An interpolation theorem

Mario Milman and Yoram Sagher

Given an interpolation couple (A_{0}, A_{1}), the approximation functional is defined by:

$$
\begin{equation*}
E\left(t, a ; A_{0}, A_{1}\right)=\inf \left\{\left|a-a_{0}\right|_{A_{1}} /\left|a_{0}\right|_{A_{0}} \leqq t\right\} . \tag{1}
\end{equation*}
$$

An operator $T: A_{0}+A_{1} \rightarrow B_{0}+B_{1}$ is E-quasi-linear (see [4]) iff

$$
\begin{align*}
E\left(t_{0}+t_{1}, T\left(a_{0}+a_{1}\right) ; B_{0}, B_{1}\right) & \leqq C\left\{E\left(d t_{0}, T a_{0} ; B_{0}, B_{1}\right)\right. \tag{2}\\
& \left.+E\left(d t_{1}, T a_{1} ; B_{0}, B_{1}\right)\right\}
\end{align*}
$$

The following interpolation theorem is proved in [4]:
Theorem 1. If $T: A_{0}+A_{1} \rightarrow B_{0}+B_{1}$ is E-quasi-linear and

$$
\begin{gather*}
\frac{1}{t} \int_{0}^{t} E\left(s, T a ; B_{0}, B_{1}\right) d s-E\left(t, T a ; B_{0}, B_{1}\right) \leqq C_{1}|a|_{A_{1}}, \tag{3}\\
E\left(t, T a ; B_{0}, B_{1}\right) \leqq C_{0} t^{-\beta}|a|_{A_{0}}, \quad 0<\beta<\infty
\end{gather*}
$$

Then

$$
|T a|_{p(1-\theta), q ; E} \leqq C|a|_{\theta, q ; K}, \quad 0<\theta<1 .
$$

Condition (3) is interesting: it gives an abstract definition of T being of weak type. This has yielded in [4] a significant generalization of a theorem of J. Gilbert on interpolation with change of measure [2], and an extension of a theorem of Ben-nett--DeVore-Sharpley [1].

The proof of Theorem 1 in [4] is direct, and this entails a shortcoming; it makes it harder to apply interpolation theory to the new results. In this paper we intend to prove Theorem 1 again, within the framework of interpolation theory. Using this approach we are indeed able to strengthen the theorem: condition (4) which is $T: A_{0} \rightarrow\left(B_{0}, B_{1}\right)_{\beta, \infty ; E}$ is replaced by $T: A_{0} \rightarrow B_{0}$.

Definition 2. Let f be integrable on $(0, t)$, all t. We define

$$
\begin{equation*}
f_{\#}(t)=\frac{1}{t} \int_{0}^{t} f(u) d u-f(t) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
|f|_{W}=\underset{0<t}{\operatorname{ess} \sup }\left|f_{\#}(t)\right| \tag{6}
\end{equation*}
$$

If we identify functions differing by a constant, $\left.\right|_{W}$ serves as a norm on the space of equivalence classes. Denote this space by W. Condition (3) is therefore $\left|E\left(s, T a ; B_{0}, B_{1}\right)\right|_{W} \leqq c_{1}|a|_{A_{1}}$. Our space W is not the class W of [1]. If we denote by $W\left(A_{0}, A_{1}\right)$ the class of elements of $A_{0}+A_{1}$ which satisfy $\left|E\left(s, a ; A_{0}, A_{1}\right)\right|_{W}<\infty$, the class W of [1] is $W\left(L_{0}, L_{\infty}\right)$. Note that $\left.\left|T a_{B_{1}} \leqq c_{1}\right| a\right|_{A_{1}}$, which is the usual hypothesis in the interpolation theorem, implies $E\left(s, T a ; B_{0}, B_{1}\right) \leqq c_{1}|a|_{A_{1}}$. Our generalization consists therefore in replacing L_{∞} estimates on E, by a W estimate.

The identification of $W\left(A_{0}, A_{1}\right)$ for given interpolation couples $\left(A_{0}, A_{1}\right)$ will yield the conclusions of known interpolation theorems from weaker hypotheses, much in the same way as was done in [4] for interpolation with change of measure. We shall return to these and related problems in subsequent papers.

