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1. Introduction 

Let M denote the standard maximal function representing the supremum of 
averages taken over bails in R", that is, 

1 
M(f ) (x )  = M(")f(x) = sup c, 7 ft,t , I f ( x -y ) [  dy, 

O .< r 

where c~ -1 is the volume of the unit ball. It has recently been proved (see [2]), 
that the L p bounds for M , p > l ,  can be taken to be independent of n. Namely 
one has 

Theorem A. We have 

(1.1) IIM(n)(f)IIp <- Apllfll,, 1 < p  -<% 

with a constant Ap independent o f  n. 

What is noteworthy here is that any of the usual covering arguments lead only 
to a weak-type (1,1) bound which grows exponentially in n, and thus by inter- 
polation one obtains by this method (1.1) with Ap replaced by a bound which 
increases exponentially in n. 

Thus the foUowing further questions now present themselves: 
(1) Does M (") have a weak-type (1, 1) bound independent of n? 
(2) What can be said when the usual balls are replaced by dilates of more 

general sets?, 
We give here some partial answers to these questions: 

(a) First, let B be any bounded, open, convex, and symmetric set in R", and let 

B'= {xlr-lxCB}, r>O. Define M = M B by 

MB(f) (x  ) = sup (m(B'))-I f B, I f (x -y)]  dy. 
r > - O  
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Then MB has a weak-type bound majorized by cn log n. (Here c is a constant 
which is of course independent of n and B.) The main idea of the proof of 
this result (Theorem 1) is a rather complicated variant o f  the Vitali covering 
idea. One can also obtain by rather simpler arguments an L p estimate 
(Theorem 2); the result is [IMB(f)l[p<cn(p/(p--1))llfllj,. This is optimal as 
far as the behaviour of  the bound when p--- 1, but not necessarily best possible 
when n~oo. 

(b) When B is the usual unit ball in R", we can show by different arguments 
that the weak-type bound can be taken to be cn (Theorem 3), and the L p 
bound can be taken to be cn+(p/(p-1))  (Theorem 4). Here one relies on 
the abstract version of the maximal ergodic theorem, and the maximal theorem 
for symmetric diffusion semi-groups. 

Finally in an appendix we give the details of the proof of theorem A, since 
these have not  appeared before. 

2. The ease of general B 

Suppose B is an open, bounded, convex, and symmetric set in 
denote by B r its dilate by the factor r i.e. f f={x l r - l x CB } .  Let 

1 
M ( f ) ( x )  = sup m(Br----- ~ f B. [ f ( x - y ) l  dy. 

R n. W e  

Theorem 1. There exists a constant c, independent o f  B and n, n > l ,  so that: 

(2.1) 
c 

m { x l M ( f ) ( x )  > 2 }  <_- T n log n {[fill, ~, > 0. 

We shall denote by IxlB the norm on R n induced by B, i.e. lx]B=inf{r]r-lxCB}. 
We shall also need the following terminology. The ball of radius r with center 

x0,/g(x0), is the set {x[x--xoEB'}. Suppose B is any ball (with radius r and 
center x0), then we denote by B* the ball with radius nr and the same center. 
(Later we shall also have occasion to use the bails B** and B***, both having the 
same center x0, but with radius respectively (n+l ) r ,  and (n+2)r.) 

The theorem will be a consequence of  the following lemma 

Lemma. Let {B~}, be any finite collection o f  balls. Then we can find a sub- 
collection B1, B2 . . . .  , B  N with the following properties. I f  we denote by I, the 
" ' increment 'o f  B k with respect to Blw.. .wBk_~, i.e. I k=Bk\ (B1u . . .wBk_x) ,  
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then: 

(1) m ( U  B~) "<= Cl/'B / ['~ BJ/ 
ct \ j ~ 1  / 

m(lj) 
(2) ~']=1 re(B*) ZB7 <= c2nlogn. 

Let us first show how the lemma implies the theorem. We shall assume that 
1 

f=>0. Instead of  M we consider k~ r defined by ( ~ r f ) ( x ) =  sup ~ fB* f(Y)dy. 
n~x mlz~ ) 

It is obvious that _lgif(x)>--Mf(x) (and in fact it is also easy to see that ~f(x)<= 
eMf(x)), and we shall prove (2.1) with ~ in place of  M. 

