A superharmonic proof of the M. Riesz conjugate function theorem

Matts Essén

Introduction

Let $f=f+i \tilde{f}$ be analytic in the unit disk U with $\tilde{f}(0)=0$. It is known that

$$
\begin{equation*}
\|F\|_{p}^{p} \leqq C_{p}\|f\|_{p}^{p}, \quad 1<p<\infty \tag{0.1}
\end{equation*}
$$

The purpose of this note is to give a simple proof of this theorem of M. Riesz, using superharmonic functions. For the related inequality

$$
\begin{equation*}
\|\tilde{f}\|_{p}^{p} \leqq C_{p}^{\prime}\|f\|_{p}^{p}, \quad 1<p<\infty \tag{0.2}
\end{equation*}
$$

the best constant was determined by S. K. Pichoiides [3] and, independently, by B. Cole (cf. Gamelin [2] p. 144). (The relation between (0.1) and (0.2), with best constants, is discussed in Remark 2 at the end of Section 2.) A related result of Cole is given in Theorem 8.3 in [2]. Our proof will also give the best constant C_{p} for $1<p<\infty$. We do not use duality to go from the case $1<p<2$ to the case $2<p<\infty$. In Section 3 we discuss similar inequalities for other plane domains.

What the earlier work and our work have in common is the use of sub- or super-harmonic functions. What is new in our approach is how we choose the superharmonic functions.

A similar idea can be found as early as 1935 (cf. Section 4). In Section 5, we use this idea of P . Stein to extend (0.1) to higher dimensions in the case $1<p \leqq 2$.

I gratefully acknowledge discussions with L. Carleson, C. Kenig and J. Peetre.

1. The case $1<p<2$

Let $w=u+i v$ be a complex variable. If $\alpha=\pi / 2 p$, we define

$$
G(w)=\left\{\begin{array}{l}
|w|^{p}-(\cos \alpha)^{-p}|u|^{p}, \alpha<|\arg w|<\pi-\alpha, \\
-\tan \alpha|w|^{p} \cos p \theta,|\theta|<\alpha, \quad \text { where } \quad \theta=\arg w, \\
-\tan \alpha|w|^{p} \cos p(\pi-|\theta|), 0 \leqq \pi-|\theta|<\alpha
\end{array}\right.
$$

The function G is non-positive on the real axis. We claim that
I. G is superharmonic in \mathbf{C}.
II. $|w|^{p}-(\cos \alpha)^{-p}|u|^{p} \leqq G(w), w \in \mathbf{C}$.

If (II) is true, we have

$$
\begin{aligned}
|w|^{p} & \leqq(\cos \alpha)^{-p}|u|^{p}+G(w), \\
\left|F\left(r e^{i \theta}\right)\right|^{p} & \leqq(\cos \alpha)^{-p}\left|f\left(r e^{i \theta}\right)\right|^{p}+G\left(F\left(r e^{i \theta}\right)\right)
\end{aligned}
$$

Integrating over θ and using the fact that $G \circ F$ is superharmonic, we obtain

$$
\|F\|_{p}^{p} \leqq(\cos \alpha)^{-p}\|f\|_{p}^{p}+G(F(0))
$$

where $G(F(0)) \leqq 0$. Thus, when $1<p<2$, we have proved (0.1) with

$$
C_{p}=(\cos (\pi / 2 p))^{-p}
$$

In a standard way, we can prove that we have found the best constant. Let $s>p$ and consider $F_{1}(z)=((1+z) /(1-z))^{1 / s}, z \in U$, where $F_{1}=f_{1}+i \tilde{f}_{1}$ is defined to be real on the real axis. We have

$$
\left\|F_{1}\right\|_{p}^{p}=(\cos (\pi / 2 s))^{-p}\left\|f_{1}\right\|_{p}^{p} .
$$

This is clear since F_{1} maps U onto the sector $\{w:|\arg w|<\pi / 2 s\}$. Letting $s \rightarrow p+$, we see that $(\cos (\pi / 2 p))^{-p}$ is the best constant. The associated extremal case is a mapping of U onto the sector $\{w:|\arg w|<\pi / 2 p\}$.

