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I. Introduction 

The purpose of  this paper is to study the question of extendability to the 
whole space of functions defined on sub-domains of R" and satisfying certain 
smoothness conditions, The usual Sobolev spaces of  integral order are defined by 

L~ ([2) = {fE L]or ([2) : DPfE LP ([2), for all I~1 <: k}, 

when [2 is connected, 1 ~p<_oo and k E Z + ;  the derivatives are assumed to exist 
in the sense of distributions on [2. []fllrua) is defined to be 

~o~l#L~ ILD#flIL'<m �9 

By an extension operator for LkP([2) we will mean a bounded linear operator 
p - - ~  p n A: Lk([2 ) Lk(R ), such that A(f)=-f on [2. f2 will be called an extension domain 

for L~ if such an extension operator exists. 
Calderon [4] showed that if 0[2 is locally the graph of a Lipschitz function, then 

[2 is an extension domain for L~, for all l < p <  oo and kEZ +. Stein [14] extended 
this result to include the endpoints p =  1, r and moreover constructed an exten- 
sion operator completely independent of  k (as well as p). The class of known exten- 
sion domains was enlarged by Jones [10], who showed that (5, 6) domains (defined 
below) are also extension domains for Lk', l<=p<_--~ and kEZ +. Furthermore, 
(e, ~o) domains are extension domains for the Dirichlet space of  functions (modulo 
constants) with gradients in L"(R") and for BMO [9]. This class of domains is 
relatively sharp: if [ 2 o R  2 is a bounded finitely connected extension domain for L~, 
then [2 is an (5, ~)  domain. 

[2 is an (5, 6) domain if there are constants eE(0, oo) and 6E(0, ~)  such that 
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for any x , y ~  with I x - y ] < 6 ,  there exists a rectifiable path ? c ( 2  such that 

(1.1) l(?) <_ ~- t lx_y[  

(1.2) d(z, 00)  >= ~ . i n f ( l z - x l ,  l z -y[ )  if zET, 

where d(z, 0~2) is the distance from z to 0~2, and l(7) is the length of ?. In R 2, (e, 6) 
domains are intimately connected with the theory of quasiconformal mapping: 

Theorem A [1, 11]: I f  F c R  2 is a Jordan curve, the following are equivalent: 

(1.3) One or both o f  the regions bounded by F are (~, ~)  domains for some ~>0. 
(1.4) F is a quasicircle. 

(1.5) There is a constant M < ~  such that Jor any x, yC F, at least one o f  the two 
subarcs o f f  with endpoints x and y contains no z such that I x - z l  >-M. [ x - y  I. 

A Jordan curve F c R  2 is called a quasicircle if it is the image of the unit circle 
under a globally quasiconformal mapping of R 2. The equivalence of (1.4) and (1.5) 
is due to Ahlfors [1]; the equivalence of (1.3) and (1.4) was shown by Martio and 
Sarvas [11] and Jones (unpublished). Examples of (e, 6) domains include domains 
whose boundaries are given locally as graphs of functions in the Zygmund class At, 
or of functions with gradient in BMO [8], and the classical snowflake domain of 
conformal mapping theory. 

In this paper we investigate the extension problem for the same class of domains, 
but for more general function spaces than the L p. By means of certain maximal 
operators N,,  we define (see (2.4)) for arbitrary open ~ function spaces 9~P(O), for 
all e >0  and 1 < p <  o~. These maximal operators have been considered previously 
in [3] and [5], for instance. When ~ is a positive integer 9~(R')  coincides with L~(R"), 
but when ~ is not an integer then 5~ptR,~ ~ J ~ ' ~ t  1 " C  ~p r~n~j ~ ~ - ~ ' c  ~ ,  ~,~j, for all ~>0; further- 
more 9~(~2) does not coincide with the space of restrictions to (2 of functions in 
5Of(R"), for any sub-domain Q of R". Here Aef is the usual potential space as defined 
for instance in Stein [14]. 

Our principal result is 

Theorem 1.1. I f  ~ c R "  is an open connected (~, 6) domain, then (2 is an exten- 
sion domain.for 9~,  for all l < p <  o~ and e>0 .  More precisely, for any N > 0  there 
exists an extension operator A u such that 

IIANUII~g(R"~ <= Cv,= ]lf[l~(n~, 

Joral l  l < p < ~  andall  0 < ~ < N .  

The proof is based on ideas of P. W. Jones. This theorem unifies his extendabi- 
lity results for BMO and for the Sobolev spaces; that there should exist such a uni- 
fication is not surprising since the maximal operators N~ which characterize 9~ 
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reduce to the sharp function, which characterizes BMO, when e = 0 .  A minor 
improvement on the main result of [10] even when c~Z + is that the extension ope- 
rator is independent of c~, for c~ in any bounded range (0, N). 

There is also a partial converse to Theorem 1.1, generalizing a result of Gol'ds- 
thein, Latfullin and Vodop'yanov (see also [10]): 

Theorem l.2. Suppose that s 2 is finitely connected. Suppose 0<c~<=l 
and p.  e =2 .  I f  f2 is an extension domain for ~ ,  then s is an (e, 6) domain. 

The (e, ~)  (or (e, 3)) condition is not necessary for n # 2 ,  or for n = 2  if p .  e r  1. 
The proof  also yields some insight into the cases n r  or p .  ~#2 .  

The paper is organized as follows, Section 2 states, mostly without proof, the 
geometric proPerties of (e, ~) domains needed later. The reader is referred to [9] 
and [10] for details. We also define N, and 9l~, describe a method of approximating 
functions by polynomials, and derive some basic properties of such approximations. 
Theorem 1.1 is proved in the third section. The final section is devoted to studying 
the necessity of the (e, 6) condition for extendability in R 2. 
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2. Notation and preliminaries 

s 2 will be open and connected, and ~c will denote the complement of  the 
closure of  ~. Q will always denote a closed cube in R", and I(Q) is its edgelength. 
r .  Q is the cube concentric with Q with l(r. Q)=r.I(Q). M( f )  is the H a rd y - -  
Littlewood maximal function of f .  ~ER will be positive, and m=m(~)  is the greatest 
integer strictly less than ~. Zs(X) denotes the characteristic function of S. No two 
occurrences of  C need denote the same constant. 

