  Section 3.) For once this has been established, one obtains the result 
for general K (satisfying (9)) by adopting the same technique as in the proof  of  
the Hall projection theorem in Section 3, with obvious modifications. 

1 
So we assume that (10) holds for some 0, .~<__02< 1. To establish the estimate 

(1) we apply the proof  of  Lemma 3 in Section 3, except that the iterated use of  the 
reflection lemma (Lemma 1) is replaced by iterated use of  the spherical reflection 
lemma (Lemma 3), at the k'th iteration reflecting (inverting) about the sphere of  

f ~k ~ d-'~, 
radius 0k=01+2-k. The k'th iteration gives an extra factor of i,-~-k) where 

6k is the distance from 0 to the k'th reflected set K (k). Since Jk>--Ok_l, this gives 
a total factor of  

/ xd - -2  d 

/ / [  0~| ~ /~  Q(2_d)2-, = Q2_d <____ 2 T - '  
k=l 6k ! k=* 

This establishes the estimate (1) under the assumption (10) and thus completes the 
proof of Theorem 5. 
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