It remains to prove (I) and (II).
Proof of (I). We first note that the constants in the definition of G have been chosen in such a way that $G \in C^{1}(\mathbf{C}) . G$ is harmonic in sectors containing the real axis. In the remaining sectors,

$$
\begin{equation*}
\Delta G(w)=p^{2}|w|^{p-2}-p(p-1)(\cos \alpha)^{-p}|u|^{p-2} . \tag{1.1}
\end{equation*}
$$

In these sectors, we have $|\cos \theta|<\cos \alpha$, and it follows that

$$
\begin{aligned}
&|u|^{p-2}=|w|^{p-2}|\cos \theta|^{p-2}>|w|^{p-2}(\cos \alpha)^{p-2} \\
& \Delta G(w) \leqq p^{2}|w|^{p-2}\left(1-(\cos \alpha)^{-2}(p-1) p^{-1}\right) \leqq 0
\end{aligned}
$$

In the last step, we used the inequality

$$
\begin{equation*}
\cos ^{2}(\pi / 2 p) \leqq(p-1) / p, \quad 1<p<2 \tag{1.2}
\end{equation*}
$$

Since $G \in C^{1}(\mathbf{C})$ and $\Delta G \leqq 0$ a.e., it follows from Green's theorem that for any nonnegative $\varphi \in C_{0}^{\infty}$, we have

$$
\iint_{\mathrm{C}} G \Delta \varphi=\iint_{\mathrm{C}} \varphi \Delta G \leqq 0
$$

Thus G is superharmonic in C and (I) is proved.

Proof of (II). It is sufficient to prove that

$$
\begin{equation*}
h(\theta)=(\cos \theta)^{p}(\cos \alpha)^{-p}-1-\cos p \theta \tan \alpha \geqq 0,0 \leqq \theta \leqq \alpha \tag{1.3}
\end{equation*}
$$

We note that $h(\alpha)=0$. We have $h^{\prime}(\alpha)=0$, where

$$
h^{\prime}(\theta) / p=-(\cos \theta)^{p-1} \sin \theta(\cos \alpha)^{-p}+\tan \alpha \sin p \theta
$$

To prove (1.3), it is sufficient to prove that

$$
\begin{equation*}
h^{\prime}(\theta) \leqq 0, \quad 0<\theta<\alpha \tag{1.4}
\end{equation*}
$$

To prove (1.4), we multiply $h^{\prime}(\theta) / p$ by r^{p} and obtain the function

$$
K(w)=\tan \alpha\left(\operatorname{Im} w^{p}\right)-(\cos \alpha)^{-p} v u^{p-1}, 0<\arg w<\alpha .
$$

It is easy to check that $K(r)=K\left(r e^{i \alpha}\right)=0, r>0$. Furthermore,

$$
\Delta K(w)=-(\cos \alpha)^{-p}(p-1)(p-2) u^{p-3} v>0, u>0, v>0
$$

and thus K is subharmonic in $0<\arg w<\alpha$ (note that $1<p<2$!).
The Phragmén-Lindelöf theorem now shows that $K(w) \leqq 0$ in this sector. Since $h^{\prime}(\theta)=K\left(e^{i \theta}\right) p$, we obtain in particular (1.4) and we have finished the proof of (II).

2. The case $2<p<\infty$

Put $\beta=\pi\left(1-p^{-1}\right) / 2=\pi / 2 q$, where $p^{-1}+q^{-1}=1$, and define

$$
J(w)=\left\{\begin{array}{l}
|w|^{p}-|u|^{p}(\cos \beta)^{-p},|u|>|w| \cos \beta \\
\tan \beta|w|^{p} \cos p(|\theta|-\pi / 2),||\theta|-\pi / 2| \leqq \pi / 2 p
\end{array}\right.
$$

The function J is non-positive on the real axis. We claim that
I. J is superharmonic in C.
II. $|w|^{p} \leqq(\cos \beta)^{-p}|u|^{p}+J(w)$.

Repeating the argument in Section 1, we obtain

$$
\|F\|_{p}^{p} \leqq(\cos \beta)^{-p}\|f\|_{p}^{p}+J(F(0))
$$

where $J(F(0)) \leqq 0$. Thus, when $2<p<\infty$, we have proved (0.1) with

$$
C_{p}=(\cos (\pi / 2 q))^{-p}
$$

Also here, a standard argument using conformal mapping will show that no smaller constant will work in general in (0.1).