~9([2) denotes a fixed Whitney decomposition of s Thus ~(~2)= {Qk} where 
U Qk = s and 

(2.1) Qj and Qk have disjoint interiors if .]r 

(2.2) Cll(Qk) -~= d(Qk, Of 2) <: c21(Qk) 

(2.3) Zkzc~ .~  (x) <- c,. 

We may take cl and c3 to be as large as desired, d(Qk, 0~) denotes the distance 
between Qk and 0f2. A Whitney chain F is a subset Y =  {Q0 . . . . .  Qk}=~9(~) such 
that Qjc~Qj+I~O. The length o f f  is k, and F is said to connect Q0 and Qk. 
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The fundamental maximal operator, for fEL~oc(f2) and xE f2, is 

(2.4) N,f(x) = inf sup l(O) . . . .  fQ If(y)-P(y)l  dy, 
P x E Q c ~  

where P runs over all polynomials of degree less than or equal to m. If  there exists 
P for which the supremum is finite, then P is unique and is denoted Px. Information 
concerning N~ may be found in [3] and [5]. 

Definition 2.1. 9~v(Q)= {fEL'(Q):  N~fELV(f2)}, for l < p < c o .  IIf[l~(~) = 

IIfII Lp(~)+ IINfl[ Lp(~). 

Remark. When p =  co, the methods of this paper apply equally well. Suppose 
that f2 is an (t, ~)domain. If  ~ r Z, then the set of functions f on f2 with N~fE L ~ (f2) 
coincides with the set of restrictions to f2 of functions fEA~(R"). When ~=kEZ, 
A~ is replaced by L~ (R"). 

The following lemma is almost completely proved in Calder6n [3, Theorem 4]. 

Lenlma 2.2. Suppose kEZ +, l<p_<-~ and E2 is open and connected. Then for 
any fE L~oc(f2), 

NkfELP(f2)~DPfELP(f2) for all [/~t = k, 
and 

II g~fllL~(o) ~ Zlal =k ]IDaf[IL'(o) �9 

Proof. Calder6n has shown that NkfELP(O) implies DafEL'(f2), for all I/~[=k. 
Conversely, iffEL~(O), then given xEQcO we can approximate j ' ( in  L~ if p <  oo) 
in Q by smooth functions. IfM,o denotes the maximal function along line segments in 
direction co for each coE S n-l, then Taylor's theorem yields 

Nkf(x) <: CZlr f s.-~ M,o(Daf)(x) do). 

It will be convenient to work with an equivalent variant of N~. Define 

(2.5) K;,f(x) = sup inefl(Q ) . . . .  f e  If(Y)-P(y)I dy, 
x E Q C ~  

where again P runs over all polynomials of degree ~m.  Certainly ~f(x)<=N~f(x), 
for all x. 

Lemma2.3. N~f(x)<=CN~f(x)for all x, where C=C(n,c 0 is independent 
of x and f2. 

Proof, Suppose ~r~f (x)<~;  we may suppose that x = 0  and N ~ f ( 0 ) : l .  
If  t /n2-k<d(0,  0f2) choose a polynomial Pk of degree <--m such that 

2k(n+=* f,/Qk lf(Y)-P~(Y)I dy ~ 2, 
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where Qk has center 0 and side length 2-k. Now 

f Oo ]ek+l(2--k--ax)--ek(2--k--lX)l dx = 2"(k+1)fQk+ 1 IPk+l(X)--ek(X)l dx 

<= 2.~k +1, (Sek+, IPk +, (x) - f (x) l  dx + SQ, Ilk (x)- jr  (x)l dx) 
4 . 2  n(k+l) �9 2 -k(n+~) = 2 "+~. 2 -k~. 

Since the LI(Qo) and L~(Qo) norms are equivalent on the space of  polynomials of  
degree <-m, 

tPk+I(X)--Pk(x)I  <-- C . 2  -k~, for all XEQk. 
Moreover, if 

Pk(X) = Zll~l~_m ak,~ Xp 
then 

lak, il-- ak + l,#[ ~:~ C.  2 -k('-Ipi~. 

Hence there exists ap such that ak,p~ap as k ~  ~o, and we define P(x)=~lpl~_m a~x p. 
Then 

f e~ If(x)-P(x)l dx <= f Q~ lf(x)-P~(x)l ax+ f e ~ IP(x)-P~(x)l dx. 

The second term is easily estimated, since for xE Qk, 

I P ( x ) - P k ( x ) l  ~ C,~l#l~=m2-klPl fa#--ak,#l ~ C 2-k~. 
Hence 

l(Qk) . . . .  f o~ If(x)-P(x)l dx <= C(n). 

It follows at once that the same estimate holds with a larger value of C(n) if Qk 
is replaced by any cube in 12 centered at O. Then a similar argument handles arbi- 
trary Q. 

Lemma2.4. I f  xo, xa,yEQcf2 and N~f(xi)<~, then jbr all I/~l----m, 

I D~ Pxo (Y) -Dra e ~  (Y)] <-- C. l (O) '- lal .  (N~ f(xo) + N~f(xl)). 

Proof. By dilation it suffices to assume that I (Q)= 1. Then 

IIDaPxo-DaPx, ll,-,e, <= CilPxo-Px,il~,,e, ~- c ( f  e if-Pxot+f<~ lf-ex,I) 
<: C(N,f(Xo) + N~f(xO). 