We let E~={xlff'lf(x)>2}, and K any compact set so that K c E  a. For  each 
xEK, there exists a bali B(x) with xEB(x), so that 

1 �9 
rn (B ~ (x)) f . (~) f (Y) dy > 2. 

By compactness of  K we can select a finite collection (call it {B,},) of  balls B(x) 
which cover K. Now let B1, ..., B, be the sub-collection whose existence is 
guaranteed by the Lemma. We have 

re(K) m(UB ) -< j 
however 

Bj =m U 6  =ZT=,m(Ij) ,  
~,j~l  I 

since the lj are mutually disjoint. Moreover 

/'n ( / j )  
re(B*), and re(B*) < (1/2) fB~f(y)dy.  m ( l j )  = re(By) 

1 f ~ N  rn(lj) c2 
Thus ~ 7  =lm(Ij) <=~d j=l re(B*) Zn~ (y) f (y)dy = ~nlognf (y )dy .  

r 

This proves the inequality m(K)<--fnlognllflll, with c=cxc2. I f  we take the 

supremum over all K c E ,  we get (2.1). 

Proof of  lemma. We describe the method of picking B1, ..., BN. Pick B, to 
have maximal radius. Assume now B~ . . . . .  Bk-1 are already picked (this of  course 
defines the increment sets /1, ..., l~-x). Pick Bk to have the maximal radius among 
all balls whose centers Yk satisfy. 

k-1 m(Ij) (2.2) ,~=~ ~ ' Z n ~ * ( Y ~ )  ~ 1. 
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Recall that B~.* is the ball with the same center as Bj but whose radius is 
expanded by the factor n + 1. 

First we prove conclusion (1) of the lemma. 
Suppose B, is a ball not in the collection picked. We claim that 

m(Ij) 
* * *  X ~ "  (2.3~ z~Jv=l re(B*) ZB, ( ) 1, for x~B,. 

In  comparing (2.3) with (2.2) we should recall that B*** is the ball with the 
same center as B1, hut whose radius is expanded by the factor n+2. To see (2.3) 
let r, be  the radius of B~, and y, its center, and consider those balls By (with 

> CB**, radius rj), for which rj=r,. Observe that if y, ~ and x~B, ,  then x~z~j'"~**. 
(Because ly , -y j ln<(n+l)rj ,  and Ix-y,[n<r, implies [x-yjl<(n+2)rj.) There- 
fore since 

m (Ij) 
Zrj >,. m (B~') ~(B~'* (Y,) > 1 

(because the ball B~ was not picked) we get 

Z,,>,. 

for all x~B,,  and (2.3) is proved. 
of the bails not picked we get 

m( U S ~ , ) < ~ m ( b ) - -  
not picked 

re(t9 
m(B;.) ZB;**(x) > 1 

By integrating both sides of (2.3) over the union 

- (Y,m(Ij) <= eZY, m(lj) = :m(wBj) .  

Thus conclusion (2) is proved with cx=e~+ 1. 
We next turn to conclusion (2) of the lemma. Suppose xER" is such that 

Z m(Ij) 
m(B~.) ZB; (x) > O. 

Then there is a smallest radius rj, (whichwe denote by rk), SO that ZB*(x)>0 
(i.e. where x~B*). Now after suitable translation and dilations we may assume 
that x=0,  and rk=l. So we have ry~l ,  for all radii that matter, and 

{ 0CB~, i.e. ]YklB < n. 
(2.4) ykEB~* ~ lYk--Yjla < (n+ l ) r l .  

OEB* .~, lYjla < nrj. 
We write 
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where 
m(1j) 

I = ~ , s ~ ,  ZB.(0), and II = z~i~_,j<,. m(B~.) 

Observe that the j th  term in I is non-zero, only when 0EBb., which by (2.4) 
- EB** (This is because lyk--yjtn<=]ykin+iYjin<n+nrj<=(n+l)rj, implies that Yk ~ �9 

if rj => 1.) Since 

m(/A ** z .  ' <= 1 

(the ball B~ was picked), we get 

(2,5) 

We next estimate 

(2.6) 

where l <=a<b. 

m(o 
I = Z,a ~, re(B*) ZB"j (0) ~ 1. 