Let $s>p$ and $t=s(s-1)^{-1}$. Consider the conformal mapping $F_{2}=f_{2}+i f_{2}$ of U onto the sector $\{w:|\arg w-\pi / 2|<\pi / 2 s\}$ with $F_{2}(0)=i$. We have

$$
\begin{equation*}
\left\|F_{2}\right\|_{p}^{p}=(\cos (\pi / 2 t))^{-p}\left\|f_{2}\right\|_{p}^{p} \tag{2.1}
\end{equation*}
$$

In (0.1), we have assumed that $\operatorname{Im} F(0)=0$. Applying (0.1) to $F=F_{2}-F_{2}(0)$, we see that

$$
\begin{equation*}
\left(\left\|F_{2}\right\|_{p}-1\right)^{p} \leqq\left\|F_{2}-F_{2}(0)\right\|_{p}^{p} \leqq C_{p}\left\|f_{2}\right\|_{p}^{p} \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2), we obtain

$$
(\cos (\pi / 2 t))^{-1}-\left\|f_{2}\right\|_{p}^{-1} \leqq C_{p}^{1 / p} .
$$

When $s \rightarrow p^{+}$and $t \rightarrow q_{-},\left\|f_{2}\right\|_{p} \rightarrow \infty$ and it follows that

$$
(\cos (\pi / 2 q))^{-p} \leqq C_{p}
$$

Thus, we have found the best constant also when $2<p<\infty$. The associated extremal case is a mapping F of U onto the sector $\{w:|\arg w-\pi / 2|<\pi / 2 p\}$. We note, however, that we have $\operatorname{Im} F(0) \neq 0$.

The proofs of (I) and (II) are similar to what we did in the case $1<p<2$.
Proof of (\mathbf{I}). We first note that $J \in C^{1}(\mathbf{C})$ and that J is harmonic in sectors containing the imaginaty axis. In the remaining sectors.

$$
\Delta J(w)=p^{2}|w|^{p-2}-p(p-1)|u|^{p-2}(\cos \beta)^{-p} \leqq|w|^{p-2}\left(p^{2}-p(p-1)(\cos \beta)^{-2}\right) \leqq 0,
$$

which is true since (put $x=q^{-1}$)

$$
\cos ^{2}(\pi x / 2) \leqq x, \quad 1 / 2<x<1
$$

As before, it follows that J is superharmonic in \mathbf{C}.
Proof of (II). If $\theta=\pi / 2-\varphi$, it is sufficient to prove that

$$
\begin{equation*}
k(\varphi)=(\sin \varphi)^{p}(\cos \beta)^{-p}+\tan \beta \cos p \varphi-1 \geqq 0,0<\varphi<\pi / 2 p=\alpha \tag{2.3}
\end{equation*}
$$

We note that $k(\pi / 2 p)=0$. We have $k^{\prime}(\varphi)=L\left(e^{i \varphi}\right) p$, where

$$
L(w)=v^{p-1} u(\cos \beta)^{-p}-\tan \beta\left(\operatorname{Im} w^{p}\right)
$$

As before $L(r)=L\left(r e^{i \alpha}\right)=0$ and $\Delta L(w) \geqq 0,0<\arg w<\alpha$. Thus L is nonpositive in this sector, $k^{\prime}(\varphi)$ is negative in the interval $(0, \alpha)$ and (2.3) holds since $k(\pi / 2 p)=0$.

Remark 1. The following 'calculus' proof of (1.3) and (2.3) is due to W. H. J. Fuchs and to G. Wanby.

The case $1<p<2$: proof of (1.3). Since $\cos p \alpha=0$, (1.3) is equivalent to

$$
\begin{equation*}
(\cos p \theta-\cos p \alpha) /\left((\cos \theta)^{p}-(\cos \alpha)^{p}\right) \leqq(\sin \alpha)^{-1}(\cos \alpha)^{1-p}, 0 \leqq \theta \leqq \alpha \tag{2.4}
\end{equation*}
$$

Let $g(\theta)=(\sin p \theta) /\left(\sin \theta(\cos \theta)^{p-1}\right)$. From a classical mean-value theorem, we see that the left hand member of (2.4) is equal to $g(\xi)$ for some $\xi \in(\theta, \alpha)$. If g is
an increasing function on $(0, \alpha)$, we have

$$
g(\xi) \leqq g(\alpha)=(\sin \alpha)^{-1}(\cos \alpha)^{1-p}
$$

i.e., we have proved (2.4).

