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I. Introduction 

In this paper, the determination of all convex cones in a real simple Lie 
algebra invariant under the adjoint group will be essentially reduced to an abelian 
problem. Specifically, if h is a compact Cartan subalgebra in the simple Lie 
algebra g, the mapping C ~  C n h is shown one-to-one from the class of (open or 
closed) invariant convex cones C in g, onto an explicitly described class of cones 
in h invariant under the Weyl group. All such cones C in g have open dense 
interiors, and each such interior element, whether regular or not, is contained in 
a unique maximal compact subalgebra. The orthogonal projection of the orbit of 
such an interior element onto a compact Cartan subalgebra is determined explicitly, 
extending to these noncompact orbits known results for projections of compact 
group orbits. The above correspondence C-- , -Cnh is shown to preserve the 
duality relation between cones, and the class of self-dual cones in the classical 
algebras corresponding to convex quadratic cones in the compact Cartan subalgebras 
is determined. 

It is well known that the Poincar6 group, the symmetry group of  Minkowski 
space, contains a four-dimensional invariant semigroup, that of all vector displace- 
ments into the "future". This semigroup is the exponential of a corresponding 
invariant convex cone in the Lie algebra, which is precisely the cone of generators 
that are carried into nonnegative self-adjoint operators by infinitesimal unitary 
representations of "positive energy", such as those associated with certain hyper- 
bolic partial differential equations (for example, MaxweU's equations). 

This situation is not peculiar to the Poincar6 group, but is applicable to a 
variety of  other groups. For  example, the universal cover G (locally identical 
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to O (2, 4)) of  the conformal group of  Minkowski space M, acts on the universal 
cover _~r of  conformal space (i.e. conformally compactified Minkowski space), 
extending the usual action of the Poincar6 group on M. Conformally invariant 
wave equations extend naturally to ~ .  It may be seen that the semigroup within 
G of  all future displacements of  kTr contains the G-invariant semigroup generated 
by the above positive-energy semigroup; otherwise the relation between the two 
semigroups is not  at all clear a priori. The same situation develops tor the conformal 
group, locally O (2, n-I-l), of  a vector space with a fiat metric of signature (1, n). 

Thus the general study of invariant convex cones in Lie algebras appears of  
interest from a theoretical physical standpoint. This work determines the structure 
of  invariant convex cones in the Lie algebras of  all simple Lie groups. (According 
to a result of  Kostant cited by Segal in [14], only those simple Lie groups of  
hermitian symmetric type can admit a nontrivial such cone.) The classification is 
reduced to the determination of certain convex cones in an abelian subalgebra that 
are invariant under a finite reflection group (Weyl group). It was noted independently 
by Vinberg [15], and earlier in [14], that there are always unique (up to sign) minimal 
and maximal causal cones; all others lie between these. These extremal cones and 
others were determined more explicitly for the classical matrix algebras in [12]. 

It follows, for example, that in the above cases of conformal groups, the future- 
displacement semigroups and the above "positive-energy" semigroup are indeed 
distinct, in fact maximally so, being generated by the maximal and minimal, re- 
spectively, invariant convex cones in the Lie algebra.* Another  corollary to this 
work, is that the "cone of positivity" of  a unitary representation of a simple Lie 
group, defined to be all elements of the Lie algebra carried to nonnegative self- 
adjoint operators by the infinitesimal representation, is determined straightforwardly 
by the restriction ot the representation to any maximal essentially compact subgroup. 

On the other hand, the symplectic Lie algebras have unique (up to sign) closed 
invariant convex cones (cf. also [15]). The structure of  these symplectic cones 
(especially a generalization of  the present Theorem 4 to the infinite-dimensional 
case) has recently been utilized to determine a unique probabilistic quantization 
(i.e. a unique invariant vacuum state) for a wide class of  time-dependent wave 
equations [11], [13]. Another important ingredient in this development is an adapta- 
tion o f  the stability theory o f  M. G. Krein and collaborators [8]. 

