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1. Introduction 

Let C be the complex plane. Then by a path y tending to co, we shall always mean 
a continuous mapping of  0_-<t<l into C with limt-~l ly(t)l= + ~ .  I f  u is sub- 
harmonic in C, put  M ( r ) = M ( r ,  u)=maxlzl= r u(z), 0 < r <  ~o. In [7] Huber  proved 
the following theorem: 

M(r)  
Theorem A. Le t  u be subharmonic in C and suppose that l im,_= log r + ~" 

Given 2 > 0  there exists a path, F(2), tending to ~ with 

f r~)e  -~" !dz[ < + ~.  

In Theorem A, Idz] denotes arc length. Also in [10] Talpur proved 

Theorem B. Let  u be subharmonic in C with 

exists a path F tending to ~ with 

u(z) 
log Iz[ 

M(~) 
limr~= log r + ~" 

- ~  a s  z ~ o n  F .  

Then there 

In this paper, we obtain the following generalization of Theorems A and B, 
which in fact solves a problem raised by Hayman in [5, p. 12]. 

M(r)  
Theorem 1. Let  u be subharmonic in C and suppose that l i m r ~  log r - + ~" 
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Then there exists a path F tending to to with 

(1.1) f e -zu Idz[ < + to for  each 2 > O, 

U(Z) 
- - - ~ o o  (1.2) logl z] ~ + o o  as z on F. 

The important feature of Theorem 1 is that F is independent of 2. In the special 
case u=log  Ifl where f i s  an entire function of finite order, Theorem 1 was proved 
by Zhang [12]. Our main tool is a version of Hall's lemma which may be stated 

Lemma A. Le tw ,  0 ~ w ~ l ,  be subharmonic in A={z:  [z[<l} with w ( 0 ) = l - 6 .  
Then 

(1.3) m(F) >-- 2re--el, 

where 
F =  {0E[0, 27:]: w(re i~  for  0 ~ r < l } ,  

and m denotes one dimensional Lebesgue measure. 

In Lemma A, as in the sequel, c denotes a positive absolute constant, not neces- 
sarily the same at each occurrence. Lemma A differs somewhat from Hall's lemma as 
it is stated for example in [3, ch. 12]. Related versions appear elsewhere (cf. [8, p. 13], 
[4, p. 193]). We shall sketch a proof in Section 5. 

Let d(G, H)  denote the distance between the sets G and H. Let L(y) denote the 
length of a curve y. Choose 60, 0<(50<1, so that m(F)>-rc in (1.3) when 0<6<_-6o . 
Using Lemma A and conformal mapping we obtain in Section 2, 

Lemma 1. Let v, 0<-v<_-I be subharmonic in a simply connected domain D. I f  

aED and v(a)>=l-6o,  then there is a path y f rom a to b in 019 (boundary o f  D)  
with y-{b}C_-D, v > 0  on y-{b},  and 

(1.4) L(y) <= cd(a, OD). 

In Section 3 we apply Lemma 1 inductively in certain components of {z: u(z)<c}  
to obtain Theorem 1. In Section 4 we indicate that our method also yields a slightly 
different form of a theorem due to Davis and Lewis [2] : 

Theorem C. Let D be a simply connected domain with 0ED. I f  u, 0-<_u<_-I is 
subharmonic in D and u(0)=e>0,  then there is a path y f rom 0 to a point b on OD 

with T - { b } ~ D ,  u > 0  on y-{b},  and 

(1.5) L(y) <- ce-Cd(O, OD). 
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Also in Section 4 we make a remark concerning the smallest exponent for which 
(1.5) is valid. 

Finally, we note that our method avoids all problems arising from the fact that 
u in Theorem I may not be continuous (see [10], [11]), since we work only in compo- 
nents of {z: u(z)<c}, which are open and simply connected. 

