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Introduction 

Let f = f + i f  be analytic in the unit disk U with f (0 )=0 .  It is known that 

(0.1) ItFllg =< Cpl[fllg, 1 < p < oo. 

The purpose of this note is to give a simple proof of this theorem of  M. Riesz, 
using superharmonic functions. For the related inequality 

(0.2) Ilfllg ' <- C~llf l lp,  1 < p < c o ,  

the best constant was determined by S. K. Picholides [3] and, independently, by 
B. Cole (cf. Gamelin [2] p. 144). (The relation between (0.1) and (0.2), with best 
constants, is discussed in Remark 2 at the end of Section 2.) A related result of 
Cole is given in Theorem 8.3 in [2]. Our proof will also give the best constant 
Cp for l < p < o o .  We do not use duality to go from the case l < p < 2  to the case 
2<:p< oo. In Section 3 we discuss similar inequalities for other plane domains. 

What the earlier work and our work have in common is the use of sub- or 
super-harmonic functions. What  is new in our approach is how we choose the 
superharmonic functions. 

A similar idea can be found as early as 1935 (cf. Section 4). In Section 5, we 
use this idea of  P. Stein to extend (0.1) to higher dimensions in the case l<p<=2. 

I gratefully acknowledge discussions with L. Carleson, C. Kenig and J. Peetre. 

1. The ease 1 < p < 2  

Let w=u+iv be a complex variable. If  o~=rcl2p, we define 

[ I w l P - ( e o s  ~) -p  lul ", ~ < [arg w] < 
G(w) = I - t a n  ~ Iwlp cos pO, 10[ < ~, where 0 = arg w, 

/ 

t - t a n  ~lwl" cos p(~-[OI), 0 <- ~ - I 0 1  < ~. 
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The function G is non-positive on the real axis. We claim that 

I. G is superharmonic in C. 
II. ]w[ p-(cos  c~)-Plu]P ~G(w), wE C. 

If  (II) is true, we have 
Iwl p <= (cos ~ ) -P lu l~+C(w) ,  

]F(rd~ p ~ (cos oO-plf(rei~ + G(F(rei~ 

Integrating over 0 and using the fact that GoF is superharmonic, we obtain 

]IFII g -<- (cos ~)-v IlfJlg + G(F(O)), 

where G(F(0)) <= 0. Thus, when 1 < p - : 2 ,  we have proved (0.1) with 

c .  = (cos (~/2p))-.. 

In a standard way, we can prove that we have found the best constant. Let 
s>p  and consider F~(z)=(( l+z) / (1-z) )  1/*, zEU, where F , = f ~ + ~  is defined 
to be real on the real axis. We have 

]l FIIIp p = (cos  (=/2s)) -p  I}f,}l~. 
This is clear since F1 maps U onto the sector {w: ]arg wl<rc/2s}. Letting s+p+, 
we see that (cos (zc/2p)) -v is the best constant. The associated extremal case is 
a mapping of U onto the sector {w: [arg w[<z/2p}. 

It remains to prove (I) and (II). 

Proof of(I).  We first note that the constants in the definition of G have been 
chosen in such a way that Gs G is harmonic in sectors containing the real 
axis. In the remaining sectors, 

(1.1) AG(w) = pZ [wlp-=_p(p_ 1)(cos ~)-P [u[ "-=. 

In these sectors, we have [cos 0[<cos e, and it follows that 

lul "-= -- [wl "-= [cos 0[ "-= > [wl "-= (cos ~) ' -~,  

~a(w) <= p= Iwl p-= (1 - (cos ~ ) - = ( p -  a)p-~)  <_- 0. 

In the last step, we used the inequality 

(1.2) cos 2 (rc/2p) <- (p-- 1)/p, 1 < p < 2. 

Since G(CI(C)  and AG<-O a.e., it follows from Green's theorem that for any 
nonnegative ~o(C o, we have 

ffcGa~o= ffcgaG<O.= 
Thus G is superharmonic in C and (I) is proved. 
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Proof of (II). It is sufficient to prove that 

(1.3) h(O) = (cos 0)P(cos ~ ) - P - l - c o s  pO tan ~ ~ 0, 0 ~ 0 <= ~. 

We note that h(e)=0.  We have h ' (a)=0,  where 

h t (O)/p = - (cos 0) p- 1 sin 0 (cos a)-P + tan :r sin pO. 

To prove (1.3), it is sufficient to prove that 

(1.4) h'(0) ~ 0, 0 < 0 < a .  

To prove (1.4), we multiply h'(O)/p by r p and obtain the function 

K(w) = tan ~ (Im w 0 - ( c o s  ~)-Pvu p-l, 0 < arg w < ~. 

