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O. Introduction 

Let f be a function in LP(R ") with L v modulus of continuity co(f, t ) =  
suPlhl~_t ] l f ( x + h ) - f ( x ) l l z p  satisfying co(f, t)<_-~=l~,,( t  ) where ~,,(t) is a posi- 
tive concave function of t for each n and ~,~=1 ~ , (1)< ~. Th e n f c a n  be decomposed 
into a sum of  functions in LV(R"), f = ~ , ~ = l f ,  such that, for each n, co(f . ,  t)<=y~,(t) 

for all t>0 .  (Here 7 denotes a constant which does not depend onf .)  
This result, which seems far from obvious, is presented as a brief comment in the 

remarkable note [2] of Ju. A. Brudnyi and N. Ja. Krugljak. It is only one of many 
consequences of their theorem on the property of "K-divisibility" of the Peetre K- 
functional (Theorem 1 below). Most of the other consequences studied thus far 
both by Brudnyi and Krugljak themselves [2, 3] and by others, notably Per Nilsson 
[13, 14], are formulated within the context of the theory of interpolation spaces. 
However, as the above result strongly suggests, it is to be expected that the advances 
in interpolation theory made possible by the work of Brudnyi and Krugljak will 
also have many further interesting new applications in various branches of analysis 
(el. [13], Section 6.2). 

In the present paper we present an alternative proof of the K-divisibility theorem 
and subsequently, with the help of the techniques developed in our proof, we show 
that all interpolation spaces with respect to a large class of compatible couples 
-4=(A0, A1) have certain monotonicity properties with respect to the K-functional. 
Among the corollaries of our main theorem we obtain the result of Sparr [16] and 
its generalization due to Dmitriev [8] characterizing all interpolation spaces with 
respect to couples of L v spaces. But now we can also give a weaker form of Dmit- 
riev's theorem which holds for values of the exponents p for which the original ver- 
sion breaks down. Another corollary describes monotonicity conditions satisfied 
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by all interpolation spaces with respect to the "Sobolev couple" W=(L p, WI'P). 
The result here is best possible in a certain sense and answers a question posed in 
[6] (p. 135). 

The paper is organized as follows. Section 1 contains definitions, terminology, 
and statements and discussion of the results to be proved in the following sections. 
We have amplified the discussion a little in order to refer the interested reader, who 
may not yet have access to [3], to other papers whose results, taken in conjunction 
with our work here, lead to proofs of some of the other main theorems of BrudnyJ 
and Krugljak. Section 2 is devoted to some preliminary results concerning 
couples of  weighted L 1 spaces. Section 3 contains our proof  of the K-divi- 
sibility theorem. In Section 4 the proof  is adapted to give our new result on 
monotonicity properties of interpolation spaces. Finally in Section 5 we briefly 
discuss the application of that result to the couple W. We mention that one reason 
for our particular interest in this couple is the fact that its K-functional is equivalent 
to a rather concrete quantity, the L p modulus of  continuity, which appears in many 
other contexts. (Cf. [1], Chapter 6, and also the example with which we began here.) 

It is a pleasure to acknowledge very helpful discussions and correspondence 
with Per Nilsson and Jaak Peetre. In particular we are indebted to Professor Peetre 
for pointing out that our results in Section 4 can be presented in the more general 
setting of relative interpolation spaces and thus yield the theorem of Dmitriev. We 
have incorporated his remark into our presentation here. 

Remark  0.1. Weaker forms of the K-divisibility property can be established for 
couples of quasi Banach spaces or normed Abelian groups by methods not very diffe- 
rent from those for Banach spaces. There is also a version in which the K-functional 
is replaced by the approximation functional. We refer to [3] and [13] for details. In 
fact Sparr also obtained his theorem in this more general setting, namely for couples 
of  L" spaces with p in the extended range (0, ~], under suitable restrictions on the 
measure space. (Cf. [6], Section 4 for a related result.) Our techniques here for ob- 
taining Sparr's theorem via K-divisibility use the Hahn--Banach theorem and do 
not seem to be readily adaptable for p < l .  

Remark  0.2. We shall present some converse results to our main theorem here 
in forthcoming papers with Per Nilsson [17, 18]. 

1. Notation, terminology and statements of results 

We begin by recalling some notions from interpolation theory. For  the most 
part we use the notation and terminology of  [1] and will assume that the reader has 
some familiarity with the K- and J-functionals and their elementary properties 
([1], Chapter 3). 
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Let A=(A0,  A1) and B=(B0,  B1) be compatible couples of Banach spaces. 
Let A and B be intermediate spaces with respect to A, respectively B. We say that A 
and B are relative interpolation spaces with respect to 4 and B if every linear operator 
T satisfying T: A ~ B  maps A into B boundedly with 

]ITtIA, B -<- Cmax (liTl]~0,B0, llT[lal, nl) 

for some constant C independent of T. If C = 1 then we say that A and B are exact 
relative interpolation spaces. Analogously A and B are termed relative K spaces with 
respect to A and B if, for some positive constant C and for each aCA, whenever the 
inequality K(t, b; B)<=K(t, a; 4) holds for all t > 0  and some bEZ(B) then bEB 
and [Iblls<=Ctlalla. Again A and B are exact relative K spaces if we can take C = I .  

Clearly if A and B are relative K spaces then they must also be relative interpola- 
tion spaces. For  many couples, 4 and B all pairs of relative interpolation spaces are 
characterized by this property. We say of such pairs of couples 4 and B that they 
are relative Calder6n couples. (See e.g. [7], [8], [14].) Note that in all the above ter- 
minology we cannot change the order in which we write A and B or 4 and B without 
changing the meaning of the corresponding condition. 

Much of the research on this topic has dealt with the case A = B and in this 
context the above definitions reduce to saying that 4 is a Calder6n couple if all inter- 
polation spaces A with respect to 4 are K spaces, that is, if they each have the pro- 
perty that aCA, bES(A) and K(t, b; A)<=K(t, a; A) for all t > 0  imply that bEA 
with ][bIIA~CIlaIIA. The couples which are known to be Calder6n include couples of  
weighted L p spaces [16] and all "reiterated" couples of  the form A=(Eoo,p o, Eol,p) 
where E is any other compatible Banach couple [6, 9]. For  further examples, refe- 
rences and remarks see e.g. [4], [7] p. 2, [16], [14]. 

Turning our attention more specifically now to K spaces themselves we remark 
that a straightforward way of obtaining a K space A with respect to a couple 4 is 
to define the norm of A by 

IIaIIA = ilK(t, a; 4)[1~ 

where �9 is a lattice norm defined on measurable functions on (0, ~). Spaces of this 
type, denoted for example by A=4~ ;K ,  have been studied widely. Of course the 
much used spaces A0,,=(A0, AOo,, are special examples of such spaces generated 
by taking �9 to be a suitable weighted L p norm on (0, ~). Another important result 
of Brudnyi and Krugljak, which in fact can be proved using K-divisibility, states that 
for all couples 4 all K spaces A are of the form 4 , ;  ~ for some suitable ~, to within 
isomorphism. (There are also related results concerning relative K spaces.) Thus, 
whenever 4 is a Calder6n couple, all its interpolation spaces can be generated ha 
this comparatively simple manner. 