2. Proof  of  Lemma 1 

Let v, D be as in Lemma I. We assume, as we may, that a=OCD, since other- 
wise we change coordinate systems. Let f be the Riemann mapping function from 
A to D with f (0 )=0 ,  f ' ( 0 ) > 0 .  We put w = v o f  and apply Lemma A to get a corres- 
ponding set F with m(F)>=zc. We claim for some Oo~F that 

(2.1) ffo f (rd~ dr <= cd(O, OD). 

Once this claim is proved we can take v=f(rei%), 0<=r<l,  to get Lemma 1. To 
prove (2.1) we first show 

(2.2) f f a [f" (z)l If(z)I-1 dx dy ~ c. 

(2.2) is well known (see [9; Thin. 5.2]). For completeness we give the proof of  (2.2). 
f g'  f f  

Let g = f ' ( 0 i "  T h e n , - - = - - , g  f so it suffices to prove (2.2) for g. We shall need 

the basic estimate ([9, Thm. 1.6]), 

(2.3) lzl(X+lzl) -~ <-- Ig(z)l-<- lz l (a- lz l )  -~, z ~ .  

Now 

f f  ~ lg'(z)l Ig (z)l-1 dx dy = ff{,.~ <1~ ( ) as dy + f f  {~,~ ( ) ax dy ~- 11 -t- I2. 

From Schwarz's inequality and (2.3), 

l/z -1 dx dy) 112 I1 <: {ff,,o,-~l~ Ir (ff,,.,<., tg(~)l 

~ ( f f  Icl-laca,O~'~(ff~(l+lzr)~r~l-lgxay)l'~-~.= 
Similarly, 

,, <-_(ff(,.,>~, Ig'(z)l~lg(z)l-("/"dxdYl~"(ff~ lg(z)il/4dxdy)ll2~ C. lal>1} 

Thus (2.2) is valid. Next put 

h(e ' ~  sup (r -llf(rei~ O ~ O ~ 2n. 
0 < t - < l  
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We shall show that 

(2.4) m{0C[0, 2n]: h(d ~ >- Kf'(0)} <= cK -114, 0 < K < + o ~ .  

To do this we use (see [9, Thin. 5.1]), 

(2.5) sup (r-1/4 f ~  {f(reiO)ll/4 dO) <= cf'(O) 1/4. 
0 < r < l  

Hence, f(z__~) is in the Hardy space, H 1/4, and so by a theorem of Hardy--Littlewood 
z 

I [3, Thm. 1.9] its radial maximal function, h, is integrable to the T power, and satis- 
fies the same type of inequality as (2.5). This inequality and the usual weak type esti- 
mate imply (2.4). 

From (2.2) and (2.4) we see there exists OoEF with h(ei~ and 

If'(re'~ If(rei%)}-l r dr <- c. 
We conclude that 

f :  If'(re'~ dr <-_ h(e'~ fl~ If" (re'~ If(r#~ dr <= cf" (O). 

Since (see [9, Cor. 1.4]) 
�88 f '  (0) <= d (0, OD) ~ f"  (0), 

the proof of (2.1) and Lemma 1 is complete. 

3. Proof of Theorem 1 

Let u be as in Theorem 1 and choose a l ~ C  with u ( a l ) > - 0 .  Let 61 be such that 
( 1 - 6 1 ) z = 1 - 6 o ,  and let D1 be the component of {z: u(z)<( l -31)- lu(aO} con- 
taining al. Since u is upper semicontinuous, D1 is open, and it follows from the 
maximum principle for subharmonic functions that D1 is simply connected. Put 

Note that 

and 

v(z) = u ( a 0 - t m a x  [(u--filu(al))(1--31), 0 ] ( z ) ,  zED1. 

v(al) = ( 1 - 6 0  ~ = ( 1 - 6 0 ) ,  

V < ~_ [ ( 1 - - 6 1 ) - t - - 6 1 ] ( 1 - - 6 1 )  = 1 - - 6 1 + 6 ~  < 1. 

So by Lemma 1, there is a curve ?i joining al to a point as on 0D1 with 71 - {a~} ~ D1, 
v > 0  on 71-{a~}, and 

L (Yl) ~ cd (al, 0/90. 
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Since v > 0  on 7x-{a~} we see that 

u >= 61u(aO on 71-{az}. 

