Extension of a result of Benedek, Calderón and Panzone

J. Bourgain

1. Introduction

For X a Banach space and $1 \leqq p \leqq \infty, L_{X}^{p}$ is the usual Lebesgue space.
The theorem of Benedek, Calderón and Panzone [0] asserts that for $1<p$, $r<\infty$, any operator $T: L_{r}^{p}\left(\mathbf{R}^{n}\right) \rightarrow L_{i r}^{p}\left(\mathbf{R}^{n}\right)$ of the form $T\left(f_{j}\right)=P . V .\left(K_{j} * f_{j}\right)$ is bounded, the (K_{j}) being a sequence of convolution kernels K satisfying the conditions
(a) $\|\hat{K}\|_{\infty} \leqq C$
(b) $|K(x)| \leqq C|x|^{-n}$
(c) $|K(x)-K(x-y)| \leq C|y||x|^{-n-1}$ for $|y|<\frac{\mid x_{\mid}}{2}$
and where C is a fixed constant.
Our purpose is to show that this theorem remains true if one replaces l^{r} by any lattice X with the so-called UMD-property (cf. [2]). Let us recall that a Banach space X is UMD provided for $1<p<\infty$ martingale difference sequences $d=\left(d_{1}, d_{2}, \ldots\right)$ in $L_{X}^{p}[0,1]$ are unconditional, i.e. $\left\|\varepsilon_{1} d_{1}+\varepsilon_{2} d_{2}+\ldots\right\|_{p} \leqq C_{p}(X)\left\|d_{1}+d_{2}+\ldots\right\|_{p}$ whenever $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are numbers in $\{-1,1\}$. This property is also equivalent to the boundedness of the Hilberttransform on $L_{X}^{p}(\mathbf{R})$ (see [3], [1]) and can be characterized geometrically by the existence of a symmetric, biconvex function ζ on $X \times X$ satisfying $\zeta(x, y) \leqq\|x+y\|$ if $\|x\| \leqq 1 \leqq\|y\|$ and $\zeta(0,0)>0$. Let us point out that also for lattices UMD is more restrictive than a condition of r-convexity, s-concavity for some $1<r, s<\infty$ (see [9]).

Theorem. Assume X is a UMD space with a normalized unconditional basis $\left(e_{j}\right)$. Then, for $1<p<\infty$, any operator $T: L_{X}^{p}\left(\mathbf{R}^{n}\right) \rightarrow L_{X}^{p}\left(\mathbf{R}^{n}\right)$ defined as

$$
T\left(\Sigma f_{j} e_{j}\right)=\Sigma T_{j}\left(f_{j}\right) e_{j}
$$

where the T_{j} are the singular integral operators considered above, is bounded.

We will use some results on weighted norm inequalities (for a related approach, see [5]).

A positive, locally integrable function ω on \mathbf{R}^{n} satisfies $\left(A_{p}\right)$ provided, for $1<p<\infty$,

$$
\sup _{I}\left(\frac{1}{|I|} \int_{I} \omega\right)\left(\frac{1}{|I|} \int_{I} \omega^{-1 / p-1}\right)^{p-1}<\infty
$$

where I runs over all cubes in \mathbf{R}^{n}, for $p=1$,

$$
\sup _{I}\left\{\left(\frac{1}{|I|} \int_{I} \omega\right) \underset{x \in I}{\operatorname{ess} \sup } \frac{1}{\omega}\right\}<\infty ;
$$

for $p=\infty$ (cf. also [10]), there exists $\varepsilon>0$ such that $\int_{E} \omega \leqq \frac{1}{2} \int_{I} \omega$ whenever E is a subset of a cube I for which $|E|<\varepsilon|I|$.