The K-divisibility theorem may be formulated as follows: 



42 Michael Cwikel 

Theorem 1 ([2], Theorem 4). Let A be a compatible couple o f  Banach spaces and 
let a be any element of  Z(A). Suppose that K(t, a;-~)-<~,~=1 ~n(t) for all t>0 ,  
where each ~n(t) is a positive concave function on (0, oo) and ~,~=ltp,(1)< oo. Then 
there exists a sequence of  elements a ,Es  such that a = ~ = l a  . (with the series 
converging in the norm of  S (4)) and, for some constant 7, 

K(t, a,; A) <- 7tpn (t) for each n and all t > O. 

One way of  obtaining a proof  of  the above-mentioned result that all K spaces are 
of the form Ao;K is to combine Theorem 1 above with Theorem 2.1 of  [7] (p. 11). 
See also Section 4 of [14] for a treatment in a more general setting. 

In [7] it was shown that many couples _4 have the following property which is 
related to K-divisibility and which may be considered as a refinement of  the "funda- 
mental lemma" ([1], p. 45). 

(P) There exists a constant c such that each aES0(.~ ) can be expressed as the 
sum a = ~ = _ o o  a~ of a series of terms a~EA (4) and for all t > 0  

~ = _ =  min (1, t/2~)J(2 v, a,; A) <- cK(t, a; 4). 

From the arguments to be given in Section 3 (see the proof  of Theorem 4 or 
Remark 3.1) it will be apparent that all couples which are "mutually closed" ([7], 
p. 8) have property (P). This in turn, by application of Theorems 4.6, 4.7 and their 
corollaries in [7] leads to results very similar to those in [2] Section 7 concerning the 
equivalence of K spaces and interpolation spaces generated by the J-functional. 
These matters are also treated in more detail and greater generality in [13]. 

The alternative proof  of Theorem 1 which we shall present here (in Section 3) 
is motivated to a considerable extent by the proof  of Theorem 4.8 in [7]. Some simi- 
lar ideas have been developed independently and used to study other aspects of  
real interpolation spaces by Svante Janson. (See [11], Example 0 and Theorem 16.) 
As in Theorem 4.8 of [7], we use the Sedaev--Semenov theorem that any compa- 
tible couple of  weighted L 1 spaces (L~0 , L~wJ is a Calderdn couple [15] (for alternative 
treatments cf. [5], p. 234 or [16]). However in the present context we need to extend 
the Sedaev--Semenov theorem to the case where each of  the weight functions w0 
and w~ may assume the value + o~ on some set of  positive measure. This is done in 
Section 2. 

Brudnyi and Krugljak obtained that the constant 7 in Theorem 1 satisfies 
1_<-7~ 14. However our proof  here shows that one can take 7<=8+e for each e>0.  
(This does not necessarily imply that 7 ~ 8 since our decomposition of a, a=~~  an, 
depends on the choice of ~.) 

We now turn to the new results to be proved in Sections 4 and 5 of the present 
paper. In order to state them concisely it is convenient to introduce an "index" q 
for each couple .~ which in some sense measures how close .~ is to being a Calder6n 
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couple. The starting point for such a notion goes back to [5, 6] where we considered 
interpolation spaces which have properties somewhat weaker than that of being a K 
space. We may reformulate these properties in the more general "relative" setting 
as follows: 

Let A and B be intermediate spaces with respect to the couples A and B respec- 
tively and let q be a positive number. We say that A and B are relative Lq-K spaces 
with respect to A and B if, for some fixed constant C > 0 ,  whenever aCA, bC~(B) 
and 

( f  o fK(t, b; B)/K(t,  a ; q dt/t) 1 

then bCB with ][b[]B~=C[[a[la. Similarly A is an L q - K  space with respect to ,4 if 
whenever aEA, bE ~(A) and 

EK(t, b; a ; at/t) 1/" 1 

then b~A with Ilbll,~<-Cllatlao 
Of course the case q - - ~  in the above corresponds to the previous definitions 

of relative K spaces and K spaces. Note that for q <  ~, relative Lq-K spaces are 
not necessarily relative interpolation spaces (e.g. A--Ao,~, B=Bo, q, or, more 
drastically, A=Aoc~AI, B--(0)). However all relative interpolation spaces are 
necessarily relative L1-K spaces for all choices of compatible couples ,4 and B. 
This is proved for the case A=B in [5], but the proof for the general case is almost 
identical. In [5, 6] we also exhibited examples of couples 3 for which all interpolation 
spaces are Lq-K spaces for some q, l < q <  ~. This leads us to adopt the following 
terminology: 

Definition. The couple A is of Calder6n type q (or C-type q) if all interpolation 
spaces with respect to A are Lq-K spaces. 

The couples A and B are of relative Calder6n type q if all relative interpolation 
spaces with respect to A and B are relative Lq-K spaces. 

Examples. Calder6n couples of course have C-type ~ and all couples have C- 
type 1. However, there exist couples (see e.g. [5], p. 223) which are not of C-type q 
for any q > 1. The couple (L 1, C) (see [5], pp. 224--225) is not a Calder6n couple but 
it is of C-type q for every q ~  ~o. Let W be the couple (L p, W ~'p) for l<p-~  ,~, 
where W x'p denotes the usual Sobolev space of functions which, together with their 
(generalised) first derivatives, are in L p, the underlying measure space being R" 
or T". Theorem 4 of [6] (p. 133) shows that Wis of C-type p. where p .=min  (p, 2), 
but this can be improved using our main theorem here (Theorem 2) to show that 
W is of C-type p**=2p/]p-2]. This result is sharp in that W is not of C-type q 
for any q>p** since ([6], p. 135) the complex interpolation spaces WE~ ~ are not 
Lq-K spaces for any q >p**. 
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Remark 1.1. If  Z is of C-type q then Z is of C-type r for all r, O<r<=q. This 
is an immediate consequence of the equivalence of the expressions 

[fo [K(t, b; a; .4)]q at~t) 1/q 
and 

(XS= -=  [K( 2~, b; A)/K(2 ~, a; A)]q) a/q 

for any a, bCS(A) and qC(0, oo]. An analogous remark holds of course concerning 
the relative C-type of  ~ and B. 

Our main theorem shows that couples .4 are of C-type q for appropriate values 
of q if they satisfy two properties which are relatively easy to verify in many cases. 
We now describe these properties. 

Definition. Let A be a Banach space of (equivalence classes of) measurable func- 
tions on a measure space (X ,s  such that if f~A  and FCs then fzFCA 
with llfXF[fA<=HfJ[A. We shall say that A is q-decomposable for some q > 0  if, when- 
ever f~A,  (F,)2= a is a sequence of disjoint sets in S and (g.)2=1 a sequence of dis- 
jointly supported elements in A and ( ~ = 1  ([lgn]la/[IfZFIla)q)l/q<--l, t hen  it follows 
that g = ~ = l g . C A  with []glla<_-llf[Ia. Analogously A is oo-decomposable if the 
above condition holds with the sum replaced by the supremum in the usual way. 

Finally if A and B are Banach spaces of measurable functions on possibly differ- 
ent measure spaces with [Ifxf[1a~Hf[Ia as before, then we say that A and B are 
relatively q-decomposable if, f o r f a n d  (F,)2= 1 as above and (g,)2=1 disjointly supported 
functions in B, the estimate (z~7=1 (1{ gnI[B/llf)~FIIA)q) Uq~ 1 implies that g = ~ = l  g, EB 
with fig[In <-[If HA. 