Some of  the results presented here (essentially Lemma 6 and parts of section 3) 

* In this direction, it is interesting to note that the spin 0, 1/2, and 1 essentially conventional 
mass 0 representations of the universal cover of the conformal group of four-dimensional space-time, 
carry every generator of the forward-displacement semigroup into a positive self-adjoint operator, 
but that for higher spins, this is the case only for generators in smaller cones dependent on the spin 
[16]. 
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were earlier obtained by Vinberg [15]. In addition, a classification theorem equivalent 
to the present Theorem 2 has recently been obtained by Olshansky [10], by a completely 
different method of proof involving the holomorphic discrete series. I thank Gert 
Heckman for his suggestions towards the " 5 "  inclusion in Theorem 1. 

2. Notation and preliminary lemmas 

Let g be a simple hermitian symmetric Lie algebra with adjoint group G and 
Killing form B ( . ,  .). Let g = k + p  be a fixed Cartan decomposition with Cartan 
involution 0, and define the positive definite inner product 

( . ,  . ) = - - B ( . , 0 - )  

on g. Let K be the subgroup corresponding to k. 
Let h be a maximal abelian subalgebra of k, and let gC, h c be the com- 

plexifications of g, h. Let A be the roots of gC with respect to h c, and choose 
root vectors H~Eih for ctEA as usual, so that ct(H~)=2. Also for each c~EA 
choosea  vector E~ in the root space corresponding to ct so that [E~, E_~]=H~ 
and i(E~+E_~), E ~ - E _ ~ E k + i p .  Given ~EA let a~ be the associated reflection 
in h. 

Let e be the one-dimensional center of k; we have c ~ h .  Choose ZEe 
and compatible orderings in the duals of ie and iII so that, as usual, a root e is 
positive and noncompact (compact) if and only if ct(iZ)= 1 (resp. e(Z)=0).  Let 
W r be the group generated by the a, with e compact. Let Q+ be the set of 
positive noncompact roots, and define for eEQ+ 

h~=--iH~Eh,  X ~ = E ~ + E _ ~ ,  Y ~ = - i ( E ~ - E _ ~ ) ,  
so that 

[Z, X,] = Y~, [Z, Y,] = -- X, ,  [X~, Y,] = - 2h~, 

[H, X~] = ict(H)Y,, [H, Y,] = - i ~ ( H ) X ,  

for all HEh. We note also [X,, h, +__Y,]= -T- 2(h~• Y,). 
Now choose some maximal strongly orthogonal system I~0C=Q+. Let Z0= 

h ~',c~0 ~, and let h -  and a be the real spans of the h, and X,, respectively, 

where ~E I~0. Then Z - - Z o  is orthogonal to h -  [6], and if X =~, ,(z~ t~X, Ea, then 

(1) Ad (exp X ) Z  1 = Z - Z 0  + y ~'~c ~o ((cosh 2t ") h~ - (sinh 2t ") Y,). 

Recall that there are at most two root lengths in A. 

Lemma 1. All aE ~o are long, and any short fie Q+ is the average o f  two 
elements o f  1s 
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Proof By Theorem 2(b) in [9], all aE2~ o have the same length; cf. also [1]. 
Now take any fie Q+ such that (fl, fl) # (a, a) for all aE 270. By Lemma 1 1 of  [3] 
there exists aE27o such that (fl, e )>0 .  If  (B, /3) > (e, e), then f l - a  and f l - 2 e  
are roots, which contradicts Lemma 12 in [3]: for any roots 6EA, aE2J0, 6+__e 
cannot both be roots. 

Thus all eE2; o are long, /3 is short, and e-2/3  is a root. By Lemma 16 in [3], 
the restriction of /3  to h -  is either ~-al or a=~-I a+~-7 for some ;~E270. However, 
the former cannot occur (otherwise a - 2 / 3 E - Q +  would restrict to 0 on h-) ,  
and it follows that /3=a since /3 cannot be any longer than a. Q.e.d. 