Z m ( 6 )  �9 
a~_,j<b ~ Zn~ (0), m(B~) 

Observe that in the sum m(B~.)>=m(B)(na) ", where m(B) is the measure o f  
the unit ball. Also the sets I i are mutually disjoint and are each contained in a ball 
with radius <b ,  with center y~, and therefore their union is contained in the ball 
of radius (n+ 1)b, (centered at the origin). Thus by (2.4), 

.~,j~_b m(Ij)ZB~(O) <- m(B)( (n+ l)b) n. 

Hence we get (l+l/n)"(b/a)"~e(b]a)", as an estimate for (2.6). FinaUy we write 

where II~ is the sum taken over radii r, with (1 + 1/n)Z-~_r~<(1 + l/n) ~. So we 
use the estimate just gotten for (2.6) with a=(1  + l/n) t-l ,  b=(1 + 1]n) l, giving 

< ( 1 + 1 / )  IIt = e n n ~ e 2. 

To conclude the proof of the lemma note that for appropriate e0>0, the inequality 
(l+l/n)%"l~ holds, and so with m=eonlogn  we have 

II = ~ 1  IIl ~- e2co n log n. 

Since the lemma is now established, so is Theorem 1. 
We now turn to L p estimates for MB in a general setting. Here B will be 

an open, bounded, and radial set; it can be written as B =  {xlx= tO with 0<= t <  Q(0), 
0~S"-X}, where S "-1 denotes the unit sphere in R", and ~ is a positive bounded 
function on S "-1. 
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Theorem 2. With B as above, 

IIgB(f)llp ~ cn(p/(p-1))llfl]~, 1 < p <=~ 

where c is independent o f  n and B. 

Proof We use the method of "rotations". For any OES "-1 denote by M ~ 
the maximal function in the direction 0 given by 

(MO)f(x)=sup{ fO[f(x-tO)lt"-lat I 

We assume now that f>=O. Then 

fB. f(x-y)dy= fs.-, f g'f(x-tO)t"-~dtdO <= r" fs~ {M~ f:(~ d~ 
Thus 

1 1 fs~ {M~ SO<O, t"-, <it} dO. s u p ~  f n , .S(x-y)dy  <= m(B---~ 

The crucial point is that 

(2.7) [[M~ llp ~ cn(p](p- 1))]lfllp, 

which foUows from the one-dimensional maximal theorem since 

With (2.7) we get 

but since 

sup fr~ f ( x -  0 t"-I dt 

r>0 f r  o t"-ldt 

1 T 
<= n sup - - : f  f ( x - -  t) dt. 

T>0  l " d  0 

1 f f ~(o) t"-2 dt dO; [[Mn(f)t[p <= en(p/(p-1))llfrlp, m(B'--~ " d s,-x d o 

o(o) n - 1  fs.-, fo t dt dO=m(B), the proof of  the theorem is complete. 

3. The case when B is the standard ball in R" 

We now return to the special case when B is the standard unit ball in R", 
and show how the results in Theorems 1 and 2 can then be improved. 

Theorem 3. m{x]m(f)(x)  > 2} <- 5~ ]]f]l~, ~ > 0. 

To prove this consider the heat-diffusion semi-group on R" given by T t ( f ) :  
f . h,, with 

ht (x ) = (47zt)-n/2e-lxl~/~,. 
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We observe that I f z t fh~lJ f l [1 ,  ][Ttflloo~llflloo, Tt(1)=l ,  with Ttf>=O, for f=>0. 
So the semi-group satisfies all the assumptions at the Hopf  abstract maximal ergodic 
theorem (see [1], VIII. 6 and 7), and hence we see that 

If } m x s u p  ( T t f ) ( x ) d t > 2  =<l/2Hflh, 2 > 0 .  
t l s > o  S 0 

(The bound here is of course independent of  n.) We take f_->0, and we shall prove 
1 

the theorem by comparing M f ( x )  with a, sup - -  fo  ( T t f ) ( x )  dt, for suitable a n. 
s>0  S 

To do this it suffices to find an appropriate so so that 

1 I ,o  
(3.1) rn(B)-~)C~(x) <- a . - -  h t (x)dt .  

S o 0 

Dilating both sides of  (3.1) would then give the majorization 

M f ( x )  <: a, s u p l 2  T t ( f ) ( x ) d t .  
$:~'0 

I f  we observe that both Zs(x) and ht(x) are decreasing functions of Ixl, it is 
clear that (3.1) is equivalent to 