We are going to interpolate between W and L_{p} spaces. For the application of Wolff's theorem we need the following theorem:

Theorem 3. W is complete.
Proof. $\left\{\tilde{f}_{n}\right\}$ is a Cauchy sequence in $W . f_{n} \in \tilde{f}_{n}$ are chosen, so that:

$$
\begin{equation*}
\int_{0}^{1} f_{n}=0 . \tag{7}
\end{equation*}
$$

$\left\{\left(f_{n}\right)_{\#}\right\}$ is Cauchy in L_{∞}, and so there exists $h \in L_{\infty}$ so that $f_{n \#} \rightarrow h\left(L_{\infty}\right)$. On the other hand, using

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} f-\frac{1}{s} \int_{0}^{s} f=\int_{t}^{s} f_{\#}(u) \frac{d u}{u} \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} f_{n}=\int_{t}^{1}\left(f_{n}\right)_{\#}(u) \frac{d u}{u} \tag{9}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|\int_{0}^{t}\left(f_{n}-f_{m}\right)\right| \leqq t|\log t|\left|f_{n}-f_{m}\right|_{W} \tag{10}
\end{equation*}
$$

and $\int_{0}^{t} f_{n} \rightarrow g(t)$, all t. Since also

$$
\begin{equation*}
\left|f_{n}(t)-f_{m}(t)\right| \leqq\left|\left(f_{n}-f_{m}\right)_{\#}(t)\right|+\frac{1}{t}\left|\int_{0}^{t}\left(f_{n}-f_{m}\right)\right| \tag{11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
f_{n}(t) \rightarrow f(t) \quad\left(L_{1}(0, M), \text { for any } M\right), \quad \text { and for a.e. } t>C . \tag{12}
\end{equation*}
$$

Therefore f is integrable on $(0, M)$ for any M and $\int_{0}^{t} f=g$. Finally

$$
\begin{equation*}
\left(f_{n}\right)_{\#}(t)=\frac{1}{t} \int_{0}^{t} f_{n}-f_{n}(t) \rightarrow \frac{1}{t} \int_{0}^{t} f-f(t)=f_{\#}(t) \tag{13}
\end{equation*}
$$

so that $f_{\#}=h$ and thus $\left|f_{n \#}-f_{\#}\right|_{\infty} \rightarrow 0$ and $f_{n} \rightarrow f(W)$. The proof is complete.
Theorem 4. $\left(L_{0}, W\right)_{1 / p, q ; E}=L(p, q), 0<p<\infty ; 0<q \leqq \infty$. All function spaces here are taken on $(0, \infty)$.

Proof. We first interpolate W with L_{1} and then, using a theorem of Wolff we get the full result.

If $f_{\#} \in L(p, q), \mathrm{I}<p<\infty$, then there exists a constant c so that $f+c \in L(p, q)$. For: if $f_{\#} \in L(p, q)$ then $\int_{t}^{\infty}\left|f_{\#}(u)\right| d u / u<\infty$. From (8) then we have:

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \int_{0}^{s} f(u) d u=c
$$

exists. Let $g=f-c$. Of course $g_{\#}=f_{\#}$ so that from (8) again we have

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} g=\int_{t}^{\infty} g_{\#}(u) \frac{d u}{u} \tag{14}
\end{equation*}
$$

From $g_{\#} \in L(p, q)$, using Hardy's inequality we get $\frac{1}{t} \int_{0}^{t} g \in L(p, q)$. Since

$$
\begin{equation*}
g(t) \leqq\left|\frac{1}{t} \int_{0}^{t} g\right|+\left|g_{\#}(t)\right| \tag{15}
\end{equation*}
$$

we get $g \in L(p, q)$.
As elements of $W, f \equiv g$ and in the sequel we shall therefore write for $f \in W: f_{\#} \in L(p, q) \Rightarrow f \in L(p, q)$. This amounts to taking the element in the equivalence class of f for which $\lim _{s \rightarrow \infty} \frac{1}{s} \int_{0}^{s} f=0$.