To prove that g^{\prime} is positive on $(0, \alpha)$, we differentiate $\log g$, use trigonometrical formulas for the double angle and find that $2 \sin p \theta \sin \theta \cos \theta\left(g^{\prime}(\theta) / g(\theta)\right)=$ $p(2-p)(S((2-p) \theta)-S(p \theta))$; where $S(t)=\sin t / t$. Since S is a decreasing function on $(0, \pi / 2)$ and $p>2-p>0$, we see that g^{\prime} is positive on $(0, \alpha)$ and the proof of (2.4) is complete.

The case $p>2$: proof of (2.3). Since $\alpha+\beta=\pi / 2$, (2.3) is equivalent to

$$
(\cos p \varphi-\cos p \alpha) /\left((\sin \alpha)^{p}-(\sin \varphi)^{p}\right) \geqq(\cos \alpha)^{-1}(\sin \alpha)^{1-p}, 0 \leqq \varphi \leqq \alpha
$$

Let $g(\theta)=(\sin p \theta) /\left((\sin \theta)^{p-1} \cos \theta\right)$. The left hand member of our inequality is equal to $g(\xi)$ for some $\xi \in(\varphi, \alpha)$. The same type of argument as above will show that g is decreasing on $(0, \alpha)$ and thus that

$$
g(\xi) \geqq g(\alpha)=(\cos \alpha)^{-1}(\sin \alpha)^{1-p}
$$

Remark 2. When $1<p<2$, inequality (0.2) is a consequence of inequality (0.1) provided that C_{p}^{\prime} and C_{p} are the best constants. In condensed notation, we write this statement as

$$
\begin{equation*}
(0.1)\left(C_{p}\right) \Rightarrow(0.2)\left(C_{p}^{\prime}\right), \quad 1<p<2 \tag{2.5}
\end{equation*}
$$

To prove (2.5), we let $\alpha \in(0,1)$ be given and consider the inequality

$$
\begin{equation*}
\left(\int(f+g)^{\alpha}\right)^{1 / \alpha} \geqq\left(\int f^{\alpha}\right)^{1 / \alpha}+\left(\int g^{\alpha}\right)^{1 / \alpha} \tag{2.6}
\end{equation*}
$$

which holds for nonnegative functions f and g (cf. Theorem 8, p. 26 in [1]). Using (2.6) with $\alpha=p / 2<1$, we see that

$$
\begin{equation*}
C_{p}^{2 / p}\|f\|_{p}^{2} \geqq\|F\|_{p}^{2} \geqq\|f\|_{p}^{2}+\|\tilde{f}\|_{p}^{2} \tag{2.7}
\end{equation*}
$$

Choosing $\|\tilde{f}\|_{p} /\|f\|_{p}$ close to $\left(C_{p}^{\prime}\right)^{1 / p}$, we see that

$$
C_{p}^{2 / p} \geqq 1+\left(C_{p}^{\prime}\right)^{2 / p}
$$

If $C_{p}^{1 / p}=(\cos (\pi / 2 p))^{-1}$, it follows that $\left(C_{p}^{\prime}\right)^{1 / p} \leqq \tan (\pi / 2 p)$. From the extremal case, it is clear that $\left(C_{p}^{\prime}\right)^{1 / p} \geqq \tan (\pi / 2 p)$. We have proved (2.5).

If $2<p<\infty$, we have

$$
\|F\|_{p}^{2} \leqq\|f\|_{p}^{2}+\|\tilde{f}\|_{p}^{2}
$$

and the same kind of argument will show that

$$
\begin{equation*}
(0.2)\left(C_{p}^{\prime}\right) \Rightarrow(0.1)\left(C_{p}\right), \quad 2<p<\infty \tag{2.8}
\end{equation*}
$$

3. The Riesz theorem for more general domains

For a simply connected domain in the plane, (0.1) will hold with the H^{p}-norm taken as integration over the boundary with respect to harmonic measure (with respect to a fixed point inside the domain) and with the same constants C_{p} as in the disk. This is clear from the Riemann mapping theorem since harmonic measure is a conformal invariant.