In order to construct extension operators which are more or less independent 
of  u, we utilize the following approximation scheme: 

Proposition 2.5. (See [2] and also [6].) Let Qo be the unit cube. For each fixed 
NEZ +, there is a linear projection operator 11: L 1 (Qo)~ {polynomials of degree less 
than N} such that for any integer M<=N, 

(2.6) IIDa(f--11f)llL,,(,.eo) ~ C(r)ZI~I= M IIDrfllL,(,.ao), 
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for l<=p<:~ and Ifll<M. Furthermore, 

(2.7) [ID# (Hf)llLP(Qo) <: C~l~[=lpi ][D~ fllLP(Qo), 
for all I/~1 <N.  

(H is given by an integral operator of the form 

l l f(x) -=- f~+y~ao f ( x +  y).  (A*h)(x+ y) dy, 

where A* is the formal adjoint of a differential operator A with polynomial coeffi- 
cients (in y), acting in the y-variable, such that A(P):-P(O) if P is any polynomial 
of degree <N.  h is any function in Co(Qo ) with f h= 1.) The techniques of this 
paper do not require the full strength of this proposition; we shall use only the fact 
that H is a projection onto the space of polynomials of a certain degree, the estimate 

IIHfIIL~(Qo) <= CllfllL~(Qo), 

and the same estimate with Q0 replaced by a fixed dilate. Thus a simpler approxima- 
tion method would suffice. 

Given an arbitrary Q and fEL~(Q), we associate to f and Q a polynomial P 
by translating and dilating Q so that it is identified with Q0, applying H, and then 
reversing the dilation and translation. It will always be assumed that the integer N 
of Proposition 2.5 is larger than any value of ct under consideration. 

Next we review some properties of (e, 6) domains; proofs may be found in [9] 
and [10]. In the remainder of this section ~2 will be an (e, 6) domain. 

Lemma 2.6 [10]. Suppose (2 is an (e, 6) domain. There exists C(e, 6)>0 such 
that i f  QE $(E2 c) and l(Q)<:C(e, 6), then there exists Q*E $(~2) such that 

l (Q*) ~ l (Q) (2.8) 

and 

(2.9) 

Let 

d(O*, Q) ~ c .  l(Q). 

W={QE~B(~2c): I(Q)~C(~,6)}. For each Q W make a fixed choice of 
Q*E~B((2) satisfying (2.8) and (2.9). Q* will be called the reflection of Q. The next 
lemma is another straightforward consequence of the definitions. 

Lemma 2.7 [10]. Suppose that Qo, Q1EW and Qo meets" Qa. Then there is a 
Whitney chain Fo, 1 c 2] ((2) of  length at most C (~), connecting Qo to Q~. Moreover, 
i f  we choose a fixed such Fi.k for each intersecting pair Q j, QkE W, then 

(2.10) Z~j ,n~ w ~ Y. ,c  G,k Zlol/~.., (x)E L~ 

and 

(2.11) ZO~W ZQ,(X)~ L ~. 
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For the remainder of this section and the next, we make a fixed choice of the 

Fj,k as above. Then let/~j',k denote UR, Crj,~ (10l/n" Ri). A key geometric property 
of (e, 6) domains is. 

Lemma 2.8 [9]. Suppose f2 is an (e, 6) domain. Then there exists R=R(e,  6)< 
such that any dyadic cube Q of length at most C(e, 6) intersects some QIE~(f2)w 
~(~2 c) with l(Q1)~2 -g.  I(Q). 

Together with the next lemma this provides the foundation for our estimates. 

Lemma 2.9. Suppose that f 2cR  n is an (e, 6) domain, and fEg~(I2). Suppose 
Qo, QIEW and Qo~QI#O. Let Pi be the polynomial associated to f on Q* by 1I. 
Then 

IIDa(Po--Px)IIL=(O~) <= Cl(Q1)~-Ipl-n f r N~f(x) dx, 
o~ 1 

for all lfll<=m. 

Proof. Consider the quantity 

II P0 -- Pill L=(Q,) ~ Cl (01)-" I1Po- Pill LI(Q1) 

CI(Q~) -~ [IPo - PII[LI(QD" 

Let F0,1 be the Whitney chain chosen above. F0,1={R 0 . . . . .  Rk}, where Ro=Q~ 
and Rk=Q~. 

ilPo_ PlllL~(o, ) .~ff=ollej_ ej+lNL~(Q. ) k <= ~ C~j=0  [IPj- Pj+IlIL~(R), 

where Pj is the polynomial associated to f on Rj by H. (We use repeatedly the equi- 
valence of all norms on the finite-dimensional space of all polynomials of degree 
less than N.) Finally, 

iIPj--Pi+IIILI(Rj) <= f [f-PJl+ f R l f-Pj+ll  
j .i 

f. Is-P,l+fc I = j + l  �9 
j ( n ) .  R j  + 1 

To estimate the first integral, choose a polynomial q of degree ~ m  so that 

f . l f - q l  ~ 2 Inff.  ff--Pl <- 2l(Ri)"+~" Inf N~f(x), 
j ' , #  x E R j  

where the infimum is taken over all polynomials P of degree ~m.  Since f - P j =  
= f - I I ( f ) = ( f - q ) - H ( f - q ) ,  by (2.6) 

L "< L < inf N~f(x) If-Pal = c I f -  ql Cl (Rj) "+~ ~eRj 
.i J 

C l ( R y  f g N J ( x ) d x  <= Cl(01)~ f g N J ( x ) d x .  
J J 
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The second integral is treated in the same way, completing the proof in the case 
]fl[=0. The general case follows from homogeneity and the fact that 

IIDP(Po--POIIL~(Q) ~ CIIPo--PxlIL~r 
when I(Q)= 1. 

Note that if d(Qo, Q~)~Cl(Qo) then by the triangle inequality the same con- 
clusion holds, with /~0,1 replaced by a union of finitely many /~i, j 's. Fix a smooth 
partition of unity {q~j} such that 

9i = 1 on ~2 c (2.12) 

(2.13) 

(2.14) 

Finally, there is 

17 
supp (~Oj) C -i-'ff QJ for Q S  ~(f2c) and 

[IDP%II= ~ CI(Qj) -Ial. 

