H^{∞} +BUC does not have the best approximation property

Carl Sundberg

§ 1. Introduction

Let L^{∞} denote the usual Lebesgue space of functions on the unit circle [|z|=1] and let H^{∞} denote the bounded analytic functions on the unit disc [|z|<1]. By identifying functions in H^{∞} with their boundary values we may regard H^{∞} as a closed subalgebra of L^{∞} . The closed algebras between H^{∞} and L^{∞} are called *Douglas algebras* and have been studied extensively ([3], [4], [5], [9], [11], [14], [15]). For background and general information on Douglas algebras see [6] and [13].

Let C denote the space of continuous functions on the unit circle. It was shown by Sarason [10] that the linear span $H^{\infty}+C$ is a Douglas algebra. In fact it is the smallest such algebra properly containing H^{∞} ; see [7]. In [12], Sarason asked whether $H^{\infty}+C$ has the *best approximation property*, i.e. whether given any $f \in L^{\infty}$ there existed a $g \in H^{\infty}+C$ such that

$$\|f-g\|_{\infty} = \mathrm{d}\left(f, H^{\infty}+C\right) = \inf_{\overline{\mathsf{def}}} \inf \{\|f-g\|_{\infty} \colon g \in H^{\infty}+C\}.$$

This question was answered affirmatively by Axler, Berg, Jewell, and Shields [1], who then raised the question of whether all Douglas algebras possess this property.

A subsequent paper of Luecking [8] provided a simpler proof of the $H^{\infty}+C$ case using the theory of *M*-ideals. In an unpublished manuscript, Marshall and Zame give a very simple proof of this case and also give many interesting examples of Douglas algebras possessing the best approximation property. Another such example is given by Younis in [16].

In this paper we answer the question for general Douglas algebras negatively, our counterexample being a certain "natural" Douglas algebra. In order to describe and work with this algebra it is convenient to move over to the real line **R** and the upper half plane $\Delta = \{z = x + iy : x, y \in \mathbf{R}, y > 0\}$. Henceforth in this paper L^{∞} and H^{∞} will refer to the corresponding function spaces on **R** and Δ . Let BUC denote the space of bounded uniformly continuous functions on **R**. It is shown by Sarason [11] that H^{∞} +BUC is a Douglas algebra, and this is the algebra which we will show fails the best approximation property.

The following definitions and notations will be used. For $f \in L^{\infty}$ and $z = x + iy \in \Delta$ we define the Poisson integral of f at z by

$$P[f](z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} f(t) dt;$$

then P[f] is harmonic in Δ with boundary value f, and if $f \in H^{\infty}$ then P[f](z) = f(z). For $z, w \in \Delta$ we define the pseudo-hyperbolic distance between z and w by $\varrho(z-w) = \left|\frac{z-w}{z-\overline{w}}\right|$. For an interval $I \subset \mathbf{R}$ and a function f on \mathbf{R} we define $\operatorname{Var}_{I}(f) = \sup_{x_{1}, x_{2} \in I} |f(x_{1}) - f(x_{2})|$ and $||f||_{I} = \sup_{x \in I} |f(x)|$. We denote the length of I by |I|. Finally we will use the following facts, the first of which is shown by Sarason in [11] and the second of which is an easy exercise with the Poisson integral formula: if $f, g \in H^{\infty} + BUC$ then

$$\sup_{\mathbf{x}\in\mathbf{R}}|P[fg](x+iy)-P[f](x+iy)P[g](x+iy)|\to 0 \quad \text{as} \quad y\to 0;$$

and if $f \in BUC$ and $0 < \varkappa < 1$ then

 $\sup \{ |P[f](w) - P[f](z)| \colon \varrho(z, w) \le \varkappa \} \to 0 \quad \text{as} \quad \text{Im} \, z \to 0.$

Other information about H^{∞} +BUC is developed in [11] and in Exercise 8, Chapter IX of [6].

It is a pleasure to express my gratitude to the Mittag—Leffler Institute for their hospitality and support during the time this research was conducted.