From the upper semicontinuity of u observe that 

u(a~) >- (1-61)-1u(al).  

We continue by induction. Suppose that Yl, ..-, ~n (BE 1) have been constructed 
with endpoints al,  as . . . . .  a , ,  a ,+l ,  respectively, where 7k joins ak to ak+l in Dk, 
the component of {z: U(Z)<(1--61)-lU(ak)} containing al, with ak+l~ODk. Also 
suppose that 

(3.1) L(?k) ~-- cd(ak, ODk), 1 <= k ~ n, 

(3.2) u>--flu(ak) on 7k--{ak+l}, l<----k<----n, 

(3.3) U(ak+O ~ (1--~l)--lU(ak), 1 <-- k <- n. 

Note from (3.3) that DiC=Dj, when i<=.i. We then let D,+I be the component 
containing al of {z: u(z)<(1-61)-lu(a,,+1)}. As previously, we see that Dn+ 1 is 
open and simply connected. Also by the induction hypothesis, a ,+l~D,+l .  Put 

v(z) = u(a,+O-Xmax [(1--61)(u--61u(a,+O), 0](z), zED,,+a. 

Then, v (a ,+ l )= l -6o  and v<_-l. Applying Lemma 1 we get a curve 7,+1 joining 
a,+l to a point a,+2EOD,+I with properties (3.1)--(3.2) for k = n + l .  (3.3) is 
also true for k = n +  1, since u is upper semicontinuous. We conclude by induction 
that (3.1)--(3.3) is valid for all positive integers. 

Put F = U ~ = I  7k. At  this point we indicate the significance of (3.1)--(3.3). 
From (3.3) and iteration we find that 

(3.4) U(ak+l) ~ (1--61)--kU(al), k = O, 1, 2, .... 

From (3.2) it follows that 

(3.5) u => 61(1--61)~ on 7k, k = 1, 2, .... 

Thus u is large on 7k when k is large. Moreover, (3.1) implies 7k is not "too long" 
as the next argument shows. 

To prove (1.1), given a positive integer n, let m=m(n)  be the least positive 
integer such that 

u(z) > n log Izl+M(1), 

at some point zED,,,-A. Then if k>-m there exists a sequence (z,)~ ~ in Dk with 
l im, .=  z,=~ in ODk, and 

n log Iz, I < u ( z 3 - M ( a )  <- (1--61)-Xu(ak)--M(1), 
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by the Phragm6n--Lindel6f  Maximum Principle, and the fact that  Dm~Dk for 
k>=rn. Thus for k~=m, 

(3.6) d(al, ODk) <= Iffl + lall --< exp {n-l[(1 --61)-1u(ak)--M(l)]}+ lal[. 

To estimate L('~k) we use (3.6), (3.1), and an iterative procedure. Then for k~m,  

(3.7) L(~k) <- cd(ak, OOk) <- c[lak--al] +d(al, ODk)] 

C [.~k--: Z (71) if" d (ax, tgOk) ] -~ c [Z (Tk- 1) -~xk---: Z (Vi) + d(al, ODk)] 

<= c [c {2k~.~ L (7i) + d (al, ODk -1)} q- 2 ki=l-3 L (7,) + d (al, ODk)] 

<= c (1 + c) [~k--12 L (Yi) + d (al ,  ODk)] <=... <= c (1 + c) k-1 d (al, ODk) 

<_-- (1 + c)kB exp [n-1(1 -- 61)-1 u (ak)], 

where 
B = [all +exp  [ -  n- lM(1)] .  

Given )~>0 we choose n=n (2 )  so large that  

612 
n -1(1 -- 81)-! =<: 

2 

Then from (3.7), (3.2), and (3.4) we have for k>-m(n), 

f e-a"[dzl <= Bexp[klog(l+c)+n-l(1--61)-lU(ak)--612u(ak)] 
k 

<= B exp [k log (1 + c) - �89 61 )~ (1 - 81) (l-k) u (al) ] . 