It is easy to check that K(r)=K(rei')=O, r>0 .  Furthermoie,  

AK(w) =-(cose)-P(p-1)(p-2)uV-% > 0 ,  u > 0 ,  v > 0 ,  

and thus K is subharmonic in 0 < a r g  w<0c (note that l < p < 2 ! ) .  
The Phragm6n--Lindel6f theorem now shows that K(w)<=O in this sector. 

Since h'(O)=K(ei~ we obtain in particular (1.4) and we have finished the proof  
of (II). 

2. The case 2 < p < ~  

Put f l=~(1--p-1)/2=rc/2q,  where p - l+q-1 - - -1 ,  and define 

[wl ' - lu l ' ( cos /~) - , ,  lul > Iw[ cos/L 
J(w) = t tan fl Iwl p cos p(lO[-~/2), l l0 I-~/21 <: rc/2p. 

The function J is non-positive on the real axis. We claim that 

I. J is superharmonic in C. 

II. ]wiPe(cos fl)-~lulV+J(w). 

Repeating the argument in Section 1, we obtain 

IIFII~ < (cos fi)-P IIf}l~ + J(F(O)) 

where J(F(0))-<_0. Thus, when 2 < p <  oo, we have proved (0.1) with 

C v = (cos (rc/Zq)) -p. 

Also here, a standard argument using conformal mapping will show that no 
smaller constant will work in general in (0.1). 

Let  s>p and t--s(s-1) -1. Consider the conformal mapping F2=f2+~ 
of  U onto the sector {w: larg w--rc/2[<rc/2s} with F~(0)--i. We have 

(2.1) [I F2[[ • = (cos (~/2t))-" IIAII g. 
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In (0.1), we have assumed that Im F(0)=0.  Applying (0.1) to F=F~-F,a(O), 
we see that 

(2.2) (llFzllp-1) p <= IIF~-F2(0)H~ -<- Cpl[Aflp p. 

Combining (2.1) and (2.2), we obtain 

(cos (rt/2t)) - 1 -  IIAII~ 1 <_- C~,/P. 

When s-~p+ and t-~q-, ]tf, a)lp~oo and it follows that 

(cos (z~/2q)) -p <= Cp. 

Thus, we have found the best constant also when 2 < p < o o .  The associated 
extremal case is a mapping F of  U onto the sector {w: [arg w-z~/2[<z~/2p}. 
We note, however, that we have Im F(0)r  

The proofs of (I) and (II) are similar to what we did in the case 1 < p  <: 2. 

Proof of(I). We first note that JECI(C) and that J is harmonic in sectors 
containing the imaginaiy axis. In the remaining sectors. 

AJ(w) = p2 [wlp-2_p(p_ 1)[u[ 9-2 (cos/~)-' -<_ Iwf -2 (p2_p(p_  1)(cos fl)-2) ~ O, 

which is true since (put x = q  -1) 

cos 2 (rex/2) ~ x, 1/2 < x < 1. 

As before, it follows that J is supeiharmonic in C. 

Proof o f  (II). If  0 = ~c/2-~p, it is sufficient to prove that 

(2.3) k(~0) = (sin ~o)P(cos f l )-P+tan fl cos p~o-1 => 0, 0 < ~o < zc/2p = ~. 

We note tha t  kOr/2p)=O. We have k'(~p)=L(ei~)p, where 

L(w) = v p-1 u(cos f i ) -P - t an  fl (Im wP). 

As before L(r)=L(rei')=O and AL(w)>=O, 0<arg  w<~. Thus L is nonpositive 
in this sector, k'(~o) is negative in the interval (0, a) and (2.3) holds since k(rc/2p) =0. 

Remark 1. The following 'calculus' proof of (1.3) and (2.3) is due to W. H. J. 
Fuchs and to G. Wanby. 

The case 1 < p < 2 :  proof o f  (1.3). Since cospa=0 ,  (1.3) is equivalent to 

(2.4) (cos p 0 - c o s  pe)/((cos 0)P-(cos ~z)') --<_ (sin e)-l(cos 00 l-p, 0 <= 0 <_- e. 

Let g(O)=(sinpO)/(sin O(cosO)P-1). From a classical mean-value theorem, we 
see that the left hand member of (2.4) is equal to g(~) for some r a). If g is 
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an increasing function on (0, e), we have 

g(O <= g(e) = (sin ~)-l(cos @-P ,  

i.e., we have proved (2.4). 
To prove that g' is positive on (0, ~), we differentiate log g, use trigonometrical 

formulas for the double angle and find that 2 sin pO sin 0 cos 0 (g'(O)[g(O))= 
p(2-p)(S((2-p)O)-S(pO)); where S ( t )=s in  t/t. Since S is a decreasing function 
on (0, n/2) and p > 2 - p > 0 ,  we see that g '  is positive on (0, 0 0 and the proof  
of  (2.4) is complete. 