Examples. L p is ~-decomposable for all pC[l, ~], L q and L p are relatively ~-  
decomposable if q<_p. If  q>p then a simple application of H61der's inequality 

q 
shows that L q and L p are relatively -decomposable. By related arguments, if A 

q - p  
and B are Banach lattices and B is p-convex and A is q-concave ([12], p. 46), then A 
and B are relatively w-decomposable if q<_p whereas, for q>p, A and B are rela- 

q 
tively -decomposable. Of  course any pair of  Banach lattices A and B are rela- 

q - p  

tively 1-decomposable. The mixed norm space LP(l 2) is 2p -decomposable. 
Ip-2t 

(See Section 5.) 

Definition. Let A = (A0, AI) be a compatible couple of Banach spaces of  (equi- 
valence classes of) measurable functions on a measure space (X, 17,/~). We say that _~ 
is a Holmstedt couple if, for each aE S (A), there exists a family of measurable sets 
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(Et)t>o such that E~cEt for s<-t and such that, for a fixed constant 
depending only on ,4, 

llazUIAo+tllazx\UIA~ <= CK(t, a; A) 

C = C ( 2 )  

for all t>0 .  (Note that the choice of sets Et may depend on a.) 

Examples. From Holmstedt's formula [10] K (t,f; L vo, L v~) ~ ( f  o f*(s)pods)XlPo+ 
t ( f ~  f*(s)P~ds) ~/pl it follows that (L p0, L p~) is a Holmstedt couple if the underlying 
measure space is non-atomic. The case when p ~ = ~  follows a little less obviously 
from the K-functional formulae of Peetre and Kr6e ([1], p. 109). (For our purposes 
here it suffices to consider only non-atomic measure spaces or even simply (0, o0) 
equipped with Lebesgue measure, since all corollaries of Theorem 2 below concerning 
couples of  rearrangement invariant spaces can be extended to the case of arbitrary 
a-finite underlying measure spaces from the case of (0, ~)  using the operators con- 
structed by A. P. Calder6n in [4], (p. 277, Lemma 2.) Using a "Stein--Weiss transfor- 
mation" (see e.g. [5], p. 234) one can also deduce that (iv0 l p ~  (weighted L p spa- 

\ ~ w  0 , ~ w  1] 

ces) is a Holmstedt couple, again under the assumption that the measure space is 
non atomic. From Lemmata 4.3 and 4.5 in [14] it follows that a large class of quasi- 
linearizable couples are Holmstedt couples. See also [18]. 

For  our final example let us suppose that .4 is a Banach space of measurable 
functions such that if fC.4 and g is measurable and Ig (x ) l~ f (x )  for a.e. x then 
gCA with H g[la~ ]IfIIA. Let a be a positive measurable function on the same measure 
space and define .4~--{flfaE`4} with norm 11fllA --IIfaN~. It is easy to check that, 
for the couple (`4, .4~), 

K(t, f ;  A, A=) ~ Ilz(,,>alfllA+tllz(,:~=l)flla: <= 2K(t, ] ;  A, A,). 

This of course shows that (A, A,) is a Holmstedt couple. In particular if the under- 
lying measure space is R") iN and A=LP(l 2) is defined by 

IIs( , = ( f . .  (Z; :o IS(x, . dx)"" 

and if a(x,  k ) = 2  k then (A, A~) is precisely the couple E=(LP(I~), LP(l~)) studied, 
for example in [6], p. 133, in connection, with the couple W=(L p, WI'v), l < p <  ~. 

We can now close this section with the statement of our main theorem. The 
preceding examples already indicate many of its applications. The proof  is given in 
Section 4. 

Theorem. 2. Let A= (Ao, A1) and B=-(Bo, B1) be mutually closed Holmstedt 
couples. Let A s and Bj be relatively q-decomposable for some q, l <=q<=~, j = 0 ,  1. 
Then A and B are of  relative Calder6n type q. 
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2. Posit ive concave functions and couples of  weighted L ~ spaces 

Let w0 and w~ be positive measurable weight functions on a measure space 
(X, 27,/0. For our particular needs here we will need to permit each function wj to 
assume the value + ~o on a set, which we will denote by Ej ,  which may have posi- 
tive measure. 

For  j = 0 ,  1, let Pj=L~(wjd#) denote the Banach space of measurable func- 
tions f on X satisfying 

IIfN~j = f x If(x)lwAx) d (x) < oo. 

Thus of  course eachf6Pj,  satisfies f ( x ) = 0  for a.e. xEEj.  The pair P = (P 0 ,  Pa) = 
(Ll(wod#),Ll(wldl~)) is clearly a Banach couple. Each f 6 r ( P )  vanishes almost 
everywhere on EoC~E~. The calculation of the K-functional for /5  is very easy and 
yields (very similarly to the much studied case where wj are finite a.e.) that 

K(t, f ;  P) = f x lf(x)l min (wo(x), two(x)) dl~(x) 

= fFo Iflw~ dp + f r  Ifl min (w0, two cl~+ t f e  ' ]flw, dl~ 

where Y = X \ E o \ E ~ ,  Fo=EI \Eo  and F~=Eo\E~. 
As is well known K(t , f ;  P) is a positive concave function ([1], p. 39). Conver- 

sely, the following lemma and its corollary show that all positive concave functions 
on (0, co) are of  this form. 

Lemma 1. Let ~ (t) be a positive concave function on (0, 0o). Then there exist 
non negative constants c~, B and a positive measure v on (0, o~) such that Jbr all t > 0  

O(t) = =+fl t+  f o  rain (x, t) dr(x). 

Proof. This is part of the proof  of Lemma 5.4.3. of [1], p. 117. | 

Corollary. For each ~ (t) as above there exists a measure space (X, ~, #), weight 
functions Wo, wx and a function f ( x )  on X such that tp ( t )=K(t , f ;  P) for all t>0 .  

Proof. Given O(t) let e,/3 and v be as in Lemma 1 and let X be the union of 
(0, oo) with two additional points which we may conveniently denote by 0 and ~. 
We define the measure # by #({0})=e, /~({oo})=/? and #(E)=v(E)  for all measu- 
rable E c ( 0 ,  oo). Define w0 and wl by 

Wo(X) = x xC(O, oo) 

wo(O) = 1, Wo(~) = oo 

wl(x)  = 1 x~(O, oo) 

w~(O) = 0% w~(oo) = 1. 
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Then clearly Fo= {0}, F1 = {co} and if f ( x ) =  1 for all x~X then the formulae for 
O(x) and for K(t , f ;  P) coincide. | 

We now turn to the main result of this section. 

Theorem 3. Let P=(Ll(wodlQ, Ll(wldll)) be a Banach couple of  weighted L 1 
spaces on an arbitrary measure space (X, S, #). Let f ,  gE r ( P )  such that for all t >0 

(2.1) K(t, g; P) _<- K(t, f;  P). 

Then for each e > 0  there exists an operator T=T~, T : P ~ P  with IIT1pj~jll -<- 
1 +e for j = 0 ,  1 such that Tf=g.  

Remark 2.1. This theorem was originally proved by Sedaev and Semenov 
subject to the condition that wj< ~ a.e. (#(E0)=#(EI)=0) .  See [15]. It is of course 
equivalent to the statement that P is an "exact Calder6n couple", i.e. all exact inter- 
polation spaces with respect to P are exact K spaces. 