1 I% 
(3.2) re(B) -1 <= a,-~o J o h td t  

with ht=(4nt)-" /Ze -I/4t. It turns out that an optimal choice in (3,2) can be made 
if we take So slightly larger than 1/2n. To simplify the calculation it would suffice 
for us to make the cruder choice So = 1/n. Now 

f:~ "-n/~fo ~-./~ h, dt = n-"/2 f • (4t) - ,/2 e -  1/4, dt - u,m - 2 e - "  d u = ~ F (n/2 - 1). 
�9 ,o  -4 4 

However 

f s176 7c-n/2 P/('S~ du <: e-"/4(4rc)-n/~n "/z-l, (n large). 
o ht dt - 4 . ,  o 

Fhis last quantity is o (n-"12F(n/2--1)), as n-~o,  by Stiding's formula and so 
f ~ h t d t m c n - " / a F ( n / 2 - 1 ) .  However m ( B ) - l = l / 2 n - " / 2 n F ( n / 2 ) ,  and thus (3.2) 
is proved with an = c'n which implies Theorem 3. 

In the same spirit we shall obtain an L p estimate. 

Theorem 4. IIM(f)Hp =< C(p/(p-1))nX/~Hfllp,  1 < p <=co. 

Several remarks about this result are in order. The theorem is of no interest 
for p fixed, when compared with Theorem A. However the theorem gives the 
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right behaviour in p as p ~ l ,  with however a sacrifice resulting from a growth 
in n; but this growth is smaller than that given by Theorem 2 (valid for more 
general "balls"). The result is also better than one would obtain by applying the 
Marcinkiewicz interpolation theorem to Theorem 3. 

To prove Theorem 4 we shall use the maximal theorem for symmetric diffusion 
semi-groups (see [4], and p. 73). In fact, the heat semi-group Tt ( f )=f .h t  satisfies 
all the conditions for such semigroups (axions I, II, III, and IV in [4]), so we obtain 

IIsup Trill. ~ Apllf[]., 1 < p <__o% 
t > -0  

with a bound Ap of course independent of  n. Now the second proof of this maximal 
theorem (given in [4], Chapter 4) reduces matters to the martingale maximal theorem, 
leading to the bound Ap~C(p/(p-1)). Thus in analogy to the previous theorem 
we need only determine suitable b. and to so that 

(3.3) m(B)-IZB(X) <-- bnhto(X) 

which, as before, is equivalent to 

(3.4) re(B) -1 <-- bn(4zto)-"/2e-1/(% ). 

Now take to= 1/2n. Then the right side of (3.4) equals bn(2n/n)-"/2e -"/2, while 
the left-side equals 1/2~-"/2nF(n/2). So by Stirling's formula we have (3.4) if 
b,=cn a/2, for some suitably large constant e. Theorem 4 is therefore proved. 

4. Appendix 

We shall now give a detailed proof of Theorem A. The result was initially 
given in [2], but there only a bare outline of  the argument was presented. 

The idea of the proof can be understood by examining the reasoning of Theorem 
2. We observe that if there were a weak point in that proof (the introduction of the 
factor n) it would have come when one used the essentially one-dimensional result 
(2.7). The utilization of the k-dimensional spherical maximal function will over- 
come this difficulty. 

Proof of Theorem A. We shall obtain the theorem as a consequence of a series 
of assertions. First we let Jgk denote the spherical maximal function in R k i.e. 

1 
~k(f)(x)  = sup ~ f s~.l [ f ( x .  OY')] dcr(y') 

o>O (Dk-i 

where dtr is the usual measure on S k-! (the unit sphere in Rk), and ogk_ ~ is its 
total mass. 
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Proposition 1. ]l~/k(f)]] p ~ Ak, p]]fllp, 

for p>k / ( k -1 ) ,  and k>-_3. 

This is just Theorem 1 of  [3]. Next, we define the weighted maximal function 
Mk, m on R k by 

[ ff,l~, I f (x-y)[  [yl"dy ] 
Mk, m(f)(X) = r>o - --fl,l~_,lylmdy~ -J 

m-]- k 
= sup f r > O  (~Ok-lrm+k [yl_~r [f(x--y)]lylm dy, m >= O. 

Proposition 2. One has the pointwise majorization 

Mk, m(f)(x) <- Jgk(f)(x), 
for all k>-l, m~O. 