Lemina 2.10 [I0]. I f  f2 is an (e, 6) domain then Of 2 has measure zero. 

This is an immediate consequence of Lemma 2.8. 

3. Estimates for the extension operator 

Suppose fCLloc(f2). For each QjCW, let P1 be the polynomial associated to 
f on Qj via the projection generator H of Proposition 2.5. The extension operator 
A: L~oc(O)~L~oc(Ouf2 c) is defined by 

~Qj~wCPj(x)P.i(x ) if xEf2 c 
A f ( x ) = t f ( x )  if xE~2. 

Observe that [IAfIIL~<--C~ [IfllL~(~>, I<=P <-~176 For since 0f2 has measure zero, it 
17 17 

suffices to estimate IIZf[I on f2 c. ~oj is supported in - ~  Q~, andthe 1--'6- Q~ haveboun- 

ded overlap. Hence 

o IAf(x) fdx  = C Z e , : w  oj 

<= c f o,. [PJ(x)l" dx <= C Ze,:w f oy[f(x)l" dx' 

by construction of the projection H. By the finiteness condition (2.11), this is domi- 
P nated by C II f]l L~(~). 
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Consider the auxiliary functions 9Jr and 93t" defined as follows: 

INky(x) if xEl2 

(3.2) 9J~(x) = / l ( Q s )  - " f coQ;  N~f(y)dy if xEQsEW 
t0 otherwise, 

where Co is large enough that for any Q~E W, Ui/~,j~Co �9 Q*. 

~f(x) if x E a  
(3.3) 931'(x) = tXe:~w IIPj{[L~(Os) ")C2.qJ(x) if xEO ~. 

Essentially the same argument as given above for IIANIIL, shows that 
CIIfllt,(n) and lifs 

This section is devoted to the proof of the pointwise inequality 

Theorem 3.1. Suppose that f2 is an (e, 6) domain, fE L~o~(f2 ) and Af, ~ and 9Jr" 
are defined as above. Then for all xER", 

.No~(Af)(x) <= C. M(M (N{))(x) + C. M (~Jl')(x). 

Theorem 1.1 follows at once, by Lemma 2.3 and the definition of 9l~. 
Let S be any cube in R ~. Infe I(S) . . . .  f s  IAf-P(Y)IdY will be estimated accord- 

ing to several cases. C(e, 6) denotes the constant of Lemma 2.6. 

1 
Case 1. I(S)>= �9 C(e, ~). Then 

200 r 

z(s)-,-, f IAf(y)E dy C. Z(S)-" f l/fO01 dy ~ c. inf M(gJt')(x). 
x E S  

1 
Case 2. S meets some QE ~B(Oc)\W, and l(S)<= , C(e, 6). Then 

100 r 

inf l(S)-"-~ f s IAf(y)-P(y)[ dy <= CZ[atwlyiNm_l_l [[Daq)jl[ �9 [IDePj[I, 
P " SN(17/16)Qjr162 

Q j E W  
17 17 

the norms being sup norms over 1---6-" Q j" All Q jEW for which S meets ~ .  Q1 
16 

have length comparable to C@, 6), so ][Daq~il[~C and 

Thus 

infe l(S) . . . .  f s IAf(Y)-P(Y)] dy <= C Zsnsupp%)~o I[P~IIL~<Q~) ~ ~ ' (x )  

1 
for any xES, since Sc~supp ((pj)#0 implies S c 2 .  Qj when I(S)<= C(e, 6). 

100r 
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Case 3. S c  f2. This requires no comment. 
1 

Case 4. S intersects some QoE W with l(S)<=T~ l(Qo), and S does not belong 

to Case 2. 
Fix xoES. For each j for which supp (q~j) intersects S let qj(y) be the Taylor 

polynomial of degree m for 9j (Y)" (P j - P 0 )  at x0, let q (y) be the Taylor polynomial 
of degree m for Po(Y) at Xo, and let P(y)=~dqj(y)+q(y). (Recall that m is the 
largest integer strictly less than ~.) 

f s ]Af(y)- P(y)[ dy <= f s ]9~ (y)(P.i- P~ -- qJ(Y)[ dy 

+ f s [Po(Y)--q(Y)[ dy <= CI(S) ''+"+1 -~IPl = m + l  IIDP(gj(Pj--Po))I]L~Qo) 

+ Cl(S) ''+'+1 ~tal =,.§ IIDaeoIIL~(ao)" 

If  Ivl+l~l--m+l, then 

IO~jI. ID~(Pj-- eo)l ~ C .  Z(Oo) - ' J  �9 l(Qo)~-kl-n f _ No~f(x ) dx 
d 1"0, d 

on Q0, by Lemma 2.9. To estimate []DPPoI]L~(f2o), choose a polynomial p(x) of 
degree at most m such that 

fog [f(Y)-P(Y)I dy <= 2. l(Q~) "+~ inf NJ(x).  
x E O o  

Then if I P l = m + l  

lID ae II IIDa( P P)[I < Cl(O )-m-~l]P pl] (QS) 0 L ~ ( Q o )  : O - -  L ~ ( Q o )  = 0 O - -  L ~  

Cl(Qo) . . . . .  ~ fQ~ I f ( y ) -p (y ) l  dy, 

since Po-p=H(f--p).  
Altogether 

[ l(Qo)l(S) JY"+~-~'" t(Qo)-"fu to,, N~f(x) dx I(S) . . . . .  fsiAf(Y)-P(Y)[ dy <= C[ 
.i 

<= C. l(Q o)-" fCo a ,N=f(x)dx <= C.gX(Xo), 

for any xoES. In the second-to-last inequality the bounded overlap property (2.10) 
of the/~o,l's has been invoked. 