Lemma 2. All long roots in Q+ are conjugate under WK. 

Proof Given aEQ+ long, there exists /3E220 as above such that (~,/3)>0. 
If  a#/3 then ? = a - / 3  is compact and ar(~)=/3. Q.e.d. 

3. Minimal and maximal cones 

Take any long aE Q+, and let 

(9+ = Ad(G)(h,+X,), 

an orbit of a "highest weight vector". By Lemma 2, 0+ is independent of the 
particular a chosen, and (~+=Ad(G)(h~+rX~+sY~) for any r,s such that 
r2+s2= 1. We have not defined the restricted roots, but it is clear that there exist 
subgroups A, N of G as usual so that G=KAN, Ad(AN)(h~+X~)=R+(h~+X~), 
and Ad(G)(h~+X,)=R+Ad(K)(h,+X,) has closure d)+u{0}. 

Definitions. Let 
cm = {2~r t~ha : t" > O} 

CM = {XEh: (X, h,) --> 0 for all aEO+}, 

CMin=the closed convex cone generated by Ad(G)Z, 
and 

CM,x = {XEg: (X, Y) -> 0 for all YEd)+}. 

It follows from Kostant's theorem in [14] (mentioned in w 1) that CMI . is 
a proper cone in g, and that any invariant dosed convex cone in g contains either 
Z or - Z .  The linear span of c m is h ,  and e,~C=cM because a+/3([A for all 
c~,/3EQ+. Since 0+ is the set of rays generated by a compact set, 

((?Max) ~  {XEg: (X, Y ) >  0 for all YEO+}. 

We recall some general facts about convex sets [2]. Any convex cone C has 

a nonempty interior C o relative to the space V it spans, a n d  we have ( ~ = C ,  
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(C)~  ~ hence C ~  ~ where C denotes the closure of C. (Note that 
since g is simple, the space spanned by any nonzero G-invariant convex cone 
equals g.) Finally, (C*)*=C, where C*={fEV':J(x)>=O for all xEC} is the 
dual cone to C. 

Lemma 3. ZE(%) ~ (interior relative to h), and the convex cone generated by 
Ad(G)Z is open in g. 

Proof If  HEh, 

(Z, H)  = - T r ( a d H a d Z )  = 2 ~ E Q  + i~(H) = ~cQ+ c~(h~, H)  where c~ > 0, 

soZ  =- ~ O +  c~h~. 

Since the h~, ,EQ+ span h, ZE(Cm) ~ 
For the second statement, let ~ denote the convex cone generated by Ad(G)Z. 

It suffices to show that ZE~r 0. By Lemmas 1, 2 and (1), ~ includes Z+Cm; 
since ZE(Cm) ~ ~e also contains a neighborhood of Z in h, hence a neighborhood 
of Z in k. Finally, the tangent space of Ad(G)Z at Z is p, and it follows that 

is a neighborhood of Z in g. Q.e.d. 

Lemma 4. (a) (CMin) ~ is the convex cone generated by Ad(G)Z, 
(b) CMin- {0} is the convex hull o f  0+, and 
(C) CMi n ~ CMa x . 

Proof (a) follows from ( 2 ) ~  ~ and Lemma 3. By the earlier remarks 
on 0+, for (b) it suffices to show that ZEconvex hull of d)+, and h~+ Y, ECMIn 
if aE2; 0. Now we showed in Lemma 3 that ZECm, and the convex hull of 0+ 
contains all h~, aEQ+ by Lemmas 1, 2. On the other hand, by (1) 

2 lira (eosh 20 -1Ad (exp tX,)Z = h~+Y~. 

Fina l ly ,  Z~CMa x because if flEX0 and a=exp~cZoffX~,, 

fl 1 , ha + ya ) (Z,  Ad (a -~) (ha + Ya) = ((cosh 2t ) ~ h a - (sinh 2t p) -~ Ya 

= (ha, ha) exp ( - 2 t  a) > 0. Q.e.d. 