We now turn to domains which are not necessarily simply connected. Let $D \subset U$ be a domain and let $d \omega$ be harmonic measure on the boundary ∂D with respect to a fixed point $z_{0} \in D$. This means that for each function h which is harmonic in D and continuous on $D \cup \partial D$, we have

$$
h\left(z_{0}\right)=\int_{\partial D} h(z) d \omega(z)
$$

Let $F=f+i f$ be analytic in D, continuous in $D \cup \partial D$ and let $f\left(z_{0}\right)=0$. Then $G \circ F$ and $J \circ F$ are superharmonic in D and we see that

$$
\begin{gather*}
\int_{\partial D} G(F(z)) d \omega(z) \leqq G\left(F\left(z_{0}\right)\right) \leqq 0, \quad \int_{\partial D} J(F(z)) d \omega(z) \leqq J(F(z)) \leqq 0 \tag{3.1}\\
\int_{\partial D}|F(z)|^{p} d \omega(z) \leqq C_{p} \int_{\partial D}|f(z)|^{p} d \omega(z), \quad 1<p<\infty
\end{gather*}
$$

We can use the same constants C_{p} as in the disk.
If we assume more on the domain D, we can show that also in this case, we have found the best constants. Let us assume that for some $a>0$, we have $\{z \in U:|z-1|<a\} \subset D$. Let $D_{n}=D \cap\{z \in U:|z-1|>1 / n\}$ and let $d \omega_{n}$ be the harmonic measure for D_{n} with respect to $z_{0} \in D_{n}$ (which will be true for all large values of n). Let $s>p$ and let F_{1} be the conformal mapping of U onto the sector $\left\{w: \mid \arg w_{1}<\right.$ $\pi / 2 s\}$ with $\tilde{f}_{1}\left(z_{0}\right)=0$. Let F_{2} be the conformal mapping of U onto the sector $\{w:|\arg w-\pi / 2|<\pi / 2 s\}$ with $\tilde{f}_{2}\left(z_{0}\right)=1$. If F is F_{1} or F_{2}, we have

$$
\int_{\partial D_{n}}\left|F(z)-i \tilde{f}\left(z_{0}\right)\right|^{p} d \omega_{n}(z) \leqq C_{p} \int_{\partial D_{n}}|f(z)|^{p} d \omega_{n}(z)
$$

Letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\int_{\partial D}\left|F(z)-i f\left(z_{0}\right)\right|^{p} d \omega(z) \leqq C_{p} \int_{\partial D}|f(z)|^{p} d \omega(z) \tag{3.2}
\end{equation*}
$$

Let us first discuss the case $1<p<2$ where we choose $F=F_{1}$. We note that

$$
\begin{equation*}
\left|F_{1}\left(e^{i \theta}\right)\right| \cos (\pi / 2 s)=\left|f_{1}\left(e^{i \theta}\right)\right|, 0<|\theta| \leqq \pi \tag{3.3}
\end{equation*}
$$

There exist constants $b \in(0, a), c$ and A such that for all $s \in(p, p+c)$, we have

$$
\left|F_{1}(z)\right| \leqq A, \quad z \in \partial D, \quad|z-1| \geqq b>0 .
$$

Let $\Gamma=\partial D \cap\{z:|z-1|<b\}$ which is a circular arc. From (3.2) we deduce that

$$
\left\{\int_{\Gamma}\left|F_{1}\left(e^{i \theta}\right)\right|^{p} d \omega\left(e^{i \theta}\right)\right\}^{1 / p}-A \leqq C_{p}^{1 / p}\left(\left\{\int_{\Gamma}\left|f_{1}\left(e^{i \theta}\right)\right|^{p} d \omega\left(e^{i \theta}\right)\right\}^{1 / p}+A\right)
$$

Letting $s \rightarrow p+$, the p-norms over Γ will tend to infinity and it follows that $(\cos (\pi / 2 p)) \leqq C_{p}^{1 / p}$. We have proved that $C_{p}=(\cos (\pi / 2 p))^{p}$ is the best constant in the case $1<p<2$. A similar argument will take care of the case $2 \leqq p<\infty$.