Case 5. S is dyadic, l(S) is no larger than the constant C(e, 6) of Lemma 2.8, 
1 

S meets no cube in fB(f2c)\w, and S meets some QEW with I (S )>  .I(Q). 
100 

This, the main case, includes precisely those dyadic cubes not covered by the previous 
cases. The following argument is adapted from that given by Jones [9] for BMO. 
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Let R be the integer of Lemma 2.8. Divide the dyadic cube S into dyadic cubes 
{Q~P} of lengths 2-R l(S). Let F1 = {Q(t): Q~I) is contained in some Q C ~8 (O) w $ (Oc)}. 
By Lemma 2.8, 

[ U >=  lSl > o). 
Q~I) E F 1 

Subdivide each Q~)qF~ into dyadic cubes O(k 2) of length 2-RI(Q)~)), and let 
F2={Qp):Q(k 2) is contained in some Continue this process 
inductively, constructing Fk={Q) k)} for each k->_l, such that 

(3.4) I S \  U U Q}k)[ =< (I_c)N. IS[ 
K<=N Q~.k) 6F k 

O (k) and Q}t) have disjoint interiors unless (j, k)=(i, l). (3.5) ~ j  

(3.6) Each r..~] lg(k) is contained in some Q~B(E2)u~9(E2 c) with I(Q)~I(Q~.k)). 

The proof of (3.4) is by induction using Lemma 2,8, and it follows that 

I s \u  u =o. 
k Q~F~ 

To each Q= Q~F) associate polynomials Po and PQ as follows: Let Q be the 
(unique) cube in ~B(O)u~B(O ~) containing Q. By the hypotheses of Case 5, either 
QE~9(O) or 0EW. If QE~3(E2), then Po is the polynomial associated to f via / /  
on Q. If Q E W, PQ is the polynomial associated to f via H on (Q)*. Define PQ(x) 
to be the Taylor polynomial of order m for PQ at the center of Q in the first case 
or (Q)* in the second, evaluated at x. 

Fix some QoEF1, and let P0=PQo, Po=PQo. 

Lemma 3.2. If  Q(k)6 Fk, then 

I[Po-PQ(~[IL~(O(k,)<=CI(S)~. inf M(gJ0(x). 
x E Q(k) 

Proof. Let us write Pk for PQ(~), Suppose k =  1 and Q(~)6F~. It is necessary 
to distinguish several cases. Q0, Qm are both contained in cubes ~0, ~)16~3(f2~u 
~B(Q c) by (3.6). If both Q0, Q~E ~B(O), it follows as in the proof of Lemma 2.9 that 

IlPo-P~ll~(e'~,) <- C[IPo--PdL=(e~) <= Cl(Q(l~)'-" f r N~f(x) dx, 

where F is a Whitney chain of bounded length connecting Q0 to Qa. Hence/~ lies 
inside a fixed dilate of QO), so that l(Qa)-" fr  N,f(x)dx<=CM(gJl)(Y), for any 
yE Q(1). 

Finally, I[Po--Pal[L=(Q(,)) <=C [IPo--PIIIL=(O(,), since the Taylor expansion is 
taken at a point lying in a fixed dilate of Q(1); this inequality is scale-invariant. 
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The second case occurs when OoC~(O) and Qx6W; the hypoti:eses of  Case 5 
ensure that if either OiC $(12~), then Oi~ W. In this case 

IlPo--PxlIL-(Q-,) <= CllPo--PallL-(O~), 
and again the proof  of Lemma 2.9 applies. The third and fourth cases, when 0IE $ (12) 
and 0oE W or both Qo, 01E W, are handled in the same way. Thus we have 

[IPo--PIlIL-(Q"I') ~ CI(S) ~" inf MOYO(x). 
xCQ(1)  

Consider the general case k > l .  Given QCk)EFk, there is a unique cube Q~R-1) 
containing it. By definition of  Fk_ 1, Q~k-~) ~ Fk_I ; however, there exists Q(k-:~ ,EFk_ 1 
such that Q(k-~) and Q~R-1) were obtained by subdividing the same cube 0 (k-2) 
Again Q~k-~)~ Fk_~ ' but proceeding as beforewe select Q(k-2)CFk_~, and proceeding 
inductively we obtain {QO) . . . . .  Q(k)}, where each Q(1)EFI. Furthermore there is a 
constant r such that Q(1)cr. Q(i-1) for each i. Since I(Q(i-1))=2RI(Q(~ for a 
certain larger value of  r we have r. Q ( ~  Q"-I) ,  a n d  hence in particular, 
Q(k)cr.Q(O for l<=i<k. 

By the triangle inequality 

[ieo_ekllL_(O(k)) =_ k = l  "< ~ j=0  IIPJ--Pj+IlIL-(Q (k)) 

k - - 1  < ~ = 0  IIPj-Pj+IIIL-(,'o (J~) < cS ' k -1  = = ~ i=0  [Iej-Pj+xlk'(o(s)) �9 

The argument given above for the case k =  1 provides a bound for each term: 

[I P j-- P j + IHL-(Q(J) ) <-- Cl (Q(J))=-" f a.Q(j,n ~ N=f  (x) dx, 

for some constants C and A independent of j and S. Summing over .] yields (with 
a larger value of A) 

II Po - Pk I] L'(Q (k') <= C1 ,(S~', ~j=0 S'k - 1 2 -R,j [2R(k--~) l (Q(k))] - , .  f N , f ( x )  ax, 

where the integral in the j - t h  term is taken over 12c~A2 R(k-j). Q(k). This is no larger 
than 

C l ( S ) ' ~ - ~  2 -g:'j. ~ce (')inf M(TJI)(x) ~ Cl(S) ~' x ~ ( f  M(gYO(x). 

This completes the proof  of  Lemma 3.2. 
We can now use Lemma 3.2 to conclude the proof  of  Case 5 of  the theorem. 