Proof. We can suppose without loss of generality that the functions f and g 
are non negative. Since lim,~oK(t,g)<=lim,~oK(t,f) and l im,~K(t,g)/t<= 
limt~ ~ K(t , f ) / t  we deduce that 

(2.2) fF, du <= fr, fwj  dp, j = O, 1. 

(Here and in the sequel we use the notation w j,  Fj and Y as defined at the beginning 
of  this section.) 

The main step of the proof  will be to obtain an operator W: P ~ P  with norm 1 

on P0 and on P1 such that (Wf)xvj=g)~Fj, j = 0 ,  1 and 

(2.3) K(t, gZr; P) -<--- K(t, (Wf)zr; P) for all t > 0. 

Once W has been constructed the proof  can be completed as follows: Since w0 and w 1 
are finite on Y the inequality (2.3) together with the Sedaev--Semenov theorem in 
its original form [15] implies that for each e > 0  there exists an operator V=V~ 
of  norm less than 1 +e  on P0 and on P~ which maps (Wf)zr  to gZr and leaves func- 
tions supported on F0v0 F~ unchanged. The desired operator T is thus given by T =  VW. 

We shall define the operator W, acting on each hE X(P), by 

(2.4) 

and 

(2.5) 

provided 

W(hzr) = hXy 

f G f w j # ~ O .  If  f r j f w j # = O  then we take W(hzF~)=O. (In this case 
(2.2) implies that g ( x ) = 0  for a.e. xEFj.) The functions gj in (2.5) are non negative 
and supported on Y. Their precise form will be given below. In particular they must 
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satisfy the equations 

(2.6) f~jgwjd~+ frgjwjd~= fv fwjd~, j = 0 , 1  

from which it follows that W has norm 1 on P0 and on P1. 
Define the numbers ~0 and ~1 by 

= f~ fwjd~-f~j gwjd~ ( j  - -  0, 1). ~j 

Then from (2.1) we have that for all t > 0  

f r g rain (w0, two dl~ <= ~o + f y f m i n  (w0, two dl~ + t~l. 

If  ~j--0 for either j = 0  or j - -1  we take g j = 0  and (2.6) is satisfied. Other- 
wise a j > 0  by (2.2) and we can choose a positive number tj such that 

t)-J f vg min (wo, tjwO dkt ~= aj. 

Let (2o= {xEYlwo(x)<=toW~(X)} and ~2~= {xEY]wo(x)>-t~w~(x)}. I f  both % and a~ 
are strictly positive then we can choose to and q as above so that to<q and conse- 
quently (2 0 and g2~ are disjoint. 

We can now define the functions gj precisely for j = 0 ,  1 also in the case ~ j>0  
as follows : 

Clearly fg j  gwjdl~O~j. If  the integral is strictly positive then gj is defined by 
gj =2f lgzg j  where 2 j=  fgj  gwjd~/~j<= 1. Alternatively, if the integral vanishes so 
that 2 j = 0  and g ( x ) = 0  for a.e. xC~2j, we can take g~. to be any non negative func- 
tion in Pj supported on ~j normalised so that here, as in the case 2 j>0 ,  

f g j g j  wj ~j. dl-t 

Consequently (2.6) is satisfied in all cases. 
A small problem may arise in the construction of gj as above if /~((2j)=0. 

This is readily overcome by enlarging the measure space appropriately. For example 
we may add an atom ~j and define # (~j) = 1, g (~i) = f  (~J) = 0, w0 (~j) = tj wl (~j) = 1 
and gj(~2j)=c~flwj(~2j). 

Finally in order to check that (2.3) holds for (Wf)Zr=Jkr+go+g~, we examine 
the function # ( t )  defined by 

~b (t) = K(t, (Wf) Zr) -- K(t, gzr) = K(t, f +  go + gO -- K(t, g) -- ~o-- t~  

= [K(t, f ) - -K( t ,  g)] + [K(t, go)-- ~0] + [K(t, gO-- tax]. 

The first bracketed term is non negative by (2.1) for all t. The second bracketed 
term is zero for t=to and so is non negative for all t>=to . The third bracketed term 
is zero for t=tl  and so is non negative for all t<-q. Thus #(t)=>0 for all tqto,  q]. 
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If  ~Zo=0 we see similarly that ~(t)_->0 for all tE(0, fi] and if cq=0 then ~(t)->0 
for all tC[to, ~). If  eo=e~=0 then ~(t)-~0 for all t>0 .  

If c%>0 then for each t-~to we can write ~(t)/t in the form 

q) (t)/t = f r  ( f +  go + g l -  g) rain (wo/t, wx) dl~ 

= foo ( f +  (1 - 20)g0) rain (wo/t, wO dp +fr\Oo ( f+  g l -  g) min (wo/t, wx) d#. 

The first integral has a non negative integrand and so is clearly a non increasing 
function of t. The second integral is constant for all t<=to since min (wo/t, wa)=wa 
on Y\Y2 o. Since ~(to)=>0 we deduce that ~ ( t ) ~ 0  on (0, to]. 

Similarly, if ~ >0  then for each t>=q we have 

(t) = f.1 ( f +  (1 - 21)gl) rain (w0, two) dl~ + fy\~ ( f+ go - g) w0 d#. 

We see that ~(t)  is non decreasing on [q, ~) and, since ~(tx)~>0, it follows that 
~(t)=>0 for all t>~q. Thus we have shown that ~ ( t ) ~ 0  for all t > 0  which 
establishes (2.3) and completes the proof of the theorem. | 

3. The proof of Theorem 1 

Let .4 = (Ao, As) be a Banach couple. We recall that the Gagliardo completion 
of Ao is the space A0+ co. A1 consisting of all elements aEs such that 

JlaJJAo+~.al = sup K(t, a; .4) < 
t > 0  

and similarly the Gagliardo completion of A1 is the space Aa+ co. A0 consisting of 
all elements aE S(A) such that 

[]a]lal+~.a0 ---- sup K(t, a; A)/t < co. 
t > O  

(See e.g. [7], p. 8 or [1], p. 34.) 
Let Bo=Ao+~.A1  and Ba=AI+~ .Ao .  If  vEBo but vdiB~ then we use the 

notation livllBx--~ and in particular for each t=>0 we write 

(3.1) rain (1JvJIBo, tJlvlIBx) = IIvlIBo. 

Similarly if vEB~ but vf[Bo then we write ]Iv[]no= ~ and 

(3.2) min ([[vlfno, t[fvf[nl) = t[Iv[[nl. 

Theorem 1 will follow readily from the following theorem. 

Theorem 4. Let A=(A0, Ax) be an arbitrary Banach couple and let B=(Bo, Bx) 
where Bo=Ao+~.A1 ,  B I = A I + ~ . A o .  Let aES(.4). Then for each e>0  there 
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exists a sequence of elements (%)S=_= in S(A), such that 

(3.3) %E AonAI for all but at most two values of v, 

(3.4) Z ~ = -  ~ v~ = a 

where the series converges with respect to the norm of S(A), and 

(3.5) X~= - ~  min (llv~llBo, tllv,llB1) ~ 8 (1 +e)K(t, a; 7t) 

for all t>0 .  I f  %([ BonB1 then the v-th term of this series is defined by (3.1) or (3.2). 