Corollary 1. I f  C is a G-invariant convex cone, (Cnh)~176  

Proof 2 is immediate. I f  XE(Cnh) ~ then (we may assume) X - e Z E C  
for some e>0,  and ZEC ~ by Lemma 4(a). Thus XEC+C~ ~ Q.e.d. 

The proof of Lemma 4 and duality also show 

Corollary 2. Cu~CMax('~h and Cm~CMin('~h , and 

Corollary 3. Cm~ and CMax are, respectively, minimal and maximal closed 
invariant convex cones in g. 
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4. Ellipticity of the open cones and a projection lemma 

In fact the inclusions in Corollary 2 are equalities, but this fact requires requires 
Kostant's generalization [7] of a result of Horn [5], listed here as [H-K].  To state 
this result and introduce notation for later use, we let h(X), k(X), p(X) be the 
( . ,  .)-orthogonal projections of X onto h, k, p, respectively, and write Ip(X)I = 
(p(X), p(X)) 1/2. In these terms [H-K]  states that given HEh, {h(Ad(k)H): kEK} 
is equal to the convex hull of the W~-orbit of H. 

Corollary 4. The inclusions in Corollary 2 are equalities. 

Proof. The remaining two inclusions are equivalent to (Ad(k)X, h,+Y,)>=O 
for all kEK, ~EZ0, and XEc~t, which follows from [H-K].  Q.e.d. 

Definitions. Let X, YEh. Say X is in the noncompact convex hull of Y if 
X = L +  V, where LEc m and V is in the convex hull of the W/~-orbit of Y.. 

Lemma5.  I f  X E g - k  and k(X) is conjugate under K to HE(cM) ~ then 
there exists Y in the G-orbit o f  X such that (a) Ip(Y)I<Ip(X)I, and (b) h(X) is 
in the noncompact convex hull o f  ll(Y). 

Proof. There exists kEK such that k(Ad (k)X)Eh, and by [H-K]  it suffices 
to consider the case where k(X)Eh. Therefore let 

X = H+,~cQ+ c~X~+d~Y~ 

where ct(iH)>0 for all ctEQ+. 
Take U=~p~Q+epXa+fpYpEp, and compute 

[U, X] = Zp~Q+ ifl(H)(f~Xp-% Ya)+ M + ~cQ+ (%d~-c~f~)2iH~, 

where MEk and h(M)=0.  Taking now da=dp/(ifl(H)), fp = -cp/(ifl(H)), we have 

[U, X] = -Z~o .+  (c~X~+d~Y~)+M-W, 
where 

W = Z~CQ+ 2(ict(H))-l(c~+d~)h~Ecm" 
It follows that 

Ad (exp eU)X --- H+(1  -e) ,~ ,cQ +(c~X~+d,Y,)+eM-eW+ O(e2). 

Thus (a) and (b) will follow (taking Y = A d  (exp eU)X, e>0  small), provided we 
can show that 

(2) H--  h (Ad (exp e U)X)E C m 
for ~>0 sufficiently small. 

Cm is generated by finitely many vectors, so the same must be true of the dual 
cone cM. Thus there exist V~Eh, j = I  . . . .  ,n ,  such that XEc,,, if and only if 
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/X, V~.)=>0, j = l  . . . . .  n. Recall the nonzero W E c ,  earlier, and suppose that 
(W, Vj)=0 for j = l  . . . . .  r, where r<n.  Then j<=r if and only if (for aU ~EQ+) 
c~=d~=0 and/or ~(Vj)=0, which in turn happens if and only if [U, Vj]=0. 

Thus if j ~=r, 
(3) ( H - h  (Ad (exp 8U)X),  Vj) 

= --B(X,  V j ) + B ( A d  (exp 8U)X, Vj) = --B(X,  V j )+B(X,  nd (exp-sU)  Vj) = 0 

identically in 5. If j > r  then (3) is pj8 + 0(5 2) for pj >0, which proves (2). Q.e.d. 