On the other hand, $f \in L(p, q), 1<p<\infty$, implies $f_{\#} \in L(p, q)$. To see this, consider the linear operator \#: $f \rightarrow f_{\#}$. Obviously:

$$
\begin{align*}
& \#: L_{1} \rightarrow L(1, \infty), \tag{16}\\
& \#: L_{\infty} \rightarrow L_{\infty} .
\end{align*}
$$

Interpolating we get

$$
\begin{equation*}
\#: L(p, q) \rightarrow L(p, q), \quad 1<p<\infty, \quad 0<q \leqq \infty \tag{17}
\end{equation*}
$$

Now for the identification

$$
\begin{equation*}
\left(L_{1}, W\right)_{\theta, q ; K}=L(p, q), \quad \frac{1}{p}=1-\theta, \quad 0<q \leqq \infty . \tag{18}
\end{equation*}
$$

Since $L_{\infty} \subset W$, we have $L(p, q) \subset\left(L_{1}, W\right)_{\theta, q ; K}$. For the converse note that \# actually maps W to L_{∞} so that

$$
\begin{equation*}
\#:\left(L_{1}, W\right)_{\theta, q ; K} \rightarrow L(p, q) . \tag{19}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|f_{\#}\right|_{p, q} \leqq C_{p}|f|_{\left(L_{1}, W\right)_{\theta, q ; K}} . \tag{20}
\end{equation*}
$$

Since however $|f|_{p, q} \leqq C_{p}\left|f_{\#}\right|_{p, q}$, we get (18). To get the full theorem we apply Wolff's theorem. We restate it in a form more convenient for our application.
$A_{1}, A_{2}, A_{3}, A_{4}$ are quasi-Banach Abelian groups and $A_{1} \cap A_{4} \subset A_{2} \cap A_{3}$. Assume

$$
\begin{array}{lll}
\left(A_{1}, A_{3}\right)_{\beta, q ; E}=A_{2}, & 0<\beta<\infty, & 0<q \leqq \infty, \\
\left(A_{2}, A_{4}\right)_{\psi, r ; K}=A_{3}, & 0<\psi<1, & 0<r \leqq \infty . \tag{22}
\end{array}
$$

Then

$$
\begin{gather*}
\left(A_{1}, A_{4}\right)_{\alpha_{2}, q ; E}=A_{2}, \quad \alpha_{2}=\beta / \psi \tag{23}\\
\left(A_{1}, A_{4}\right)_{\alpha_{3}, r ; E}=A_{3}, \quad \alpha_{3}=\beta \frac{1-\psi}{\psi} \tag{24}
\end{gather*}
$$

In [5] the statement of the theorem is for quasi-Banach spaces, i.e., $|r x|_{A}=|r||x|_{A}$ for scalars r is required. This, in fact, is not used in the proof. The added generality is needed here for L_{0} defined by

$$
\begin{equation*}
|f|_{L_{0}}=\int_{\{x| | f(x) \mid>0\}} d \mu(x) \tag{25}
\end{equation*}
$$

does not have the homogeneity property. It is easy to see that for $0<p \leqq \infty$

$$
\begin{equation*}
E\left(t, f ; L_{0}, L_{p}\right)=\left(\int_{t}^{\infty}\left[f^{*}(s)\right]^{p} d s\right)^{1 / p} \tag{26}
\end{equation*}
$$

and, applying an extension of Hardy's inequality applicable to decreasing functions, see [3], we get from (26) for $1<p$:

$$
\begin{equation*}
L_{1}=\left(L_{0}, L_{p}\right)_{1 / p^{\prime}, 1 ; E} ; \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 \tag{27}
\end{equation*}
$$

Since, by (18), we have

$$
\begin{equation*}
\left(L_{1}, W\right)_{1 / p^{\prime}, p ; K}=L_{p} \tag{28}
\end{equation*}
$$

we get, using (23) and (24),

$$
\begin{gather*}
\left(L_{0}, W\right)_{1,1 ; E}=L_{1} \tag{29}\\
\left(L_{0}, W\right)_{1 / p, p ; E}=L_{p} ; \quad 1<p<\infty \tag{30}
\end{gather*}
$$

To get the result for the full range we shall need a version of the reiteration theorem:

$$
\begin{equation*}
\left(A_{0},\left(A_{0}, A_{1}\right)_{\alpha, r ; E}\right)_{\beta, q ; E}=\left(A_{0}, A_{1}\right)_{\alpha+\beta, q ; E} \tag{31}
\end{equation*}
$$

Fix $0<r<1$ and write

$$
L_{r}=\left(L_{0}, L_{1}\right)_{1 / r-1, r ; E}=\left(L_{0},\left(L_{0}, W\right)_{1,1 ; E}\right)_{1 / r-1, r ; E}=\left(L_{0}, W\right)_{1 / r, r ; E}
$$

Finally, another application of the reiteration theorem gives the result in full generality. The theorem is proved.