The reader is referred to [6], for instance, for the basic theory. We need the following facts

Fact 1 (see [4]). If ω satisfies $\left(A_{\infty}\right)$ and T is a singular integral operator, then

$$
\int|T f| \omega \leqq C \int f^{*} \omega \quad \text { where } \quad f^{*}(x)=\sup _{x \in I} \frac{1}{|I|} \int_{I}|f|
$$

Fact 2 (see [8]). If ω is a function on $[0,1]$ satisfying dyadic $\left(A_{\infty}\right)$, one has the equivalence

$$
C^{-1} \int S(f) \omega \leqq \int f^{*} \omega \leqq C \int S(f) \omega
$$

for Walsh-Paley series $f=\left(f_{1}, f_{2}, \ldots\right)$, where

$$
f^{*}=\sup _{n}\left|f_{n}\right| \quad \text { and } \quad S(f)=\left(\Sigma\left|f_{n}-f_{n-1}\right|^{2}+f_{0}^{2}\right)^{1 / 2}
$$

Of course, there is always uniform dependence between the various involved constants.

2. Proof of the result

Let us first show how to conclude from
Lemma 1. Under the hypothesis of the theorem, the "maximal operator"

$$
M: L_{X}^{p}\left(\mathbf{R}^{n}\right) \rightarrow L_{X}^{p}\left(\mathbf{R}^{n}\right), \quad M\left(\Sigma f_{j} e_{j}\right)=\Sigma f_{j}^{*} e_{j}
$$

is bounded.
Denote (e_{j}^{\prime}) the dual basis. If X has UMD, also X^{*} is UMD and Lemma 1 provides a constant $C=C(X)$ such that

$$
\left\|\Sigma f_{j}^{*} e_{j}\right\|_{p} \leqq C\left\|\Sigma f_{j} e_{j}\right\|_{p} \quad \text { and } \quad\left\|\Sigma \varphi_{j}^{*} e_{j}^{\prime}\right\|_{p^{\prime}} \leqq C\left\|\Sigma \varphi_{j} e_{j}^{\prime}\right\|_{p^{\prime}}, \quad\left(p^{\prime}=p / p-1\right) .
$$

In order to show the boundedness of the operator T considered in the theorem, fix norm-1 elements $F=\Sigma f_{j} e_{j}$ in $L_{X}^{p}\left(\mathbf{R}^{n}\right)$ and $\Phi=\Sigma \varphi_{j} e_{j}^{\prime}$ in $L_{X^{*}}^{p^{\prime}}\left(\mathbf{R}^{n}\right)$. Choose $0<\delta<C^{-1}$ and define, for each j, the following function

$$
\psi_{j}=\sum_{k \geqq 0} \delta^{k} \varphi_{j}^{(k)}
$$

where $\varphi^{(k)}$ is the k-fold maximal function of φ, thus $\varphi^{(k)}=\left(\varphi^{(k-1)}\right)^{*}, \varphi^{(0)}=|\varphi|$. Clearly $\psi_{j}^{*} \leqq \delta^{-1} \psi_{j}$, so the function ψ_{j} satisfies $\left(A_{1}\right)$. Hence, for each j,
and

$$
\left|\left\langle T_{j} f_{j}, \varphi_{j}\right\rangle\right| \leqq \int\left|T_{j} f_{j}\right| \psi_{j} \leqq C(\delta) \int f_{j}^{*} \psi_{j}
$$

$$
|\langle T(F), \Phi\rangle| \leqq C(\delta)\|M(F)\|_{p} \sum_{k \geqq 0} \delta^{k}\left\|\Sigma_{j} \varphi_{j}^{(k)} e_{j}^{\prime}\right\|_{p^{\prime}} \leqq \frac{C C(\delta)}{1-\delta C}
$$

We prove lemma 1 in case $n=1$ (the general case is completely similar) and replace for simplicity \mathbf{R} by $[0,1]$. In what follows, S will be the dyadic square function.

Lemma 2. A Banach lattice X has UMD if and only if $\|F\|_{p} \sim\|S(F)\|_{p}$ for $F \in L_{X}^{p}$ (for some or for all $1<p<\infty$).