We note that the argument showing that our constants are best possible holds as soon as the domain D is nice near one point on ∂U.

4. A historical note

The first example in the literature of a subharmonic proof of the theorem of M. Riesz seems to be the proof of a result of P. Stein [5] as presented by A. Zygmund in the first edition of his book on Trigonometrical Series (cf. [6], p. 149), which gives (0.1) with $C_{p}=p /(p-1)$ in the case $1<p<2$. To see this, we consider $H(w)=|w|^{p}-p(p-1)^{-1}|u|^{p}$ which is superharmonic in \mathbf{C} when $1<p \leqq 2$. This is clear since $H \in C^{1}(\mathbf{C})$ and we have, for $u \neq 0$,

$$
\Delta H(w)=p^{2}|w|^{p-2}-p^{2}|u|^{p-2} \leqq p^{2}\left(|w|^{p-2}-|w|^{p-2}\right)=0 .
$$

Integrating the equality

$$
\left|F\left(r e^{i \theta}\right)\right|^{p}=p(p-1)^{-1}\left|f\left(r e^{i \theta}\right)\right|^{p}+H\left(F\left(r e^{i \theta}\right)\right)
$$

we deduce from the fact that H is superharmonic that

$$
\|F\|_{p}^{p} \leqq p(p-1)^{-1}\|f\|_{p}^{p}+H(F(0))
$$

where $H(F(0))=-|F(0)|^{p}(p-1)^{-1}<0$. This concludes the short proof.

5. The Riesz theorem in higher dimensions

The argument quoted in Section 4 can be used to deduce an extension of the Riesz inequality to higher dimensions in the case $1<p \leqq 2$. Let D be a bounded domain in $\mathbf{R}^{d+1}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{d}\right): x_{i} \in \mathbf{R}, 0 \leqq i \leqq d\right\}$ and let $d \omega$ be harmonic measure on ∂D with respect to a fixed point $P_{0} \in D$. We consider $F=\left(u_{0}, u_{1}, \ldots, u_{d}\right)$ and $F_{0}=\left(0, u_{1}, \ldots, u_{d}\right)$ where the functions $\left\{u_{k}\right\}_{0}^{d}$ satisfy the generalized CauchyRiemann equations

$$
\begin{equation*}
\Sigma_{0}^{d} \partial u_{k} / \partial x_{k}=0, \partial u_{k} / \partial x_{j}=\partial u_{j} / \partial x_{k}, \quad 0 \leqq j, k \leqq d \tag{5.1}
\end{equation*}
$$

in D. We also assume that F is continuous in $D \cup \partial D$ and that $u_{0}\left(P_{0}\right)=0$. Then, for $1<p \leqq 2$, we have

$$
\begin{equation*}
\int_{\partial D}|F(x)|^{p} d \omega(x) \leqq C(p, d) \int_{\partial D}\left|F_{0}(x)\right|^{p} d \omega(x) \tag{5.2}
\end{equation*}
$$

where we can take $C(p, d)=(d+2) /(p-1)$.
Let us assume that we can find a constant $C=C(p, d) \geqq 1$ such that $G=|F|^{p}-C\left|F_{0}\right|^{p}$ is superharmonic in D. Then we have

$$
\int_{\partial D} G(x) d \omega(x) \leqq G\left(P_{0}\right) \leqq 0,
$$

and (5.2) will be proved.
In the proof that G is superharmonic, we argue as E. Stein ([4], pp. 217-219). If $F=\left\{u_{k}\right\}_{0}^{d}$ and $H=\left\{v_{k}\right\}_{0}^{d}$, we use the notation

$$
(F, H)=\sum_{0}^{d} u_{k} v_{k}, \quad \operatorname{grad} u=\left\{\partial u / \partial x_{j}\right\}_{0}^{d}, \quad|\nabla F|^{2}=\sum_{0}^{d}\left|\partial F / \partial x_{j}\right|^{2} .
$$

