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1. Introduction 

For X a Banach space and 1 ~ p ~  ~,  L} is the usual Lebesgue space. 
The theorem of Benedek, Calder6n and Panzone [0] asserts that for l < p ,  

r<oo, any operator T: L~',(R")~LI',(R" ) of the form T(fj)=P.V. ( K j , f j )  is 
bounded, the (Kj) being a sequence of convolution kernels K satisfying the condi- 
tions 

(a) IIs 
(b) IK(x)l <=C Ixl-" 

(c) IK(x) -K(x-y)]<--C]Yl jx]  -"-1 for ]y]< Ix-L 
2 

and where C is a fixed constant. 
Our purpose is to show that this theorem remains true if one replaces l" by any 

lattice X with the so-called UMD-property (cf. [2]). Let us recall that a Banach space 
X is UMD provided for l < p < ~ o  martingale difference sequences d : ( d l ,  d2 . . . .  ) 
in L}[0, 1] are unconditional, i.e. U eldl + e2d2 +.. .  [Ip~Cp(X)Ildl +d2 +.. .  [Ip whenever 
e~, e~ . . . .  are numbers in { -  1, 1}. This property is also equivalent to the boundedness 
of the Hilberttransform on L}(R) (see [3], [1]) and can be characterized geometri- 
cally by the existence of a symmetric, biconvex function ~ on X •  satisfying 
C(x,y)<=llx+yll if Ilx[l-<_l~llyU and ~(0,0)>0. Let us point out that also for 
lattices UMD is more restrictive than a condition of r-convexity, s-concavity for 
some l < r ,  s < ~  (see [9]). 

Theorem. Assume X is a UMD space with a normalized unconditional basis (e j). 
p n p n Then, for l < p < ~ ,  any operator T: Lx (R  )-~Lx(R ) defined as 

r ( z f j e 3  : z r A f j ) e j  

where the Tj are the singular integral operators considered above, is bounded. 
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We will use some results on weighted n o r m  inequalities (for a related approach ,  
see [5]). 

A positive, locally integrable function co on R" satisfies (Ap) provided,  for  
1 < p  < co, 

where I runs over  all cubes in R n, for p = I, 

1 

<i 
for p=~o (cf. also [10]), there exists ~>0 such that fEO9=Tf, O9 whenever E 

is a subset  o f  a cube I for  which ]El<e[II .  
The  reader is referred to [6], for  instance, for  the basic theory. We need the 

following facts 

Fac t  1 (see [4]). I f  o9 satisfies (A=) and T is a singular integral operator, then 

f lTfEo9 <= c f f*o9 where f*(x): sup.~i ~ f ,  lfr" 

Fact  2 (see [8]). I f  o9 is a function on [0, 1] satisfying dyadic (A~), one has the 
equivalence 

c-if S(f)o9 <= f f*o9 <- c f S(f)o9 

for Walsh--Paley series f =  (f l ,  f2 . . . .  ), where 

f *  : sup lf, l and S ( f )  = ( z l f , - f , _ l P  +fo~) ':2. 

Of  course, there is always uniform dependence between the various involved constants. 

2. Proof  o f  the result 

Let  us first show how to conclude f rom 

L e m m a  1. Under the hypothesis o f  the theorem, the "maximal operator'" 

M :  L~(R")  -~L~(R") ,  M(Zfjej)  = Zf~*ej 
is bounded. 

Deno te  (e~) the dual basis. I f  X has U M D ,  also X* is U M D  and L e m m a  1 pro-  
vides a cons tant  C = C ( X )  such tha t  

IlZ~*ej[lp --< C[]Zfjej[lp and * ' < " II-rq~j ejllp, = C[[~%ejllp,, (p" = p /p -1 ) .  
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In order to show the boundedness of the operator T considered in the theorem, fix 
norm-1 elements F =  Sf je j  in L ](R") and �9 = Z(ps e~. in L~, (R"). Choose 0 < 6 < C -1 
and define, for each j, the following function 

r  : .~k__~O 6 k ~0 (k) 

where (p(k) is the k-fold maximal function of (p, thus @k) = ((p(k--1))*, (p(o) = [(PI" Clearly 
~ .~_6-1~j ,  so the function ~j  satisfies (A1). Hence, for each j ,  

I(Tjfj, r <= f ]Tjfjl~j <- C(6) f j~*$j 
and 

, cc(6) 
I(T(F), ~)[ --<- C(6)IIM(F)IIv ~k~_O 6kl[zj qo}k) ejl[p, <= 1- -JC " 

We prove lemma 1 in case n--- 1 (the general case is completely similar) and replace 
for simplicity R by [0, 1]. In what follows, S will be the dyadic square function. 

Lemma 2. A Banach lattice X has U M D  i f  and only i f  [IFllp~l[S(g)llw for 
FE L~ (for some or for all 1 <p < ~o). 