Proof. The equivalence $\|F\|_{p} \sim\|S(F)\|_{p}$ obviously implies unconditionality of Walsh-Paley martingale difference sequences in L_{X}^{P} and hence UMD (cf. [2]). Conversely, if X has UMD, then

$$
\|F\|_{p} \sim \int\left\|\Sigma \varepsilon_{n} \Delta F_{n}\right\|_{p} d \varepsilon \quad \text { where } \quad \Delta F_{n}=F_{n}-F_{n-1}
$$

(ε_{n} being the Rademacher functions) and, by convexity, the latter quantity clearly dominates $\|S(F)\|_{p}$. Since X is also q-concave for some $p \leqq q<\infty$ (see [2], [9]), we have

$$
\begin{gathered}
\int\left\|\Sigma \varepsilon_{n} \Delta F_{n}\right\|_{p} d \varepsilon \leqq\left(\int\left(\int\left\|\Sigma \varepsilon_{n} \Delta F_{n}(\omega)\right\|^{q} d \varepsilon\right)^{1 / q} d \omega\right)^{1 / p} \\
\leqq C_{q}(X)\left(\int\left\|\left(\int\left|\Sigma \varepsilon_{n} \Delta F_{n}(\omega)\right|^{q} d \varepsilon\right)^{1 / q}\right\|^{p} d \omega\right)^{1 / p} \leqq C\left(\int\|S(F)(\omega)\|^{p} d \omega\right)^{1 / p}
\end{gathered}
$$

proving the reverse inequality.
Lemma 3. If ω is a positive, integrable function on $[0,1]$ such that $S(\omega) \leqq C \omega$ a.e. then ω is $\left(A_{\infty}\right)$ (dyadic) ($C>1$ being some constant).

Proof. Let I be a dyadic interval, say $|I|=2^{-m}$, and $E \subset I$ with $|E|<\varepsilon|I|$. Considering the normalized measure $2^{m} d x$ on I, we estimate

$$
\frac{1}{|I|} \int_{E} \omega \leqq \Delta\left\|\omega \chi_{I}\right\|_{\Phi}\left\|\chi_{E}\right\|_{\Psi}
$$

where Φ, Ψ are the respective Orlicz functions

$$
\Phi(t)=|t|(1+\log (1+|t|)), \Psi(t)=\exp |t|-1
$$

Denote

$$
\begin{gathered}
\omega_{I}=\frac{1}{|I|} \int_{I} \omega, \\
\omega_{I}^{*}(x)=\sup _{x \in J \subset I} \frac{1}{|J|} \int_{J} \omega \quad(x \in I) \\
S_{I}(\omega)=\omega_{I}+\left(\sum_{n>m}\left|\Delta \omega_{n}\right|^{2}\right)^{1 / 2} .
\end{gathered}
$$

Fix $\varrho>0$. Applying the reverse $L \log L$ result (ω being positive), Davis's result (cf. [7]), it follows from the hypothesis

$$
\begin{aligned}
& \frac{1}{|I|} \int_{I} \frac{\omega}{\varrho} \log \left(1+\frac{\omega}{\varrho}\right) \leqq \frac{\omega_{I}}{\varrho}\left(\log ^{+} \frac{\omega_{I}}{\varrho}+K\right)+\frac{K}{\varrho} \frac{1}{|I|} \int_{I} \omega_{I}^{*} \\
\leqq & \frac{\omega_{I}}{\varrho}\left(\log ^{+} \frac{\omega_{I}}{\varrho}+K\right)+\frac{K^{\prime}}{\varrho} \frac{1}{|I|} \int_{I} S_{I}(\omega) \leqq \frac{\omega_{I}}{\varrho}\left(\log ^{+} \frac{\omega_{I}}{\varrho}+C K^{\prime \prime}\right)
\end{aligned}
$$

where $K, K^{\prime}, K^{\prime \prime}$ are numerical constants. Thus

$$
\frac{1}{|I|} \int_{I} \Phi\left(\frac{\omega}{\varrho}\right) \leqq \frac{\omega_{I}}{\varrho}\left(\log ^{+} \frac{\omega_{I}}{\varrho}+C K^{\prime \prime}+1\right)
$$