§ 2. Theorem. H^{∞} + BUC does not have the best approximation property.

Proof. First, a bit of motivation for the construction. Returning to the unit circle for a moment, Marshall and Zame pointed out that $(H^{\infty}+C)/H^{\infty}$ has continuous best approximations, i.e. given $f \in L^{\infty}$ such that $d(f, H^{\infty}) \leq 1+\varepsilon$ and $d(f, H^{\infty}+C)=1$, there exists $h \in C$ such that $d(f-h, H^{\infty})=1$ and $||h||_{\infty} \leq \delta(\varepsilon)$, where $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$. We now will do a preliminary construction whose essential point is that this property fails in H^{∞} +BUC, and the theorem will then follow easily.

Let $\varepsilon, R > 8, \eta$ be given positive numbers — we are thinking of ε and η as being small and R as being large. For k=1, 2, ... we pick widely spaced intervals $I_k \subset \mathbf{R}$, all of length η . Let $I_k \subset \tilde{I}_k \subset \tilde{\tilde{I}}_k$ where I_k, \tilde{I}_k , and $\tilde{\tilde{I}}_k$ have the same midpoint, $|\tilde{I}_k|/|I_k| \to \infty$ rapidly as $k \to \infty$, and $|\tilde{\tilde{I}}_k| - |\tilde{I}_k|$ is constant. We choose all these intervals so that the $\tilde{\tilde{I}}_k$'s are disjoint. Denote the midpoint of I_k by x_k . Pick \varkappa very close to 1, $0 < \varkappa < 1$, pick $\delta_k > 0$ to be small numbers such that $\delta_k \to 0$ as $k \to \infty$, and define $l_k = \{x + i\delta_k : x \in I_k\}$. Let $\{z_{kn}\}_{n=-N_k,\dots,N_k}$ be a maximal set of points on the line l_k having pseudohyperbolic separation of adjacent points being equal to \varkappa , and such that $z_{k0} = x_k + i\delta_k$. Thus the points $\{z_{kn}\}$ are distributed symmetrically with respect to the line Re $z = x_k$. Define the finite Blaschke product b_k with these points as zeros: $b_k(z) = \prod_{n=-N_k}^{N_k} \frac{z - z_{kn}}{z - \overline{z_{kn}}}$. Then from the symmetry of

the $\{z_{kn}\}$ it follows easily that $b_k(x_k+iy)>0$ for all y>0. Define $w_k=x_k+i\frac{11}{320R}\eta$.

Now set $b = \prod_{k=1}^{\infty} b_k$, $S(z) = \prod_{k=1}^{\infty} \frac{z - w_k}{z - \overline{w}_k}$. Standard methods easily show that

both products converge uniformly on compact subsets of $\Delta \cup \mathbf{R}$ and define Blaschke products if the intervals are widely enough dispersed. Clearly $S \in BUC$. It is also easy to check that if the I_k 's are widely dispersed then $|1-b(w_k)| < 1 \forall k$, and if in addition $|\tilde{I}_k|/|I_k| \rightarrow \infty$ fast enough (where "fast enough" will depend on the choice of the δ_k 's), then $|1-b(x)| < 1/2 \varepsilon$ for $x \notin \cup \tilde{I}_k$.

If \varkappa is chosen close enough to 1, the δ_k 's are all small enough, and the I_k 's are widely enough dispersed, then the set $\{w_k\} \cup \{z_{kn}\}$ will be an interpolating sequence with interpolation constant close to 1 (see [2] and [6], Chapter VII); what this means for us is that if complex numbers α_k, β_{kn} are given for $k \ge 1$ and $-N_k \le n \le N_k$ and $|\alpha_k| \le 1, |\beta_{kn}| \le 1$, then there exists $\varphi \in H^\infty$ such that $\|\varphi\|_{\infty} \le 1 + \varepsilon/2$ and $\varphi(w_k) = \alpha_k, \varphi(z_{kn}) = \beta_{kn}$.