Proof. The equivalence ]]FI[v~][S(F)[lv obviously implies unconditionality of 
Walsh--Paley martingale difference sequences in L ]  and hence U M D  (cf. [2]). 
Conversely, if X has UMD,  then 

ilVllp ~fllZ~.A&llp& where AF, = Fn--Fn_ 1 

(en being the Rademacher functions) and, by convexity, the latter quantity clearly 
dominates ][S(F)IIv. Since X is also q-concave for some p_q-< <co (see [2], [9]), 
we have 

f IIZ~.AF.II, d~ ~ ( f  ( f  IIZ~. A F.(~o)ll" d~)llqdo)) Ì p 

<= q(x)(f ( f  lr.~.aF.(~o)lq&) 1/" P do~) ~/" <= c ( f  lls(g)(~o)V do~) ~" 

proving the reverse inequality, 

Lemma 3. I f  o) is a positive, integrable function on [0, 1] such that S(o)<=Co2 
a.e. then o is (A~) (dyadic) (C > 1 being some constant). 

Proof. Let I be a dyadic interval, say ]1[=2 -m, and E c I  with IEl<elI[. 
Considering the normalized measure 2=dx on I, we estimate 

~ f c o  <= A IIcox,[l~llx~ll~, 

where ~, 71 are the respective Orlicz functions 

�9 (t) = iti(1 + log  (1 + ]tl) ), ~( t )  = exp It[- 1. 
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1 
Denote co1 = "~" f l  co, 

1 
co~(x) = sup 7 7  f co (xC I) 

x~sci lal s 

$i((2o ) = ( . o i ~ - ( 2 n >  m IAO)nlg') 11'2. 

Fix 0>0.  Applying the reverse L log L result (co being positive), Davis's result 
(cf. [7]), it follows from the hypothesis 

~ / iL - -~ - log  1+--~- = - - -~ - log  + + K  +--~--~]-jico I 

col (log+ co /+K]  + St(co) N g 0 CO/ I0 + col ..1_ C K "  
- 0 t O : 0 II[ a i 0 

where K, K', K" are numerical constants. Thus 

l r  . + +oK,,+1 
I l l  

from which it follows Ilcoz~l[+<_-Ccoi. ( l}-i 
Also, by hypothesis, Ilz~ll~- < _ log- 7 . Therefore 

L co = const. C (log e - 0 - 1 f x  co 

giving the conclusion for e~0.  

Proof o f  Lemma 1. X and X* having UMD,  Lemma 2 gives 

IIS(F)I[~ =< CIIFII/  I l S ( + ) l l / ~  filmily, for FCL~r[O, 1], CEL~',[0, 1]. 

Proceeding as above, suppose F =  Zfie j and ~ =  ,Sg.ie~i norm-1. Fixing 0 < 6 < C  -1, 
introduce for each j" the function 

~kj = {~py[ +6S(l~ojl)+3~S <2) ([gjl)+ ... +6ka(k)(lrPj[)+ ... 

defining inductively s<~+~)(l~ol)=S(S+(Iv, I)). One verifies easily that S(Oj)~ 
a-l~ky. Thus from Lemma 3 and Fact 2, it follows for each j  

I f : : + l  -< f : , * +  -<- 
and therefore 

, . CC(6) 
I(M(F),  ~b)[ <_- C(,5)IIS(IF[)II~,II,S~pjejlI~,, <- 1 - , 5 c "  

IIM(F)I[~,<=C C(6) (1 -6C)  -*, as required. Consequently 



Extension of  a result of Benedek, Calder6n and Panzone 95 

References 

[0] BENEDEK, A., CALDER6N, A. and PANZONE, R., Convolution operators on Banach space valued 
functions, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 356--365. 

[1] BOURGAIN, J., Some remarks on Banach spaces in which martingale difference sequences are 
unconditional, Ark. Mat., 22 (1984). 

[2] BURKHOLDER, D., A geometrical characterization of Banach spaces in which martingale diffe- 
rence sequences are unconditional, Ann. Probab., 9 (1981), 997--1011. 

[3] BURKHOLDER D,  A geometrical condition that implies the existence of certain singular integrals 
of Banach-space-valued functions, Proc. Conf. Harmonic Analysis in Honor of Antony 
Zygmund, Chicago, 1982, Wadsworth, Belmont, 1983. 

[4] COIrMAN, R. R. and FEFFERMAN, C., Weighted norm inequalities for maximal functions and 
singular integrals, Studia Math., 51, (1974), 241--250. 

[5] CORDOBA, A. and FEFFERMAN, C., A weighted norm inequality for singular integrals, Studia 
Math., 57, (1976), 97--101. 

[6] GARNETT, J. B., Bounded analytic functions, Academic Press, 1971. 
[7] GARSIA, A., Martingale Inequalities, Seminar Notes on Recent Progress, Mathematics lecture 

note series, W. A. Benjamin, Reading, Massachusetts, 1973. 
[8] GUNDY, R. F. and WHEEDEN, R. L., Weighted integral inequalities for the nontangential maxi- 

mal function, Lusin area integral and Walsh--Paley series, Studia Math., 49, (1974), 
107--124. 

[9] LINDENSTRAUSS, J. and TZAFRIRI, L., Classical Banach Spaces, Vol. H, Ergebnisse der Mathe- 
matik 97, Springer-Verlag, Berlin, Heidelberg, New York, 1970. 

[10] MUCKENHOUPT, B., The equivalence of two conditions for weight functions, Studia Math., 
49, (1974), 101--106. 

Received February 22, 1983 J. Bourgain 
Department of Mathematics 
Vrije Universiteit Brussel 
Pleinlaan 2-F7 
1050 Brussels 