Corollary. I f  lim,~oK(t,a;A)=O and l i m , ~ K ( t , a ; A ) / t = O  then each 
%EBonBx and so (3.4) defines' an admissible representation of a with respect to the 
couple B (see [7], p. 6). 

Proof. Fix a non zero element a of  S(A) and write K(t)=K(t ,  a; A) for all 
t > 0 .  

Define 
no = l!m K ( t ) , ~  No = llallB1 = limK(t)/t,,~o 

n~ = limK(t)/t, N ~  = Ilal[~0 = l imK(t) .  

(No and N= may of course be infinite.) 
We now construct a non decreasing sequence (t~,)7=_= with 0<=t~<=oo for 

each v. I t  depends on a fixed parameter  r > 1. For  our purposes in this section the 
optimal choice for r is r = 3  but for later applications we prefer to obtain estimates 
for general r. 

We choose t0= l  and let t 1 be the smallest number  such that both of  the in- 
equalities 

K(tx) ~ rK(to) and rK(tx)/t 1 ~ K(to)/t o 

are satisfied. The continuity and monotonicity properties of  K(t) ensure that t 1 > to 
and that  one of the above inequalities is in fact an equality. I f  there does not exist 
any q in (0, o0) satisfying both of  the above inequalities we define t~ = ~ (and also 
t~_-oo for all v > l ) .  We obtain t2 from q exactly as q was obtained from to. In 
fact, inductively, for each v > 0 ,  t~ is defined as the smallest finite positive number, 
if it exists, which satisfies both  the inequalities. 

(3.6) K(tO >= rK(t~_O 

(3.7) rK(t~)/t~ <= K(t~_x)/t~_~. 

As before, if no finite value for t~ satisfies (3.6) and (3.7) then we put t~ = co. Again, 
for t~< oo one of (3.6) and (3.7) must be an equality. I f  t~= co then we also take 
t = o o  for all p>v. We let v~ denote the first (i.e. minimal) integer v such that  
t~=oo. Alternatively, we define v ~ = + ~  if t~<oo for all integers v=>0. 
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We now define t~ for v<0 .  We take t_ 1 to be the largest number satisfying both 

K(to) ~ rK(t_~) and rK(to)/to <= K(t_l) / t_l  

and similarly by induction, given t~ we obtain tv_~ as the largest number satisfying 
both (3.6) and (3.7). I f  no such number exists then we take t~=0 and tu-~0 for 
all /~<v. We let v0 be the first (i.e. maximal) integer v such that tv=0. Alternatively 
we write Vo = - ~  if t~>0 for all integers v. 

In summary the sequence (t~)7=_ ~ has the following properties: 

(3.8) For  each v such that v o + l < v < v ~ ,  tv_l<tv  and the inequalities (3.6) and 
(3.7) hold, one of them being an equality. 

(3.9) I f  v ~ =  + ~  then l i m ~ + =  tv= + ~ ,  and if v 0 = - o o  then lira . . . .  t~=0. 

(3.10) I f  v -<oo then either 

(3.10.1) K ( t ) < r K ( t ~ _  0 for all t > 0  implying that n ~ = 0  and N ~ < c o  (aEB0) or 

(3.10.2) r K ( t ) / t > K ( t ~ _ l ) / t ~ _  ~ for all t > 0  implying that n = > 0  and N =o~. 

(3.11) I f  v 0 > - o o  then either 

(3.11.1) K(tvo+O<rK(t ) for all t > 0  implying that n0>0 and N 0 = ~ ,  or 

(3.11.2) rK(t,.o+O/tvo+~>K(t)/t for all t > 0  implying that no = 0 and No < ~ (aEB1). 

Having chosen ~>0  we now let a=a~+a~ for each v such that Vo<V<V~, 
where a~E Ao, a~E A1 and 

lla~llao+t~lla'llA~ <= (l +e)g(t,.). 

For each v such that v o + l < v < v =  we define 

t t 
vv = av--av-1 = a~-~--av. 

I f  v = v~ < co then we define 

and 

/ 
vv~ = a--av~-i  = Qv~--I 

V v : 0  for all v > v ~ .  

I f  v = v 0 + 1 > - co then we define 

/ )vo+l  = a - - a ~ , o + l  ~ a v o + l  
and 

v v = O  for all V~Vo. 

Note that % E A o n A  1 except possibly when v=v~ or v = v 0 + l .  I f  v o + l < v < v ~  

(3.12) [Iv~!IA0 ~ HavI[Ao-]-t[av-xllA,, ~ (l +e)[K(t~)+ K(tv-1)] 
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and 

(3.13) Ilvvlha <= ]]a'lIAl+lla~-lt]al <: (l +~)[K(tv)/t,,+K(tv-a)/t~-l]. 

I f  v = v= < co then 

(3.14) l[vv=][al : [la~=-a]]A~ <: (1 +e)K(tv_l ) / tv_x .  

In this case either (3.10.1) holds and so a~Bo with 

(3.14.1) 

live.liB0 --< Ilall~o + Ila~-/ll~o <= rg(tv=-l)+ I]a~-a[1Ao <- (r + 1 +e)g(t~ _O, 

or (3.10.2) holds and so, using (3.14), 

(3.14.2) [Iv~IIA~ -<- r(l+~)K(t)/t  for  all t > 0. 

I f  v = v0 + 1 > - oo then 

(3.15) flv~0+allao = Ila~o§ <- (l+e)g(t~0+l).  

In  this case either (3.11.1) holds and  so, by (3.15), 

(3.15.1) IIv~o+lllA o <_- r(l+e)K(t)  for  all t > 0, 

or  (3.11.2) holds and  so aEB1 and 

[Iv~o+lll~ <= [lallB~+lla;0+ll[~l 

(3.15.2) <= rK (t~o+ O/t~o+ l +( l + e)K (t~o+ O/t~o+ ~ 

= (r+l+e)K(t~o+O/t~o+~. 

(Note  that ,  under  the hypotheses  of  the corollary,  n 0 = n ~ = 0  so tha t  (3.10.1) and  
(3.11.2) hold. This implies tha t  %CBonB~ for  v=v~, v : v 0 §  and indeed for  all 
integers v, as required.) 

We  now verify that  S,~=_~ %=a where the series converges with respect to 
the n o r m  o f  S(A).  This will follow f rom the two equalities : 

Z~<_-0v~--=ao, Z ~ _ ~ l v v = a ; -  

Indeed,  i f  v o = - o ~  then n o = 0  and lira . . . .  Ila~llAo=0. Thus  S~=o%=ao-- 
lim . . . .  a~=ao. However ,  if  Vo>--o~ then ~,~_o%=a~o+l+~o+2~_~<_oa~-a~_l 
=a0 .  By exactly analogous  reasoning Zv__>lvv=a o. 

I t  remains only to establish the est imate (3.5). We fix tC(0, ~ )  and use the nota-  

tion 
m~ = min (llvd~o, tIlVd~l). 

(Recall  tha t  m~ may  be defined by (3.1) or (3.2) when v = v 0 + l  or v=v~.) 
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We choose an integer v, such that tv,_l<=t<-tv,. We first consider the cas6, 
when v o + l < v , < v = .  Thus by (3.8) we must have either 

(3.16) K(tv,) = rK(tv ,-O 
o r  

(3.17) rK(t~,)/t~, = K(tv,_l)/t~,_~. 