Summing this inequality, we get (1.1). 
To prove (1.2) we use (3.2) and (3.7). Then for k~-m(n) and zE71,, 

]zl -< lall + z~=lL(Y~) <= k(1 +c)kA exp [n-l(1--60-lU(ak)] 

<_-- k(1 +c)kA exp [n-l(1 --61)-16flu(z)], 
where 

A = B +  I.ll + Z?2;  

Taking logarithms and using (3.5) we conclude that  for zEF, 

Since n is arbitrary, (1.2) is true. 
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4. Proof of Theorem C 

Let u, D be as in Theorem C and let D1 be the component of  

Dn{z: u(z) -< (1--c50)-1u(0)} 

containing 0. As in the proof  of Theorem 1, we note that D1 is open and simply 
connected. Put  

v(z) = u(0) -1 (1-~0)u(z), z~D1. 

Then v satisfies the conditions of Lemma 1, so there is a path 71 joining z = 0  to a 

point al in 001 with 71-{al}C=D1, v > 0  on 71-{al}, and 

L(~x) <= cd(O, 0D1). 

I f  a~EOD, we quit. Otherwise, we let D2 be the component of 

{z: u(z) < (1-6o)-lu(al)} 

containing 0 and continue as in the proof  of Theorem 1. After at most k times, 
where k is the least positive integer such that 5(1-60)-k=>l,  that is, 

k - 1  ~ log (e)/[log (1-60)], 

k we obtain a path 7=  Ui=l y~, joining 0 to a point on 019 with u > 0  on 7. The length 
estimate in Lemma 1 implies, as in the proof  of (3.7), that 7 has length at most 

k(l  +c)k d(O, 019) <= ce-c d(O, 019). 

This concludes the proof  of Theorem C. 
We remark that for D=A and subharmonic functions of  the form 

u -- max [log I f  l, 0], f analytic in A, If[ <= e, 

it is permissible to take c = 3 for the exponent in Theorem C. Indeed by a generali- 
zation of a theorem of Garnet t  due to Dahlberg [1], there exists ff infinitely diffe- 
rentiable in A with 

8 
and If-ff l<_-]~.  From the coarea theorem it follows that 

f o  t ({ l~l  = t}) dt <- c f f  ~ (14'~1 + I~I) dx dy ~ c~ -~, 

so for some e', ~ -<e  < ~ - ,  

L({IVJl = 1+~ '})<  C8--3, 
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Next note that 

0E{If[ > 1 + ~ - 6  e} ~= {,~[ > l + d }  c= {lfl > 1 + ~ 6 ~ } ,  

since If-~bl<= --~ and j f ( 0 ) l = e * > l + e .  Hence the closure of  the component of  
16 

{l~l > l  + d }  containing zero, contains points in OA, and the part of  its boundary 
in A has length at most c8 -3. Using these facts it is easy to deduce the existence of  ? 
in Theorem C with 

L(?) --_< ce -3. 

5. Proof  of  Lemma A 

If  H ~ A ,  let H* be the projection (from z--0) of H - { 0 }  onto {z: [zl=l}. 
Let w be as in Lemma A and put ~k = 1 -  w, 

o = {z :  ~, (z) > �89 

We note that f2 is open since ~ is lower semicontinuous. Then for the proof  of  Lemma 
A it dearly suffices to show 

(5.1) m (f2*) <_- c r  (0) = c6. 

We first prove (5.1) when O is replaced by O1, where 

Ol -- o ~ { z :  ~ < lzt < ~}. 

We note that (5.l) for I21 can be derived from Hall's lemma using conformal mapping 
as in [3, ch. 12]. We prefer, however, to use Hall's technique and argue directly. To 
do this choose a finite collection, ax . . . .  , a, ,  of open circular arcs (about z=O) 
whose closures are contained in O1, with * * a i n a j = O ,  i # j ,  and �9 

Z ?  ( D > �89 ( 0 0  =1 m r m 

This choice is possible since any compact set contained in f2~' can be covered by 
the projections of  a finite number of  circular arcs in 121. 