Lemma 6. Each orbit in (CM,x) ~ is closed and intersects (CM) ~ 

Proof. If (X, Y)>0 for all YEO+, then there exists k > 0  such that 

(4) (X, Y )  ~ k(Y, Y )  1/2 for all YEO+. 

If now 

(5) Ad (gm)X --~ QEg as m -~ ~, 

we write gm:kmamt,, according to G =K.4+K so that Ad (gm)X--Ad (km)Ad(am)Xm, 
where Xm also satisfies (4). We will show that (5) implies that the a m remain 
bounded so that some subsequence of {gm} converges. 

Since amC~ +, let am =/Z~s0 exp t~,x,, where t,~ -> 0. 

Now take any fixed ~ES0, and let Xm:cmh~+dmX,+emY,+Wm where Wm is 
perpendicular to h~, X,, Y~. (4) implies that 

Cm-(dm+em) > k l > 0  for all m. 
One computes that 

Ad (am)Xm = [(cosh 2t~,)e m -  (sinh 2t~)Cm] Y~ +Um 

where (U m, Y,)=0, and (using t~,->0) estimates 

(6) (cosh 2t~,) e , , -  (sinh 2t~) c m 

(sinh 2~)em+ leml- (sinh 2fm)C m <-- -- kx sinh 2t~, + Iem[ , 

Now leml and (6) must remain bounded as m ~  (since the Xm and Ad (am)X m 
are uniformly bounded) so all t~, hence a m, must remain bounded. 

To complete the proof, let XE(CMax) ~ and partially order Ad (G)X by: 
I11--> Y~ if and only if 

(a) [p(Y1)i<=IP(Y2)[ and 
(b) h(Y2) is in the noncompact convex huU of h(Y0. 

Lemma 5 implies that _->-maximal elements of m = { Y E A d ( G ) X : Y > - _ X }  
must be in k, and such exist by Zorn's lemma. (m is compact since Ad (G)X is 
closed.) Thus there exists HEh in the orbit of X. Finally, HE(cM) ~ by Cors. 1 
and 4. Q.e.d. 
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L e m m a  7. For all HE(CM) ~ and gEG, h(Ad(g)H) is in the noncompact convex 
hull of  H. 

Proof As noted above, (cM)~176 The argument of Lemma 6 implies 
that ll(Ad(g)H) is in the noncompact convex hull of some H1E(CM) ~ to which 
H is conjugate under G. But then ~(H)=H1 for some ~rEW/~. Q.e.d. 

Let Nch (H) denote the noncompact convex hull of an HEh. Lemma 7 
shows that the ( . ,  -)-orthogonal projection of the Ad(G)-orbit of an HE(CM) ~ 
is contained in Nch (H). In fact, the reverse inclusion holds (Theorem 1), but this 
fact will not be needed to classify the invariant cones (Theorem 2). We remark 
also, that simple examples show that the conclusion of Lemma 7 fails generically 
if the HEll there is in an open Weyl chamber not contained in (CM) ~ 

Theorem 1. I f  HE (CM) ~ then 

{ll(Ad (g)H): gEG} ---- Nch(H). 

Proof By Lemma 7, it suffices to prove "=~". Let LENch(H),  so that 
L=M+X,  for some XEc,, and M in the convex hull of WK(H). By [H--K] 
there exists kEK such that Y=Ad(k)H satisfies ll(Y)=M. To obtain a YIE 
Ad(G)H such that h(Y1)=M+X, we make certain successive applications of 
Ad(e tx~) (for t=>0, gEQ+) and Ad(e  tz) (recall that Z spans the center of k) 
to Y, using the identity (for gEQ+, HEh) 

(7) Ad (e'X~) H -=- H+ (i~ (H)/2) (cosh 2 t -  1)h, 

- -  (i~ (H)/2) (sinh 2t) Y,, 

which are determined in the next paragraph. However, we first make an observation 
about the adjoint action, namely that if ~(Q+ and Y1Eg where h(Y,)=0, then 
there exists a real number s such that 

ll(Ad (e'X~) Ad (e sz) ]11) = II (Ad (e sz) ](1) = !1 (](1) 

for all t. This follows from the fact that ll(Ad(e tx-) Y~) depends only on the 
Y~-component of Y1 (with respect to the basis Xp, Yp, flEQ+, of p), and that an 
initial application of some Ad (e ~z) can rotate a linear combination rX~+uY~ 
into (r2+u2)l/2X~, which is fixed under Ad (etX.). 