Theorem 5. $T: A_{0}+A_{1} \rightarrow B_{0}+B_{1}$ is E-quasi-linear and

$$
\begin{gather*}
\frac{1}{t} \int_{0}^{t} E\left(s, T a ; B_{0}, B_{1}\right) d s-E\left(t, T a ; B_{0}, B_{1}\right) \leqq C_{1}|a|_{A_{1}} . \tag{32}\\
|T a|_{B_{0}} \leqq C_{0}|a|_{A_{0}} . \tag{33}
\end{gather*}
$$

Then, for $0<\alpha<\infty, 0<q \leqq \infty$:

$$
\begin{equation*}
|T a|_{\left(B_{0}, B_{1}\right)_{\alpha, q ; E}} \leqq C|a|_{\left(A_{0}, A_{1}\right)_{\alpha, q ; E}} \tag{34}
\end{equation*}
$$

Proof. Consider $E_{T}: A_{0}+A_{1} \rightarrow L_{0}+W$ defined by

$$
\begin{equation*}
E_{T}(a)(s)=E\left(s, T a ; B_{0}, B_{1}\right) . \tag{35}
\end{equation*}
$$

Conditions (32), (33) give

$$
\begin{align*}
& E_{T}: A_{1} \rightarrow W, \tag{36}\\
& E_{T}: A_{0} \rightarrow L_{0}, \tag{37}
\end{align*}
$$

while from the E-quasi-linearity of T we have, for each $0<\alpha<\infty, 0<q \leqq \infty$: $|T a|_{\left(B_{0}, B_{1}\right)_{\alpha, q ; E}}$ is a semi-quasi-norm on $A_{0} \cap A_{1}$, satisfying:

$$
\begin{aligned}
|T a|_{\left(B_{0}, B_{1}\right)_{\alpha, q} ; E} & \sim\left|E_{T}(a)\right|_{\left(\boldsymbol{L}_{0}, W\right)_{\alpha, ~}} ; E \\
& \leqq\left|E_{T}(a)\right|_{L_{0}}^{\alpha_{0}}\left|E_{T}(a)\right|_{W} \\
& \leqq C_{0}^{\alpha} C_{1}|a|_{A_{0}}^{\alpha}|a|_{A_{1}} .
\end{aligned}
$$

Reiteration between different values of α now yields for $0<\alpha<\infty, 0<q \leqq \infty$:

$$
\begin{equation*}
T:\left(A_{0}, A_{1}\right)_{\alpha, q ; E} \rightarrow\left(B_{0}, B_{1}\right)_{x, q ; E} \tag{38}
\end{equation*}
$$

and the theorem is proved.

References

1. Bennett, C., DeVore, R. A. and Sharfley, R., Weak-L ${ }^{\infty}$ and BMO, Ann. of Math., 113 (1981), 601-611.
2. Gilbert, J. E., Interpolation between weighted L^{p}-spaces, Ark. Mat., 10 (1972), 234-249.
3. Sagher, Y., Some remarks on interpolation of operators and Fourier coefficients, Studia Math., 44 (1972), 239-252.
4. Sagher, Y., An application of the approximation functional in interpolation theory, Proceedings of Conference in Harmonic Analysis in honor of Antoni Zygmund, Chicago, 1981, Vol. II, Wadsworth, Belmont, 1983, 802-809.
5. Wolff, T., A note on interpolation spaces, Proceedings of Conference in Harmonic Analysis, Minneapolis 1981. Lecture notes in matematics 908. Springer, Berlin-HeidelbergNew York, 1982.

Received April 4, 1982
Mario Milman
Southern Illinois University
Carbondale, Ill. 62901
Yoram Sagher
University of Illinois, Chicago and
Syracuse University