Proof. Using polar coordinates we can write 

flyl<, If(x--Y)] lyl" dy = fs -. f o I f ( x -  OY')I O re+k-1 do da(y') 

�9 f s  r m + k 
d#k(f)(x)COk-l, o era+ k-1 de = ~lk(f)(x)cok-1 m + k ' 

and the result follows. 

Proposition 3. I f  k>-3, and k>p/ (p-1) ,  then 

I[mk, m(f)l]p ~ Ag, p[]f[lp, 

with the constant Ak, p independent of  m. 

This follows immediately from Propositions 1 and 2. We now consider R", 
with n_->3, and write it as R ' = R k •  ~-k. So we shall denote an xCR" as a pair 
x=(x l ,  x2) with xlCRk, x2CR~-k; similarly for y=(y~,y~)ER", with y~ER k, 
y2ER "-k. We let z denote an arbitrary element of O(n), a rotation of  R" about 
the origin. For  each such z we define M~, (acting on functions defined in R') as 

f L,lt<=, I f(x-z(Yx" O))l lYl[=dYl 
(M~f) (x) = sup 

,,o f [yxlm dyl 
with m = n -  k. 

Proposition 4. IIM~(f)llp -<- Ak, pllfl[p where 

k ~ 3 ,  and k>p/(p-1) .  
By rotation invariance it suffices to prove this when z is  the identity rotation. 

In that case we use the decomposition Rn=RkXRn-k, with x=(x1, x2). For  
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each fixed x2~R n-k o n e  applies Proposition 3 and then an additional integration 
in x2 (after raising both sides to the pth power) gives the result. 

Finally, we let dz denote the Haar measure on the group O (n), normalized 
so that its total measure is 1. 

Proposition 5. W e  have 

s uPo,~(B),f,,,If(x-y)l 1 de ~= fo,.,i:(f)(x)d*. 

The proposition depends on the following integration formula (valid for 
non-negative measurable functions on R") 

(4.1) fN<' f (y)  dy = f~ O))[Yli"-kdyldz 

f l,l~-, dJ' f l,,[<, lyll"-k ~ 
Here Y=(Yl, Y2)ER"=Rk• "-k, with y l (R  k. To verify (4.1) it suffices to do 
so for f of  the form f(Y)=fo(lY])fa(Y'), where y'CS "-1, and Y=]YlY', since 
linear combinations of such functions are dense. Then for such f the left-side of 
(4.1) is clearly 

f o So (o  e - 1  dt. ffo (Y') da (y ' ) .  n r - ' .  o%~ 1 . 

' - 'ES  k-1 Then f (z (y l ,  0))= To evaluate the right-side, write y l =  IYl]Yp where Yl 
fo([yiI)f~(~(yl)) and the quotient on the right-side of (4.1) equals 

f s  f o ( t )  r t n - l d t  f o , . ) f ~ _ l f ( , ( y ; ) ) d ~ ( y ; ) d ~  - .  -1  �9 �9 f i r  ( -Ok_ 1 . 

So matters are reduced to checking that 

_1 1 
(4.2) f~_ l io ( / )d~( / )  = ~_;fo(.)L.. .~  -1 fo(z(YD)da(Y;) dz. 

COn - 1 

In fact (4.2) holds because da(y') is up to a constant multiple the unique measure 
on S "-1 which is rotation invariant, and clearly the right-side of (4.2) induces 
such an invariant measure on S"-1; moreover both sides of (4.2) are normalized 
so as to agree on constants. With (4.1) now established we have (If(x-y)l re- 
places f(y)) 

1 
m(B') f B. If(x--y)] dy = fo , , ) f , , . , ~ .  If( x -  T(Yl, 0))[[J] "-k dyldT 

+ fl,~i=~, ]yl[ "-~ ayl ~ fo(.)Ue(f)(x) dz, 

with re=n-k ,  and the proposition is proved. 
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W e  can now prove  the theorem.  Suppose  p is given, l < p ~ o ,  and  keep 

p fixed. W h e n  n < - p / ( p - 1 ) ,  or  n<=2, we use the  usua! es t imates  to  p rove  (1.1) 

for  tha t  range.  N o w  when n : > p / ( p - 1 )  a n d  n:>3,  then wri te  n as n = k + m ,  

where  k is the  smallest  in teger  grea ter  than  p / ( p - 1 )  and  2. Then  our  t heo rem 

follows f rom Propos i t ions  4 a n d  5. 
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