The ease p > 2 :  proof of(2.3). Since e+f l=l r /2 ,  (2.3) is equivalent to 

(cos pq~--cos p~)/((sin ~)P-(sin q~)') ~ (cos ~)-l(sin ~) t - ' ,  0 <= ~o <= ~. 

Let g(O)=(sinpO)/((sin O) p-1 cos 0). The left hand member of  our inequality is 
equal to g(~) for some ~E(~o, ~). The same type of argument as above will show 
that g is decreasing on (0, ~) and thus that 

g(~) => g(ct) = (cos ct)-t(sin ~)!-~. 

Remark2. When l < p < 2 ,  inequality (0.2) is a consequence of inequality 
P (0.1) provided that Cp and Cp are the best constants. In condensed notation, 

we write this statement as 

(2.5) (0.1)(Cp) :=~ (0,2)(C;), 1 < p < 2. 
:3 

To prove (2.5), we let ~E(0, 1) be given and consider the inequality 

(2.6) ( f  (f+g),)l,,>_ ( f  f , ) i / ,+( f  g,)~,,, 

which holds for nonnegative functions f and g (cf. Theorem 8, p. 26 in [1]). Using 
(2.6) with c~=p/2< 1, we see that 

(2.7) C~/p [Ifll~ --> IIFII~ =~ Ilfll~+llfll~. 

Choosing IlfllJllfllp close to (C~) a/p, we see that 

C~/" >= 1 +(C~) 2/p. 

It C~/"=(cos(zc/2p)) -1, it follows that (C'p)l/"~=tan(rc/2p). From the extremal 
case, it is clear that (C'p)a/P>=tan 0r/2p). We have proved (2.5). 

If  2 < p <  o% we have 

(2.7') [Irl[~ <--Ilfll~+[]fl]~, 

and the same kind of  argument will show that 

(2.8) (0.2)(C;) =, (0.1)(Cp), 2 <:p <co. 
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3. The Riesz theorem for more general domains 

For  a simply connected domain in the plane, (0.1) will hold with the HP-norm 
taken as integration over the boundary with respect to harmonic measure (with 
respect to a fixed point inside the domain) and with the same constants Cp as in 
the disk. This is clear from the Riemann mapping theorem since harmonic measure 
is a confmmal invariant. 

We now turn to domains which are not necessarily simply connected. Let 
D ~  U be a domain and let do) be harmonic measure on the boundary 019 with 
respect to a fixed point zoED. This means that for each function h which is harmonic 
in D and continuous on D uOD, we have 

h (Zo) = f o ~  h (z) do) (z). 

Let F = f + i f  be analytic in D, continuous in D u O D  and let f (z0)=0.  Then 
GoF and JoF  are superharmonic in D and we see that 

(3.1) fop  G(F(z))do)(z) <= a(F(zo)) <= o, f o,~ J(F(z))do)(z) <= J(F(z)) ~ O, 

f o~ iF(z)IP do)(z) <= c, f tf(z)l p do)(z), 1 < p < ~,. o, 

We can use the same constants Cp as in the disk. 
If  we assume more on the domain D, we can show that also in this case, we have 

found the best constants. Let us assume that for some a>O, we have 
{zE U: [ z -  1]< a}cD.  Let D, = D n  {zE U: [ z -  1]> l/n} and let do)n be the harmonic 
measure for D,  with respect to zoED, (which will be true for all large values of  n). 
Let s>p and let F1 be the conformal mapping of U onto the sector {w: iarg wI< 
~/2s} with f~(z0)=0. Let F~ be the conformal mapping of U onto the sector 
{w: targw-Tr/2t<zr/2s} with J~(z0)=l. I f  F is F1 or F2, wehave  

f o. iF(z)-if(zo)[, do),,(z) <= c p f  o. If(z) 1, do).(z). 

Letting n - ~ ,  we obtain 

(3.2) fay  IF(z) - i f  (zo)1" do) (z) <-_ Cp f o ,  If(z) l" do) (z). 

Let us first discuss the case 1 < p < 2  where we choose F = F ~ .  We note that 

0 .3)  IFl(ei~ cos &/2s) = [f~(ei~ 0 < [0l <- re. 

There exist constants bE(0, a), e and A such that for all sE(p,p+e),  we have 

[Fl(z)] <--- A, zEOD, [ z - l l  -> b > 0. 
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Let F=ODc~{z: ] z - l l < b }  which is a circular arc. From (3.2) we deduce that 

{ f  rlFx(e'~ d(.o(ei~ <= C1/p(~ f IA(e'~ do~(e'~ : P rid r 

Letting s ~ p + ,  the p-norms over F will tend to infinity and it follows that 
(cos (~/2p))~C it'. We have proved that Cp:(cos(rc/2p)) p is the best constant 
in the case 1 < p < 2 .  A similar argument will take care of the case 2_<-p< oo. 