It follows from (5.1) that $\Delta F=\Delta F_{0}=0$, because

$$
(\Delta F)_{k}=\sum_{0}^{d} \partial^{2} u_{k} / \partial x_{j}^{2}=\left(\partial / \partial x_{k}\right) \sum_{0}^{d} \partial u_{j} / \partial x_{j}=0, \quad k=0,1,2, \ldots, d
$$

We have (cf. formula (19) p. 217 in [4])

$$
\begin{gathered}
\Delta|F|^{p} \leqq p|F|^{p-2}|\nabla F|^{2}, \\
\Delta\left|F_{0}\right|^{p}=p\left|F_{0}\right|^{p-4}\left((p-2) \sum_{0}^{d}\left(\partial F_{0} / \partial x_{j}, F_{0}\right)^{2}+\left|F_{0}\right|^{2}\left|\nabla F_{0}\right|^{2}\right)
\end{gathered}
$$

Once more using (5.1), we deduce

$$
\begin{gathered}
\left(\partial u_{0} / \partial x_{0}\right)^{2}=\left(\sum_{1}^{d} \partial u_{j} / \partial x_{j}\right)^{2} \leqq d\left|\nabla F_{0}\right|^{2} \\
\left|\operatorname{grad} u_{0}\right|^{2} \leqq d\left|\nabla F_{0}\right|^{2}+\sum_{1}^{d}\left(\partial u_{j} / \partial x_{0}\right)^{2} \leqq(d+1)\left|\nabla F_{0}\right|^{2} \\
|\nabla F|^{2}=\left|\operatorname{grad} u_{0}\right|^{2}+\left|\nabla F_{0}\right|^{2} \leqq(d+2)\left|\nabla F_{0}\right|^{2}
\end{gathered}
$$

Since $1<p \leqq 2$, we see that

$$
\begin{gathered}
\Delta\left|F_{0}\right|^{p} \geqq p\left|F_{0}\right|^{p-4}\left((p-2)\left|F_{0}\right|^{2}\left|\nabla F_{0}\right|^{2}+\left|F_{0}\right|^{2}\left|\nabla F_{0}\right|^{2}\right)=p(p-1)\left|F_{0}\right|^{p-2}\left|\nabla F_{0}\right|^{2} \\
\Delta\left(|F|^{p}-C\left|F_{0}\right|^{p}\right) \leqq p\left|F_{0}\right|^{p-2}\left(|\nabla F|^{2}-C(p-1)\left|\nabla F_{0}\right|^{2}\right) \\
\leqq p\left|F_{0}\right|^{p-2}\left|\nabla F_{0}\right|^{2}(d+2-C(p-1)) .
\end{gathered}
$$

Choosing $C=(d+2) /(p-1)$, we see that G is superharmonic and we have completed the proof of (5.2).

Remark. If u is harmonic in D and continuous on $D \cup \partial D$, we can take $F=\operatorname{grad} u \quad$ and $\quad F_{0}=\operatorname{grad}^{(0)} u=\left(0, \partial u / \partial x_{1}, \ldots, \partial u / \partial x_{d}\right)$. If we assume that $\left(\partial u / \partial x_{0}\right)\left(P_{0}\right)=0$, it follows from (5.2) that

$$
\int_{\partial D}|\operatorname{grad} u|^{p} d \omega(x) \leqq C(p, d) \int_{\partial D}\left|\operatorname{grad}^{(0)} u\right|^{p} d \omega(x), \quad 1<p \leqq 2
$$

References

1. Beckenbach, E. F. and Bellman, R., Inequalities, Ergebnisse der Mathematik 30, SpringerVerlag 1965.
2. Gamelin, T. W., Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Series 32, Cambridge Univ. Press 1978.
3. Pichorides, S. K., On the best value of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165-179.
4. Stein, E. M., Singular integrals and differentiability properties of functions, Princeton University Press 1970.
5. Stein, P., On a theorem of M. Riesz. J. London Math. Soc. 8 (1933), 242-247.
6. Zygmund, A., Trigonometrical series, Monografje Matematyczne V, Warszawa-Lwów 1935.

Received May 18, 1983

Matts Essén
Department of Mathematics
University of Uppsala
Thunbergsvägen 3
S-752 38 Uppsala
Sweden