If (3.16) holds then, by (3.12), 

rn~, <= (r + l ) ( l  +e)K(t~,_l). 

If (3.17) holds then (3.13) can be applied to give 

(3.1.8) m~, <_- t(1 +e)(r+l)K(t~,)/ t~, .  

In both of these cases we deduce that 

(3.19) my, <_- ( r + l ) ( l + e ) K ( t ) .  

For each v such that v0+ 1 < v < v ,  we obtain from (3.12) and repeated applications 
of (3.6) (see (3.8)) that 

(3.20) rn~ ~ (1+5) 1+  K(tv) <= 1+ (1 q-e)[+J K(tv,-1). 

If  v0 > - o o  then for v = v 0 + l  by (3.15) and (3.6) 

/" 1 "~v*--l--(v0+l) 
(3.21) rnv0+x ~ (l+e)K(t~0+0 <- ( l + ~ ) [ r  j K(t,,_x). 

From (3.20) and (3.21) we deduce that for all v<v , ,  whether or not v0> - 0% 

m~<= 1+ l + e  K(t). 

Consequently 

f i l  [ /f  l_]l )(7_____]_ ) r + l  

By an almost identical argument we can show that 

(3.23) ~ > v ,  my-< (1 +e)(rr+-~lllK(t). 

We deduce (3.5) from (3.19), (3.22) and (3.23) and by choosing r=3 .  
To complete the proof of  (3.5) we must consider the two cases when 

v , = % + 1  ( 0 < t < t ~ o + l )  or 

v , = v ~  (tv - a < t <  ~). 
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We shall treat the first of these, leaving the reader to construct the closely parallel 
argument which treats the second. 

Since at least one of the estimates (3.15.1) or (3.15.2) must hold we deduce that 

either mvo+a <= r(1 +OK(t) or rnvo+~ <- t(r+ 1 +~)K(tvo+l)/tvo+l 
so that 

mv~ ~ ( r + l  +e)K(t). 

For vo+l<v<v~ we obtain by (3.13) and repeated applications of (3.7) that 

m v ~ t ( l + e  1+ K(tv_O/t~_ 1<- 1+ l + e ) t [ + J  K(t~o+l)/t~o+l. 

If  v=< co then by (3.14) and (3.7) 

m~| <--_ t(l +e)K(tv _l)/t~ _ 1 <= t ( l + e ) [ r J  K(t~o+,)/tvo+l. 

Thus, regardless of whether v ~ < ~  or v~=co, 

r + l  
<- (1+ ~) (r_--Z-i-) K(t). 

Combining these estimates and again taking r - 3  we obtain ~ = _ =  m~ <- 
6(1 +~)K(t) which of course implies (3.5). 

This completes the proof of Theorem 4 and its corollary. | 

We are finally ready to prove Theorem 1. At this stage our argument closely 
resembles the corresponding part of the proof of Theorem 4.8 of [7], p. 38. 

For each positive concave function ~b,(t) we construct a measure/~, and weight 
functions wg(s) and w~(s) on [0, ~] as in Lemma 1 and its corollary. 

Take X =  [0, ~] • N i.e. X is the union of disjoint copies I, of [0, oo] for n-- 1, 2 . . . . .  
Let wj(s, n)=w~(s), j - -0 ,  1 for each (s, n)CX and let X be the a-algebra of sub- 
sets E whose intersections with I, are Borel subsets of [0, co] for each n. For each such 
E=U~=~(Ec~I,)EZ define It(E)=~=~ll,(EnI,).  Then for the function f on 
X defined b y f ( s ,  n)= 1 for all (s, n)~X we obtain that 

and 
K(t, fxl,; P) = r ) for each nEN 

K(t, f; P) = Z~~ t~,(t) 

where P~-(Ll(wodlt), Ll(wld#)) on (X, X, #). 
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We recall that a~I;(A) satisfies K(t, a; .~)~d~~ and let a =  ~~ v v 
be the decomposition of a obtained in Theorem 4. Let (X0, p) be the measure space 
of all integers v for which v, r 0, where here # denotes counting measure. We define 
Wo and wl on X0 by wj(v)=llv~llB/ (Note that wj(v) may be infinite for some 
values of v.) 

I f g  is defined by g (v )= l  for all vCX o we obtain, taking Py=Ll(wid#) on 
the measure space which is the (disjoint) union of X and X0, that 

g(t ,  g; P) = ~ S = - =  rain (llvvl[~0, tllv~llB0 

<= 8(l +e)K(t, a; A) <-- 8(l +e)K(t, f;  P). 

Invoking Theorem 3 we obtain an operator T on P of norm less than 8(1+2e) 
on P0 and on P1 such that Tf=g. We also have a "canonical" operator S from P 
to B (where B=  (Ao+ ~ .  A1, A t +  ~ .  A0)) defined by 

Sh = S(hZxo) = Z 7 : - ~  h (v)v~. 

Clearly I IS [p :~ ) l= l  for j : 0 ,  1, and  Sg=z~=_~  v,=a. Now let a,=ST(f)~t).  
Since the series ~=l f )~x .  converges to f in Z(P), ~ = 1  a, converges to ST f=a  
in Z(B)=Z(.4) and K(t, an; B)=K(t, a,; A)<--8(l+2e)K(t, fx~ ; P ) = 8 ( l + 2 e ) .  
�9 O . ( t ) .  I 

Remark 3.1. By a part of the above argument, for any fEZ(P)  and aEZ(.4) 
such that K(t,a; A)<:K(t,f; P) there exists a bounded operator ST: P-~B 
such that STf=a.  Thus P and B are relative Calder6n couples and Theorem 4.4 
of [3] shows that B has property (P) as claimed in Section 1. 

4. The proof of Theorem 2 

Suppose that .4 and J~ satisfy the hypotheses of the theorem (Section 1) and 
that a and b are arbitrary elements of Z(.4) and Z(B) respectively which satisfy 

(4.1) (fo [K(t, b; B)/K(t, a; A)lqdt/t) l& <= 1. 

Clearly the proof of the theorem can be accomplished by constructing a linear 
operator T mapping Aj into B i with norm bounded by a constant depending only 
on .4 and B, j =  0, 1 such that b = Ta. 

Our first step in the construction of T is to apply a variant of the proof of Theo- 
rem 4 in the previous section to aEX(A). For fixed r=>l we obtain a sequence 
(t~)~=_~ of elements in[0, ~] satisfying (3.6) and (3.7) for K(t)=K(t ,  a)=K(t, a; 4). 
[In the sequel we shall frequently omit .4 or B in the notation for K-functionals when 
this will not introduce any ambiguity.] We define v0 and v~ as in Section 3 and denote 
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by F the set of  all integers v which satisfy v 0 + 1 < v<  v=. Note that, depending on 
the behaviour of  K(t, a) and the choice of  r, F may contain all the integers or be a 
strict or even empty subset of them. 