We note that the argument showing that our constants are best possible holds 
as soon as the domain D is nice near one point on OU. 

4. A historical note 

The first example in the literature of  a subharmonic proof  of  the theorem of  
M. Riesz seems to be the proof  of  a result of  P. Stein [5] as presented by A. Zygmund 
in the first edition of  his book on Trigonometrical Series (cf. [6], p. 149), which 
gives (0.1) with C p = p / ( p - 1 )  in the case l < p < 2 .  To see this, we consider 
H ( w ) = l w l P - p ( p - 1 ) - l f u l P  which is superharmonic in C when l<p<=2.  This 
is clear since HCCI(C) and we have, for u r  

AH(w) : pZ [ w l P - 2 - p  2 [uip -2 ~ p2(]wlP-Z-]wl p-2) __- 0. 

Integrating the equality 

IF(relO)[p = p ( p -  1)-~[f (rei~ + n(F(re'~ 

we deduce from the fact that H is superharmonic that 

IIFlif, < P(P 1)-IlIfl]g-k H(F(O)) 

where H(F(O))=--[F(O)IP(P--1)-I<O. This concludes the short proof. 

5. The Riesz theorem in higher dimensions 

The argument quoted in Section 4 can be used to deduce an extension of  the 
Riesz inequality to higher dimensions in the case l < p < - 2 .  Let D be a bounded 
domain in Rd+l={x=(xo,  xl  . . . .  ,Xd):Xis and let dm be harmonic 
measure on 01) with respect to a fixed point PoCD. We consider F=(u0 ,  ul . . . . .  ua) 
and F0=(0, ul . . . . .  Ud) where the functions {UK}~ satisfy the generalized Cauchy--  
Riemann equations 

(5.1) ~ 3Un/OX k = O, Ouk/Ox j = Ouj/Oxk, 0 <= j, k ~ d, 
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in D. We also assume that  F is continuous in D u O D  and that  uo(Po)=0. Then, 
for l < p - < 2 ,  we have 

(5.2) f oo IF(x)lP d o ( x )  ~ C(p, d) f o" [Fo(x)[" do (x ) ,  

where we can take C(p ,  d ) = ( d + 2 ) / ( p - 1 ) .  

Let us assume that  we can find a constant  C = C ( p ,  d ) ~ l  such that  
G =  IFlv--C]Fo[ p is superharmonic in D. Then we have 

f oo a(x)do(x) <= 6(eo) <- o, 

and (5.2) will be proved. 
In the proof  that  G is superharmonic, we argue as E. Stein ([4], pp. 217--219). 

I f  F={uk}do and H={Vk}dO, we use the notat ion 

(F, H )  = ~ a  o UkVk, gradu  = {Ou/Oxj}do, [VF[ 2 -= ~ao lc3F/Ox21=. 

It follows f rom (5.1) that  A F = A F o = O ,  because 

(AF)k = .~ao O2Uk/OX ~ = (O/OXk)•ao OUj/i)Xj = O, k = O, 1, 2, ..., d. 

We have (cf. formula (19) p. 217 in [41) 

A IFI" <---- plFl p-~ IVF[ 2, 

A [Fol p = plFo[ p-a ( ( p - 2 ) ~ o  d (OFo/Oxj, Fo)2+ leo[ 2 IVFo[e). 

Once more using (5.1), we deduce 

(OUo/OXo) ~ = ( Z ~  Ouj/Oxj) 2 <= d IVFo[ 2, 

]grad Uo[ 2 <= d lVFol 2 +z~[  (Ouj/OXo) 2 <= (d+  1)lVFol ~, 

]VFI 2 = Igrad Uo12+ [VFol 2 <- (d+2)[VFol 2. 

Since l<p<=2 ,  we see that  

A [Fo[ v >- p[FolP-4((p-2)IFo] 2 IVFo[2 + [Fol 2 [VFo] 2) = p ( p - -  1)IFo[ v-2 ]VFol 2, 

A ([El v - ClFo[ v) <= p lFol , -2 ( lVN 2 - C ( p -  1)lVFol 2) 

<--- p[F~[ "-2 ]VFo]2(d + 2 -  C ( p -  1)). 

Choosing C = ( d + 2 ) / ( p  - 1), we see that  G is superharmonic and we have completed 
the p roof  of  (5.2). 

Remark.  I f  u is harmonic in D and continuous on D • OD, we can take 
F = g r a d u  and Fo=grad(~  Ou/Oxl . . . . .  OU/OXd). If  we assume that  
(Ou/Oxo)(Po)=O, it follows f rom (5.2) that  

f oo ]grad ulp d o ( x )  <= C(p, d) f o~, ]grad (~ u] v do (x ) ,  1 < p <= 2. 
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