(k)  __  O ,  Since [ S \ U k  Up~ Qj I -  

(3.7) IA f ( y ) -Po(y )  I dy <-_ Zk ,  J fo,:, (]Af(Y)--PJ'k(Y)I+ IPj, R(Y)--P~ 
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where Pj.k is the polynomial of degree <=m associated to f on ~jO (k) as defined above, 
By Lemma 3.2, 

(3.8) ,~k,j f ]Pj, k(Y)--Po(Y)t dy <-- C Xk, j l(Q~k)) n. l(S) ~ inf MOX)(x) 
xE O(s k) 

< C t ( S ) ' f s M ( ~ )  ( )dx = X �9 

To estimate f a~ ,  IAf(y)-Pj,~(y)t My for a fixed cube O~k), we proceed as in 

Case 4. Let Q=Q~k)EfB(f2)ufB(f2*); suppose first that QE~(~) .  Temporarily 
we write fi and P for Pj,k and Pj,k. Choose a polynomial q of degree <=m so that 

f Q [f--q] dx <- 2l(Q)n+' inf  N~f(x). 

Since the operator H is a projection, P - q  is the polynomial associated to f - q  
on Q v i a / / .  Then by Proposition 2.5, 

1[ (P  --  q)IIL=(Q) <= Cl (Q) -" [I P - q I! L'(~) --<-- Cl ( Q ) -  n f ,, If(Y) - q (y )  l dy. 

P - q  is the Taylor expansion of P - q  to order m at a point lying in a fixed dilate 
of Q, so this implies 

IIP--PIIL~(a) = I [ ( e -  q ) - ( P -  q)[IL'(a) <---- Cl(O)-" f e If(Y)-- q(Y)l dy 

< CI(Q) ~' inf  N~,f(x) 

Returning to the notation of (3.7), we have 

(3.9) fo_~") Ie~,~--Pj, kl dx <= Cl(Q}k~)~'fo.~,, , N~,f(x)dx = Cl(OJk')~'fa~,, , ~Ol(x)dx, 

in the case 0~k)E ~(f2). If  on the other hand O}k)Ew, then passing to the reflected 
cube (Q~a))*E N(O) and applying the same argument yields the same estimate (3.9). 

Finally, we have 

(3.10) fo:. IAf(Y)--PJ'k(Y)] dy <= Cl(O}~')y' fos,, , M(~IR)(x) dx. 

This is proved exactly as in Case 4, using the fact that O}*)c Q~k)E f3 ( ~ ) c  W, where 
l(QSk))~l(QSk)). Combining (3.8), (3.9) and (3.10) demonstrates that the right-hand 
side of (3.7) is dominated by 

CI (S ~) f s M (gJl) (x) dx + ~k,  j C1 (Q}k))~ fo} , M (921/) (x) dx <= CI (S) ~ f s M (fOl) (x) dx. 

Thus for any cube S in Case 5, 

inf l (S)  . . . .  f s IA f (y ) -  P(x)! dx <= C inf M( M (gX)) (x). 
P x E S  
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Case 6. S satisfies all hypotheses of Case 5, except that S is not dyadic. Any 
S is contained in a cube which is a union of 2" dyadic cubes all of equal sidelengths 
comparable to l(S). The proof of Case 5 applies equally well to such a union of 
dyadic cubes. Hence the proof of Theorem 3.2 is complete. 

Parallel results hold for the function spaces defined for any open connected 
f2 by 

(3.11) 8~ (12) = {fC L]or (f2): N~fC L p (Q)}. 

(Again only cubes contained in f2 are used to define N~f.) gP(12) is a Banach space 
of functions modulo polynomials of degree m, with norm []fl[~ t~=  I]N,f[ILp~). 
In strict analogy with Theorem 1.1 there is 

Theorem 3.3. I f  f2 is an (5, ~)  domain, then f2 is an extension domain for g~. 

If  f2 is an unbounded (5, ~) domain, then ~ (f2) contains arbitrarily large cubes. 
Then the extension operator A is defined as in Theorem 1.1, except that we now let 
W be all of ~ ( ~ ) .  The proof of Theorem 3.1 shows that A is bounded from g~(f2) 
to r If  on the other hand f2 is bounded, let Q0~3(f2) be of maximal size. 
Define W c ~ ( f 2  c) as in Theorem 1.1. Let {~oj}j>0 be the partition of unity sub- 
ordinate to {QjEW(f2r employed above, let ~ o 0 = l - ~ j  ~oj on fU, and let P0 
be the polynomial associated to f on Q0 v ia / - / . /7  is constructed as in Proposition 
2.5, with N = m + l ,  so that P0 has degree <=m. Define, for fCgff(f2), 

_ ~ f ( x )  if xEf2 

Af(x) -- [ Z j > 0  q~j(x)Pj(x)+q~o(x)Po(x) if x~ f2. 

Observe that Af(x)---Po(x) for x outside a bounded neighborhood of ~. Then 
repeating the arguments of Theorem 3.1 proves that [I AflI ,uR ~) <= C]IfI[ ~Ua). 

4. Necessity of the (5, 3) condition 

The sharpness of the (e, 6) hypothesis is evinced by the existence of a partial 
converse to Theorem 1.1 in two dimensions, in the "conformally invariant" case 
0<~<_ - 1 and p- ~=n.  In this case, the norm in g~(R") is invariant under dilation as 
well as under translation and rotation, and gff(R") is preserved by the inversion 

x 
x-~ . One of the principal objectives of this section is to establish 

Ixl 2 

Theorem 4.1. Suppose that f 2 c R  2 is finitely connected, and p .  a=2.  I f  there 
exists a bounded linear extension operator A: ~(I2)-~8~(R"), then f2 is an (e, oo) 
domain for some e>0.  
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A useful tool will be 

Lemma4.2. Suppose f~C=(R~). I f  p . a > l ,  0<~<=1, x , y ~ R  2 and 7 is the 
line segment joining x to y, then 

if(x) - - f ( y ) f  <- C Ix- yJp.,-~ f ~ N,f(t)p dt. 