Now let X=~ee+r~h ~, where all r~_->O. Take any uEQ+, and determine 
t so that ll(Ad(etX.)y)=M+r~h~, using (7) and ia(M)>O. Next take another 
flEQ+, and apply the observation at the end of the previous paragraph to the 
Ad (e"X~)-action, to obtain u, s such that 

h (Ad (e~X 0 Ad (e sz) Ad (etX~) Y) : M +  r~ h~ + r~ h~, 

using also the fact that ifl(h~)>:0. Continuing in this way with the remaining roots 
in Q+, obtain finally a Y1EAd(G)H such that h(Y1)=M+X=L. Q.e.d. 
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5. Classification of the open and closed cones and further pupperties 

We define some collections of convex cones. 

Definitions. Let 
co+~ { C c h :  C is an open WK-invariant convex cone, (Cm)O~CC=(CM)~ 
~0+~= {Cch :  C is a closed WK-invariant convex cone, c,, c= C C= C M}, 
s {Ccg :  C is an open G-invariant convex cone containing Z}, 
s ~ = {Ccg :  C is a closed G-invariant convex cone containing Z}. 
For convenience we record the following corollary of Lemma 7. 

Corollary 5. I f  HEC for some CEco+ c, then h(Ad(g)/-/)EC for all gEG. 

Our main result on the classification of cones is 

Theorem 2. (a) CnhEco+ ~ for all CEf2+ ~ and 

(8) [2+ ~ ~ o~+~ C ~ C n h  

is a bijection. For all CE f2+ ~ 

(9) C : {XEg : Ad(g)XECnh for some gEG} 

-----{X elliptic: h(Ad(g)X)ECnh for all gEG}. 

(b) CnhEw+ c for all CEO+ c, and 

(lO) ~2+c~o+c: C ~ C n h  

is a bijection. For all CE s c, 

(11) {XEg: Ad(g)XECnh for some gEG} 

: { X  elliptic: h(Ad(g)X)ECnh for all gEG} 
and 

(12) C= {XEg: (Ad(g)X)ECnh for all gEG} 
= {XEg : for all e>0,  Ad(g)(X+eZ)E(Cnh) ~ for some gEG}. 

Proof. (a) Let CE•+ ~ C n h  is clearly an open WK-invariant convex cone, 
and then CnhEw+ ~ by Corollaries l, 3, 4. The first equality in (9) (which establishes 
injectivity of  (8)) follows from Lemma 5 and C ~ (CMax) ~ and the second follows 

from Lemma 7 and Cnh=Cnh+Cnh .  

It remains to show that (8) is surjective. Given C1Eo2+ ~ define C~= {XEg : X 
is G-conjugate to some HEC1}, and note that C~={XE(CMaO~ h(Ad (g)X)EC1 
for aU gEG}, again by Lemmas 6, 7. C2 is open by CoroUary 1, so C~E(2+ ~ 
Finally, C~nh=C1 again by Lemma 7. 
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(b) Let CEf2+ c. CnhEog+ c is clear from Cors. 3, 4. (11) follows directly 
from Corollary 5. Proceeding to (12), we note that if XEC and gEG, then for all 
e>0 there exists g~EG such that Ad(g~)(X+eZ)EhnC. Thus h (Ad(g)(X+eZ))E 
hnC by Corollary 5, so 

(13) C ~ {XEg: h(Ad(g)X)ECnh  for all gEG}. 