Since A and B are Holmstedt couples, there exist measurable subsets Et,  Fry 
of  the respective underlying measure spaces such that 

(4.2) K(tv, a; A) <- Ilaz~t l[Ao+tvNa(1-x~,v)ll~ 1 ~ CiK(tv, a; A) 

(4.3) K(t~, b; B) <- [Ibz%ll~o+t~llb(1--ZFt)IIB/ <= C2K(t~, b; B) 

for each integer v, Vo-<V<V= and for constants CI=C(A)  and C2=C(B) de- 
pending only on A and B respectively. Thus we can write a=av+a~, b=b~+b'~ 
where a~ = aZEtv , b v= bzFt. As in Section 3, we let % =  a v -  av_a, and analogously 

w~-b~-b~_l for all vEF. If  there are finite values ofv  satisfying v>=v= or v<=vo+ 1 
then we define %, and analogously wv, by the same formulae as used in Section 3. 
Since Et~_cEt~ the sets G~ defined by G~=Et\Et~_a are pairwise disjoint and 
% = a x ~  for vo+l<v<v~. The sets defined by H~=Ft~\Ft~_~ have a similar 
property and w~=bxn~ for vo+l<v<v=. In order to be able to extend the nota- 
tion %=az~ and w~=bzn~ to any finite v which may satisfy v<-v0+l or v>=v= 
we define Gvo+l=Et~o+ a and H~o+a=Ft~o+ ~ and let G ~  be the complement of 

Etv_ 1 and Hv= the complement of  F t~_  ~ in the respective measure spaces. 

For  v<=vo or v>=v=+l, G~ and H~ are both taken to be empty sets. The sequences 
(G~)~=_= and (H~)~=_~ are thus each pairwise disjoint also for this (possibly) 
extended range of  v. 

Exactly as in Section 3 we have ~ = _ ~  %=a with convergence in Z(A). 
Furthermore, since (4.1) implies that supt>oK(t, b)/K(t, a ) < ~ ,  (cf. Remark 1.1 
above or (4.10) below) we can similarly deduce that ~ = _ =  wv=b with conver- 
gence in S(B). 

Let m~=m~(t)=min(lt%llao, tllv~lla,) as in Section 3. Obvious and slight 
modifications of the estimates there show that for all t > 0, if v, is defined by tv,_ 1 <- 
t <- tv, then 

(4.4) m~ <- C~rX-I~• a) for all v. 

(C1 replaces (1 +~) and the estimates (3.12) and (3.13) are simplified because here 

IIv~llvo<--Ila~llA0 and I[%[I,t<= [[a;_ll[A a.) Consequently ~ 7 = - =  m,~<-C~(r+Zr/( r -  1)). 
K(t, a). 

Our next step is to define a "thickened" sequence (u~)~c r from the sequence 
(v0~=_= and obtain estimates from below for K(t, u~ ; A). Let fl be a fixed positive 
integer chosen sufficiently large to ensure C8>0 where Ca is defined by 

C3 = [1 -2Cl r -~ / (1  - I/r)]. 
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For  each vEF define u~=~l,l_~ # v,+,. Then for each such v 

a = u~ + ~ l . I > #  v~+n 
so that 

K(t, a) <= K(t, u~)+~l,i># K(t, v,+,) 

<- K(t, uv)+~L,l># min (llv~+,lh0, tllv~+,lh). 
Now, if we restrict t to the range t~_ 1 <--t <- t~, the estimate (4.4) can be rewritten as 

m~+, ~ C~r~-l"IK(t, a) for all n. 

Consequently, for t v _ l ~  l ~  tv, 

(4.5) K(t, u~; A) >-- [1--2Clr-P/(1--1/r)]K(t, a; fl) = CzK(t, a; 4). 

The operator T which we require will be obtained as a sum of three operators 
T=T_=+Tr+T~ where Tr=-O if F is empty, T _ = = 0  if v0 = - o o  and Too=0 
if v~ = co. Furthermore, if F is non empty then T r a = ~ c r  w~, if v0 is finite then 
T_=a=w~o+~ and if v~ is finite then T=a=w, .  Thus in all cases, whatever the 
behaviour of v0, v= and F, Ta = ~ o = _  = w~ =-b. It remains to give precise construc- 
tions for each of  the operators Tr, T_~ and T= and to show that each of them maps 
Aj boundedly into Bj for j = 0 ,  1. 

If  F is non empty then for each vEF we define ~ by 

[1 if K(t~, a) = rK(t~_l, a) 
e~ = ~0 otherwise 

Note that if e~--0 then necessarily K(t~_a, a)/t,_x=rK(t~, a)/t~. 
For each vEF let lv be a continuous linear functional on ~(A) such that l , (u , )= 

K(t~_~, u~; A) and l~(h)<=K(t~_., h; A) for all hEZ(A). (The existence of  l~ is 
of course guarenteed by the Hahn--Banach  theorem.) The operator Tr is defined by 

Trh = ~ r  l~(h)~ul.l~=#~+.)w~/K (t~-~, u~) 

for all hES(A). Clearly T r a = ~ e r  wv. 
In order to show that Tr maps Aj boundedly into Bj for j =  0, 1 it is convenient 

to express Tr as a sum of  operators Tr=~t,l<=p T, where T, is defined by T.h= 
~ c r  lv(hXG~+.)w~/K(t~-,~, uO and to show that each 7", has the required bounded- 
ness properties. We observe that 7", maps disjointly supported "pieces" hz%+. of 
h to disjointly supported functions which are scalar multiples of w~. This means 
that we can use the fact that Aj and Bj are relatively q-decomposable, together with 
estimates for norms of the rank one operators T,~ defined by 

T,~h = l~(hz~+,)w~/K(t~_~, u~) 

in order to estimate the norms of 7",. For  j=O, 1 we have IIT~,hlI~j<=IIwvlIB. 
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K(tv-~, hxGv +, ; A)/K(tv-~, uv ; .4). Using (4.3) we see that 

IlwvllBo <-- Ilbz%ll~0 <= C2K(t~, b; B) 
and 

_ <= C2t~_lK(t~-l, b; B). Ilw~ll~l ~- l i b ( l - z %  )IIA1 -1 

Combining the last three inequalities with (4.5) we obtain that 

IIZ,~hlJ~j ~_ CJ~J.K(t _j., b)t~_,~llhza~+.llaJf~g(t~-~ , a). 

The q-decomposability hypothesis now implies that 

c ,  
IIZ, hllo~ <= ~ (~vcrO~) 1/" [IhIIAj, 

where 
0v t - j  -J t = b)/t . . . .  K( ~_~, a). v_jK(t~_j, 

For ./= 0, in view of  the definition of e~, 

(4.7) O~ ~ rK(t~, b)/K(t~, a). 

Similarly, for j =  1, 

(4.8) Ov <--_ rK(t~_~, b)/K(t~_~, a). 
We claim that 

(4.9) (~crO~) ~/q ~ r2/Oogr) 1/q for .] = 0 and j = I. 

For q=  co we in fact obtain the "sharper" estimate sup~ O,~r as an immediate 
consequence of (4.1), (4.7) and (4.8). For q <  ~ we first note that, since the sequence 
(t~)~=_= satisfies (3.6), it follows necessarily from the concavity of K(t) 
that t~>=rG_~ tbr all v6F. Thus the intervals I~=(tffl/r, t, ]/r) are disjoint. For 
all tEL 

K(t,, a)/l/-r ~= K(t, a) ~ ]/r K(t~, a) 
and 

K(t~, b)/~/r ~ K(t, b) ~ ~/r K(t~, b). 