Proof. Fix any ~PECo(R 2) with f~o=l, and let cps(x)=s-2q~(s-lx). 
d 

-~s (~~ where ~ C  o. Define F ( x , s ) = ( f *  %)(x). Suppose that 

x = (0, 0) and y = (2, 0). 

f ( x ) - f ( y )  = ( f ( x ) -  F(x, )0) + (r(x,  2 ) -  r(y,  2)) + (r(y,  2)--f(y)). 
Then 

a d z 
F(x, 2 ) - f ( x )  = -~s F(X, s)ds = s s-l(q;s.f)(O, O)ds. 

Since ~ C  o and f t~(x)dx=O, ] ~ . f ( 0 ,  O)l~Cs ~. N~f(s, 0). Therefore, 

IF(x,X)-f(x)t <- c f*o s-*+=N=f(s, O)as <_- oz-*+=+*;,'. ( f  2 Nj(s ,  O)Pds) lip 

1 

= C~,'-7 .{f~ N~<f(t)" d,} 1,'. 
Similarly 

SO 

d 
F(y, 2)--F(x,  2) = f s -~s F(s, O, 2) ds 

= f 2  s-l(Oa*f)(s,  O) ds 

1 

[F(y, 2)--F(x, 2)l <= C,~ ~ N, f (s ,O)ds <= C2 ~ N~f(t)Pd t lip. 

The term IF(y, 2) - f (y ) I  is dominated by the same expression, so the proof is com- 
plete. 

The lemma fails if p .  ~<_-1 (and p > l ) ,  by the Sobolev embedding theorem 
in R 1. I f  1<~<=2 and p .  ( ~ - 1 ) > 1 ,  it can be generalized by replacingf(x)- f (y)  
by Px(Y)- f (Y) ,  where Px(y) is the Taylor polynomial of order 1 for f a t  x, evaluated 
at y. Similar generalizations hold for a > 2 ,  with stronger restrictions on p and ce. 

To prove Theorem 4.1 we first establish a weaker property of extension domains. 
B(x, r) will denote the open ball in R ~. S(x, r) is its boundary. 

Lemma 4.3. Suppose that p .  ~->2, l < p <  oo and that f2=R 2 is a (connected) 
extension domain for d~. Then there is M <  ~ such that any Xo, Xl f2 lie in the same 
component of  B(xo, M .  d(xo, xl))c~ f2. ( f2 need not be assumed to be finitely connected.) 
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A still weaker property is that f2 is uniformly locally connected: for any e > 0  
there exists 6 > 0  such that for any x0, XlE f2 with d(xo, x 0 < 6 ,  there exists a path ? 
f2 joining xo to xl with diameter less than e. I f  f2 is bounded, finitely connected and 
uniformly locally connected, then 0 0  is the disjoint union of finitely many Jordan 
curves and points ([13], p. 171). For  our purposes the discrete points may be disre- 

garded. 

Proof. Let d=d(xo, xl). Suppose that M>>I is given, and x0, Xl fail to lie 
in the same component of f2nB(x0, Md). Fix ~oEC o such that ~o-1 on {]xl <_-1/2} 
and q~-0 on {Ix I ->3/4}. Let g(x) be = 0  except on the component of f2nB(x0, Md) 
which contains xl ,  and g (x) = ~o (M -1 d -1. (x - xl)) on that component. 

Then g~Eff(f2) and ]] gll~Ua) <=C, where C depends on q9 but not on M, d, x0 
or xl.  For  only cubes Q c O  on which g is not identically zero contribute to N,(g). 
Such cubes intersect the component of  OnB(x0,  Md) which contains x0 ; but since 
Qcf2,  Qc~(OnB(xo, M.d) )  is connected. Thus on any cube Q c O ,  either g-=0 
or g(x)=-q~(M -1 .d  -1.(x-x1)) .  So N,g(x)<=N,(~o(M-ld-l(X--Xl))) pointwise 
in f2, and therefore 

2 
I] gll eg (n) =< 1]~~ (M -1 d -1 (X --  X1))] = c (Md) 7-"  

1 
Suppose that G were an extension o f g  to a function in g~(R2). If  d<r<- -Md ,  

2 
the components of f2 n B  (x0, Md) containing x0 and xl respectively each meet S (Xo, r), 
Fix CEC o with f$=l and let G,(x)=(G.~,)(x).  For sufficiently small e, G~ 

1 
assumes both the values 0 and 1 on S(xo, r) for each d r=- -Md.  By Lemma 4.2 

2 
(applied to an arc on S(x o, r)), fs(~o,,)(N~Q)P(y)dy->C �9 r 1-~p. Passing to the limit 
as ~-+0 yields 

,~_ 1 
�9 M d  - - . M d  IlGl[~:->f~ -> c f ]  r l - ' ,dr  

t log ~ if p . e = 2  
->C ' td2 -P . (1 - �89  if p . a > 2 .  

Comparing the estimates for [[G[lg~ and ][gllg~(a) as M - ~ o  concludes the proof. 
It is easy to construct examples of  extension domains for 9t~ or gff when p .  a<2 ,  

for which the conclusion of  Lemma 4.3 need not hold. However, the remainder of 
the proof  of Theorem 4.1 is valid for all p .  a_<-2 (and p .  a > 1). Thus if 1 < p .  a<_-2 
and f2 is a finitely connected extension domain for gff or 9l~ which satisfies the rela' 
tively weak conclusion of  Lemma 4.3, then f2 is in fact an (e, 6) domain. 

Lemma 4.4. Suppose that f2 is a simply connected extension domain for gP~, 
I <p.  ~<=2, and f2 satisfies the conclusion of Lemma 4.3. Then Of 2 consists of a single 
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(possibility unbounded) Jordan curve which satisfies Ahlfors' three-point condition 
(1.5). 