Let 

g(z, ~) = log , z, ~EA, 

be Green's function for A with pole at ~EA. We shall need the estimates: 

(5.2) g(z,  ~) <= c O - [ z l ) O - [ ~ l )  lz_(l~ , z, (E~, 

(5.3) g(z, ~) <- clog (1-[z])  0 < ] z - r  I ~ l ( 1 - [ z l ) .  
tz- t ' z ;  
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Let 

dv(O = Idffl(1-[(I) -x, EC 0 ~,, 
1=1 

and dv(O =0,  otherwise. Put 

(z) = f . g(z, r av(O, 
We claim that 

(5.4) 

To prove (5.4), let 

zEA. 

tp ~ c .  

I n = f2 (n_ l ) ( l_ [z l )~ [z_~ j l~n ( l_ [z [  ) g(z, ~) dr(O, 

for n=0 ,  _ 1  . . . . .  Then from (5.2) it follows easily for n=>0 that In<=c2 -n, while 
for n < = - l ,  it follows from (5.3) that In=clnl2. Summing these inequalities we 
get (5.4). 

Next observe from (5.2) that liml~l_~ 1 ~0(z)=0, From this observation, (5.4), 
1 

the fact that 0 > - -  on the closure of U~ 1 ~ and the minimum principle tbr super- 
2 = 

harmonic functions we deduce q~<=c0. Thus, 

m (f2~') <= 2m a -<_ c log (1~1-1) dv ([) = ctp (0) --<_-. cO (0). 

This proves (5.1) for f21. 
Finally we show that (5.1) holds for I2~= f2-f2~. To do this we use the Riesz 

representation formula for positive superharmonic functions ([6, Thm. 6.18]) to 
write O=h+p,  where h->0, is the greatest harmonic minorant of 0 in A, and p 
is a Green's potential. From Harnack's inequality 

(5.5) h(z) <= ch(O) <= cO(O), lzl <= x 2. 

Also, if/1 is the positive Borel measure associated with p, then from (5.2), (5.3), 
1 

we deduce for lzl_<-5-, 

(5.6) p(z) = f1r g(z, r + f ~lr ~ g(z, r162 

4 
<= cflgl.~l log ~ d/~ (r + ~f~r ~1 (1-Ir d,(r  

= cq (z) + c flr (1 -[r d~, (0  ~- cq (z) + cO (0). 

Put 
~(e i~  sup q(rei~ 0<=0~_21r. 

O~_r~_~ 
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We shall show that 

(5.7) f2o'~ ?l(e i~ dO <: cq(O) <= cr (O). 

1 
To prove (5.7) we write for 0 < r - - -  

2 '  

q(re '~ : f + f 

The first two integrals are easily estimated above by cq(O). To estimate the third 
integral, put ff = oe '~, and 

J(e'~ = f,~l<~ log [4 ]e ' ~  ei~' 1-1] dt~(oei~,). 

Then, 
"f~<l~l<--~, log (4 Ire ' ~  ee'~l-1) dl~(oei~) 

3 cf~<lr176 ,z, < -~-- r}) 

cJ(e '~ + cq (0). 

Since the right-hand side of this inequality is independent of r it follows that 

7t (e '~ ~ cq (0) + cJ(e'~ 

Integrating this inequality with respect to 0 from 0 to 2n, and interchanging the order 
of integration we get (5.7). From (5.7) and the usual weak type estimates, it follows 
that 

rn{0E[0, 2n]: 71(d ~ ~ K} ~ K- lc~ (O) ,  0 < K <oo. 

Thus from (5.5) and (5.6), 

re(f2*) ~ m{06[0, 2n]: c71(ei~ ~ �89 ~ c~b(0). 

We conclude first that (5.1) holds for g22 and then from our earlier work that (5.1) 
holds for 12. The proof of Lemma A is now complete. 
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