Thus, for  both j=O,  j =  l, 

~ver O~ = rq ~ E r  [K(t,, b)/K(G, a)] q 

dt / f dt 
ra.~vErj,~;" l" [K(G, b)/K(t,, a)] q TI a ,~ T 

=< d / log  r r2q Z~e r L~ [K (t, b)/K (t, a)] ~ t ( 

< r 'q fo[K( t  , b)/K(t,a)]qd---tt/logr <= r'q/logr 
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which establishes (4.9) and shows that Tr maps A i into Bj with norm bounded by 
C 2 (2fl -q- 1 ) l ' / (C  3 ( log r)x/q). 

Before proceeding with the description of  the operators T_= and T~ we note 
that by similar estimates to those above, for any s > 0  and r > l ,  

K(s, b)/K(s, a)<- [(log r)-X l "sr IrK(t, b)/K(t, a)]qdt/t] 1/q < r(log r) -1/~ j ,/r = . 

Choosing the optimal value e a/q for r we obtain that 

(4.10) sup K(s, b)/K(s, a) <- (qe) 1/q. 
s~-O 

If  v0 > - o~ then we construct the operator T_ = by taking T_ =h = 1_ ~ (h) wv0 +1. 
Here 1_~, is a linear functional satisfying l_=(a)=tr(a) and ll_=(h)I~tr(h) for 
all hE ~(A) where ~ is a suitable seminorm on ~(.4). The definition o f  a depends on 
whether K(t)=K(t ,a)  satisfies (3.11.1) or (3.11.2). In the former case we take 
a (h )= l im supt-.0 K(t, h; A)/K(t, a) and in the latter tr(h)=K(tvo+l, h; A)/K(t~o+I, a). 
Clearly in both cases T_=a=W~o+l. 

If(3.11.1) holds and h~A~ then T =h =O.  If  however h~A o, then using (3.11.1), 
(4.3) and (4.10) we have that 

IIT-~hllB0 -< IIw~o+lllBoa(h) 

<---- 11 bzv,vo+lll~o 11 hi[ ao/r-lK(t~o+l, a) 

<- [rC~K(tvo+x, b)/g(tvo+l, a)]l[h[la0 ~ rf~(qe)~/ql[hllao. 

Alternatively if (3.11.2) holds and hCAo then, similarly to the preceding estimates, 

we obtain that 

IIT-~hlIBo <=[IW~o+lllBol[hllao/g(tvo+~, a) <-_ C2(qe)~/qllhllao. 

I f  however hEAl then, since w~0+~=bXn~o+ ~ and B is mutually closed, 

IIZ-=hllnx <= [IbllBl t~o+ll[hl[al/g (tvo+ a, a) 

= sup K(t, b) t~o+~llh[lajK(t~o+X, a) <= (qe)l/qr[lhl[al, 
t>0 t 

by (4.10) and (3.11.2). 
If  v~ <  co we define T~ by T~h= l~(h)w,| where the linear functional l~ 

is defined as above via a seminorm ~. Here we take a(h)=K( t ,_ l ,  h; A)/K(t~_I, a) 
if (3.10.I) holds, or alternatively a(h)-- l im s u p t ~  K(t,h; A)/K(t, a) if (3.10.2) 
holds. The verification that T~ maps .4j boundedly into B i for j = 0 ,  1 is similar 
to that for T_~  and is left to the reader. 

This completes the proof  of Theorem 2. 1 
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5. The couples W = ( L  p, W I'p) and L=(LP(g), LP(I~)) 

In this final section we show how Theorem 2 applies to the couples W a n d / ,  
2p 

discussed in Section 1, to show that they both have Calder6n type - -  for 
Ip-21 

1 < p <  oo. As in [6], p. 133, we first point out that it is sufficient to show this for E. 
The corresponding result for W follows from the fact that W is a retract of E ([1], 
Theorem 6.4.3 p. 151). E is mutually closed (as is every compatible couple of reflexive 

2p 
spaces) and Holmstedt, so it remains only to show that LP(l~) is -decompo- 
sable for ~ = 0  and 1. I p -2 ]  

To this end we let f=f(x ,  k) and g=g(x, k) be measurable functions on 
X = R " •  and let (F.)~~ and (G.)~= 0 be two sequences of  disjoint measurable 
subsets of  X. Suppose further thatf~LP(l~), that g is supported on U~=0 G. and that 

gZc.ELP(I~) with Z~=0[llgzc IIL~(~)/II fzs~lisj,(l~)] 2plIp-21<= 1. It will be convenient to 

denote the characteristic functions of F, and G, by F,(x, k) and G,(x, k) respectively. 
Suppose first that p >2.  

Ilgllz, p(~b = IIZ,,gG,,llLp~tb = II(-r~,l~r,,gG,,2~<"l~)~/~ll/~-:. 

For  each fixed (x, k) the numbers g(x, k) G.(x, k)2 ~k are non zero for at most one 
value of  n. Therefore ]Z.gG.2"kp=Z. lgG.2~kl~ and 

II gllL,,~t~) = II(r.r'klgG,,2~kl')~i~llLP 

(Z,,ll('r~lgG,,2~<kl~)llL'/01/~ = (L,  II gG.ll L.~,b)~ ~i2 

2 2 112 = (~rn II fF, , l l  L~'(I:)(llgG,,ll Lp<,blllfF,,ll L"(,b) ) 

2s 1/2s <- (S.IIfF.IlLp(lb) (S.[IIgG.IILp(t~)IIIIF.IILp(I~)]2") 1/2s" 

by HSlder's inequality. If  we choose s=pl2 then s'=pl(p-2) and the series in 
the second factor is bounded by one and we have 

o~k 2 p/2 I lgl lL,v:) < (S,,llfFnlt[,{,b) !1~' = (s. f (Z~lfF.2 r) dx) li" 

( f  r, (~lfF.2=kl=).i~ dx) 'l" < ( f  (Z ~r,<l./:F..2:<"l:) "i~ dx) lip n = #1 

-- { f ( ~ ~  ax)"" ~= { f  (~rttf2~<ki2)Pl2 dx) lip = ll/ll~.<,=:). 
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For p < 2  the argument is rather similar. The first equality is exactly as before. 

]lgllL,q$) = H(SnSklgGn2~kI2)ll2llL, = ( f  (S, SklgG,2~k[2)mdx) lip 

p llp <= ( f  S,,(ZklgG,.2~kl2)Pl2 dx) 1;p : (S.IIgG.IIL.q:)) 

< (S '!fF, II p* )l/ps (S [llgG [I /[]fF,[l ]p~,)l/p,, = nt LP(I 2) n n LP(I~) LP(I~) " 

This time we take s=2/p so s '=2 / (2 -p )  and again the second factor is bounded 
by 1. 

ak 2 p]2 II gl!vv~) ~ (Z,,llfF,,ll~,'q:)) 1/~ = ( S n ( f  ( Sk l fFn2  1) dx)~/t') 1/z 

<= ( f  [S. ((SklfF, 2~kI2)P/2)Z/P]P/2 dx) lip 

(by the integral form of Minkowski's inequality in l 2/p) 

= ( f  [S.~klfF.Z'~P] m dx) ~/p = ( f  [Sk(S. F~.)lf2"kl2] m dx) m' 

<= ( f  [ZklJ'Z'kl2] p/2 dx)  lip = ]lfllL,(t~). 

2p 
The estimate [] g[] L~ t2~ <= ]] f[tt,aa~ establishes the - - - d e c o m p o s a b i l i t y  of  L'(l~). 

( . . . . .  Ip-21 
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