Proof. Since f2 is simply connected and uniformly locally connected, either f2 
is the region enclosed by a bounded Jordan curve, or 0f2 is a union of unbounded 
Jordan curves. Although we will simply assume for ease of exposition that 0f2 is 
a single Jordan curve F, the same argument shows that this must indeed be the case. 

Fix a constant Mo such that any xo, xl~f2 lie in the same component of  
f2c~B(xo, Mo. d(xo, xl)). Suppose that M>>M0 and there exist xo, xl~F and points 
Yo, Yl, one on each arc of F with endpoints x0 and xl ,  such that d(x i, y j)> 
M.d(xo,  x l ) = M . d  for each pair (i,j). Let C i be the component of 

f2c~B(xo, 10. M0. d) whose boundary contains y~. Let Ai=Cic~S(xo, 10.Mo.d) .  
Finally fix a continuous arc 7: [0, 1 ] ~  with 7(i)=x~, ~(t)~f2 if 0 < t < l ,  and 
ycB(xo,  2. Mo" d). 

Observe that d(A0, Ax)>=C �9 d. For given points zi~A i, choose nearby points 
z~ECi. Any path in ~ joining z~ to z~ must cross ?. Since 7cB(xo,  2 . M o . d )  and 
d(z~,Xo),,~d(zi, Xo)=lO.Mo.d, any ball centered at z o containing such a path 

P P ~ : >  must have radius at least 6. Mod. By the conclusion of Lemma 4.3, d(z o, zl)= 
M o l . 6 .  Mod=6.d,  so that d(Ao, A1)>=6d. 

The ensuing argument will rely on the next lemma, whose proof is left to the 
reader. 

Lemma 4.5. Suppose that Ao, A~cS(O, r) are closed sets, and that d(Ao, AO>= 
Co.r  (Co>0). Then there exists ~o~Co(R2), supported in B(O, 10.r)  such that 
IIq~(r-lx)[Ic=<=C1, ~o=-i on Ai, and all derivatives of r are identically 0 on A i. C1 
depends on Co but not on r or the Ai. 

Next in the above situation, let ~o be the function given by Lemma 4.5 with 
r =  10.Mod. Define 

g(x)= {~(x) if xCO\(CoUCl) 
if xE Ci. 

For any 1 0 . M o d < r < M d ,  g attains both the values 0 and 1 on S(x0, r). Hence 
as in the proof of Lemma 4.3, for any extension G o f g  to R 2 we have 

l o g M  if p . a = 2  
IIGIi~ C- ~ df:~o.uod t~-'pdt ~ C. dZ_~p(M2_~p_(lOMo)2_,, ) if p .  a < 2. 

On the other hand [Igll~Uu)<-C.(Mod) ~-p~. For, by dilating we may assume that 
10Mod=l.  Then since []q~Ilg~CR2)<=CI[q~IIC~(R~)<=C, only cubes Q c f 2  which 
meet A0 or A~ can lead to difficulties in the estimation of 2V~(g). But the contri- 
bution to _N~(g) made by such cubes is controlled by Ilq~[]c=, since all derivatives of 
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~o vanish identically on the A i. Letting M-* co and comparing norms of g and G 
again concludes the proof. 

Finally, combining Lemmas 4.3 and 4.4 and applying Theorem A, it follows 
that any simply connected extension domain is an (e, 6) domain if p .  c(=2, and 
0<e<= 1. The same arguments can be applied for finitely connected domains; see 
[101. 

Theorem 1.2, in which ~ is replaced by gl~ and (e, co) by (e, 6), is also proved 
in the same fashion. As long as d(xo, xl) is sufficiently small, the L p norms of the 
functions arising in the proof  can be made negligible relative to their g~ norms (by 
multiplying by an additional cutoff function); this is how the (e, fi) condition with 
6 < ~ arises. 

We close by commenting without proofs on some further results. Lemma 4.3 
extends to R ~ for all n, when p .  a_->n, with exactly the same proof. Furthermore, 
if ~?c l l  ~ is any extension domain for 9l~ where 0 < e ~ Z  and p.e>n, then there 
exists e > 0  such that for any x E ~  and any sufficiently small r > 0 ,  B(x, r)c~f2 con- 
tains an open ball of  radius e . r .  This is false for eEZ +. Theorem 1.2 is also valid 
for L~(R 2) (which is defined via ordinary weak derivatives, not via the maximal 
operator N~). 

It is not difficult to construct domains f 2 c R  2 which are extension domains 
for Lf  either for all p < 2  or for all p > 2 ,  but not for p = 2 ,  and which illustrate 
that the two halves of the proof  of Theorem 4.1 do indeed break down when p .  e < 2  
or p .  cr respectively. Let 

f2.={(x,y)ER2:y<O, or Ixl<e and O _ < - y < l ,  

or e<_--] x ]-<_l+e and l x I - - e < y <  1}. 

If  p > 2 ,  then f2, is an extension domain for Lf ,  with the norm of an extension 
operator uniformly bounded independent of  e as e ~ 0  (the extension operator is 
constructed just as in Section 3). However, if p<_-2 the norm of any extension ope- 
rator for Lf  is =>c(e) where e(e)~  ~ as e~0 .  On the other hand, (~ )c  is an exten- 
sion domain for Lf  with bound independent of e as e ~ 0  when p < 2 ,  but not 
when p=>2. I t  is possible to build out of the ~2, a bounded, simply connected do- 
main ~ c R  2 such that f2 is an extension domain for Lf  if and only if p > 2  and 
(~)c is an extension domain for Lf  if and only if p < 2 .  Such a domain has previonsly 
been constructed by Maz'ya [12J. 

This example also suggests that it should be possible to construct a domain 
O c R  2 which is an extension domain for L~ for all P>Po, for any given p0>2,  
or for a l lp<p0,  for any given p0<2.  However, the details of  this construction have 
not yet been carried out. 
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