from which it follows $\left\|\omega \chi_{I}\right\|_{\Phi} \leqq C \omega_{I}$.
Also, by hypothesis, $\left\|\chi_{E}\right\|_{\Psi} \leqq\left(\log \frac{1}{\varepsilon}\right)^{-1}$. Therefore

$$
\int_{E} \omega \leqq \text { const. } C\left(\log \varepsilon^{-1}\right)^{-1} \int_{I} \omega
$$

giving the conclusion for $\varepsilon \rightarrow 0$.
Proof of Lemma 1. X and X^{*} having UMD, Lemma 2 gives

$$
\|S(F)\|_{p} \leqq C\|F\|_{p} ;\|S(\Phi)\|_{p^{\prime}} \leqq C\|\Phi\|_{p^{\prime}} \quad \text { for } \quad F \in L_{X}^{p}[0,1], \Phi \in L_{X^{*}}^{p^{\prime}}[0,1] .
$$

Proceeding as above, suppose $F=\Sigma f_{j} e_{j}$ and $\Phi=\Sigma \varphi_{j} e_{j}^{\prime}$ norm-1. Fixing $0<\delta<C^{-1}$, introduce for each j the function

$$
\psi_{j}=\left|\varphi_{j}\right|+\delta S\left(\left|\varphi_{j}\right|\right)+\delta^{2} S^{(2)}\left(\left|\varphi_{j}\right|\right)+\ldots+\delta^{k} S^{(k)}\left(\left|\varphi_{j}\right|\right)+\ldots
$$

defining inductively $S^{(k+1)}(|\varphi|)=S\left(S^{(k)}(|\varphi|)\right)$. One verifies easily that $S\left(\psi_{j}\right) \leqq$ $\delta^{-1} \psi_{j}$. Thus from Lemma 3 and Fact 2, it follows for each j

$$
\left|\int f_{j}^{*} \varphi_{j}\right| \leqq \int f_{j}^{*} \psi_{j} \leqq C(\delta) \int S\left(\left|f_{j}\right|\right) \psi_{j}
$$

and therefore

$$
|\langle M(F), \Phi\rangle| \leqq C(\delta)\|S(|F|)\|_{p}\left\|\Sigma \psi_{j} e_{j}^{\prime}\right\|_{p^{\prime}} \leqq \frac{C C(\delta)}{1-\delta C}
$$

Consequently $\|M(F)\|_{p} \leqq C C(\delta)(1-\delta C)^{-1}$, as required.

References

[0] Benedek, A., Calderón, A. and Panzone, R., Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 356-365.
[1] Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 22 (1984).
[2] Burkholder, D., A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab., 9 (1981), 997-1011.
[3] Burkholder D., A geometrical condition that implies the existence of certain singular integrals of Banach-space-valued functions, Proc. Conf. Harmonic Analysis in Honor of Antony Zygmund, Chicago, 1982, Wadsworth, Belmont, 1983.
[4] Coifman, R. R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, (1974), 241-250.
[5] Cordoba, A. and Fefferman, C., A weighted norm inequality for singular integrals, Studia Math., 57, (1976), 97-101.
[6] Garnett, J. B., Bounded analytic functions, Academic Press, 1971.
[7] Garsia, A., Martingale Inequalities, Seminar Notes on Recent Progress, Mathematics lecture note series, W. A. Benjamin, Reading, Massachusetts, 1973.
[8] Gundy, R. F. and Wheeden, R. L., Weighted integral inequalities for the nontangential maximal function, Lusin area integral and Walsh-Paley series, Studia Math., 49, (1974), 107--124.
[9] Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces, Vol. II, Ergebnisse der Mathematik 97, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
[10] Muckenhoupt, B., The equivalence of two conditions for weight functions, Studia Math., 49, (1974), 101—106.
J. Bourgain

Department of Mathematics
Vrije Universiteit Brussel
Pleinlaan 2-F7
1050 Brussels