Conversely, the r.h.s, of (13) defines an element ClEf2+ c. If XEC1 then 
X+eZE(C~a~) ~ for all e>0, so X+eZEC by Lemma 6, hence XEC since C is 
dosed. The last equality in (12) foUows from Corollary 1 and (8). 

As in (a) it remains to show that (10) is surjective. Given C1Eco+ c, clearly 
C~---{XEg:h(Ad(g)X)EC1 for all gEG}EI2+ c, and C~nh=C1 is immediate 
from Corollary 5. Q.e.d. 

Theorem 3. For all CE I2 + ~, 

C*nh=(Cnh)*,  

the duals being taken in g and h, respectively. 

Proof. c= is clear. Conversely, assume that HE h and 

(14) (H, M) => 0 for all ME Cnh. 

We want to conclude that (H, Y)->0 for all YEC. But (H, I1)_->0 fo r  all I,'EC ~ 

by (14), Lemma T, and cmC=(C~h)*. Thus (H, Y)=>0 forall YE(C~ Q.e.d. 

Corollary 6. (cM)~ {HEh: T ,  = - a d  Z ad H : p--*p is positive definite}. 

Proof. Simply note that if ~EQ+, X~ and Y~ are eigenvectors for Tn with 
eigenvalue i~(H). Q.e.d. 

Theorem 4. Xn XEh is contained in a unique maximal compact subalgebra 
i f  and only i f  no noncompact root vanishes on X. In particular, each XE(cM) ~ 
hence each XE(CMa~) ~ (by Lemma 6) is contained in a unique maximal compact 
subalgebra. 

Proof. If ~(X)=0 for some ~EQ+, then [X, Ad(etX~)z]=o, and 
XEAd (e'X~)k# k. 

Conversely, suppose that no ~E Q+ vanishes on X. If X is contained in the 
maximal compact {WEg:[W, Ad(er)Z]=O}, determined uniquely by some 
YEp, then necessarily Ad(er)ZEk, since a d X  stabilizes k and p, and vanishes 
on no nonzero vector in p by hypothesis. 

Therefore [Z, Ad (er)Z] =0, in which case we may assume that YEa, and 
apply formula (1) to conclude that I1 =0. Q.e.d. 
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6. Self-dual cones 

As noted in [12] and [15], CMi.=fMax if  and only if g is isomorphic to some 
sp (n, R) (using the notation of  [4] for the classical algebras), and then clearly 
CMi. is self-dual: (CMI.)*=CMi.. In this case one finds that CMinc~h is orthogonally 
equivalent to the positive orthant 

Pn:{x jERnzx)>:O}  in R " ~ h .  

In the other cases it is natural to look for intermediate cones CE s c such that 
CMI, C=CC=CM,~ and C*=C. By Theorems 2 and 3 the problem is reduced to the 
consideration of WK-invariant cones in h. One finds that such self-dual cones 
exist and are unique for su (2, 1) and su (2, 2) [12]. The cases of so* (2n) also 
possess self-dual cones CnE~2+ c, and again C, n h ~ P ,  (orthogonal equivalence). 

However, at least in the cases so* (6) ~. su (3, 1) and so* (8), such self-dual 
cones are not in general unique, as seen from the previous paragraph and the follow- 
ing existence result. 

Theorem 5. Let 

Cz=  {XEh: ( Z , X }  >: (~)§162 

a self-dual cone in h. Then, among all classical simple Lie algebras g, CzECO+ c 
i f  and only i f  g is isomorphic to one of  the following: 

sp (n ,R)  for n = 1 , 2 ;  su(n, 1) for n>=l, and su (2 ,2 ) ;  

so*(2n) for n = 3 , 4 ;  so (2, n) for n = l  and n >= 3. 

In these cases ez is the intersection with h of  a self-dual G-invariant convex cone 
ing .  

Proof. One checks that all the h~, ~Ee 0 make angles <1__ = 4  rc with Z only 
in the cases indicated. Q.e.d. 
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