Because of the conditions imposed on the lengths of the intervals I_k , \tilde{I}_k , $\tilde{\tilde{I}}_k$, we can find $\chi \in BUC$ such that $0 \le \chi \le 1$, $\chi \ge 1$ on $\bigcap_k \tilde{I}_k$, and $\chi \ge 0$ off $\bigcap_k \tilde{\tilde{I}}_k$. Then

$$d(\chi \overline{S} \overline{b} - \chi \overline{S}, H^{\infty}) = d(\chi - \chi b, SbH^{\infty})$$

$$\leq ||(1-\chi)(1-b)||_{\infty} + d(1-b, SbH^{\infty}).$$

The first term is bounded by $1/2\varepsilon$ since if $x \in \mathbb{R}$, $1-\chi(x) \neq 0$, then $x \notin \bigcap_k \tilde{I}_k$, hence $|1-b(x)| < \varepsilon/2$. To estimate the second term we write

$$d(1-b, SbH^{\infty}) = \inf_{g \in H^{\infty}} ||1-b-Sbg||_{\infty}$$

= $\inf \{ ||\varphi||_{\infty} : \varphi(w_k) = 1-b(w_k), \varphi(z_{kn}) = 1-b(z_{kn}) = 1 \} \leq 1 + \frac{\varepsilon}{2}$

by the above comments and the fact that $|1-b(w_k)| < 1$. Hence $d(\chi \overline{S}\overline{b} - \chi \overline{S}, H^{\infty}) < 1+\varepsilon$.

What we have done so far has been to start with a function having distance 1 from H^{∞} , namely $\chi \overline{Sb}$, and then to change it by the large BUC function $\chi \overline{S}$ to get a function whose distance from H^{∞} is only slightly greater than 1. The point of what we will do next is that it is impossible to get back to a function having

distance 1 from H^{∞} by adding a small BUC function. Actually we need a local version of this fact.

Assume, to get a contradiction, that there is a function $h \in BUC$ and a $g \in H^{\infty}$ such that $||h||_{\infty} \leq R$, $||g||_{\infty} \leq R$, $\operatorname{Var}_{I_k}(h) < 1/2$ for all k, and $||\chi \overline{S}\overline{b} - \chi \overline{S} - h - g||_{I_k} \leq 1$ for all k. Define $h_k = h - h(x_k)$, $g_k = g + h(x_k)$. Then $||h_k||_{\infty} \leq 2R$, $||g_k||_{\infty} \leq 2R$, $||h_k||_{I_k} \leq 1/2$, and

$$\|\chi \bar{S}\bar{b} - \chi \bar{S} - h - g\|_{I_k} = \|\bar{S}\bar{b} - \bar{S} - h_k - g_k\|_{I_k} = \|1 - b - Sbh_k - Sbg_k\|_{I_k},$$

so that $||1-b-Sbh_k-Sbg_k||_{I_k} \leq 1$. Fixing attention on a point z_{kn} we write

$$1 - b - Sbh_k - Sbg_k = 1 - b - P[h_k](z_{kn})Sb - g_kSb - [h_k - P[h_k](z_{kn})]Sb.$$

Now $h_k - P[h_k](z_{kn}) = h - P[h](z_{kn})$, and since $h \in BUC$ and $\operatorname{Im} z_{kn} = \delta_k \to 0$ as $k \to \infty$ we have for z satisfying $\varrho(z, z_{kn}) \leq \varkappa$ that

$$|P[(h_{k}-P[h_{k}](z_{kn}))Sb](z)| = |P[(h-P[h](z_{kn}))Sb](z)|$$

= |P[hSb](z)-P[h](z_{kn})S(z)b(z)| \le |P[hSb](z)-P[h](z)P[Sb](z)|
+ |P[h](z)-P[h](z_{kn})||S(z)||b(z)| < \lambda_{k}

where $\lambda_k \rightarrow 0$ as $k \rightarrow \infty$.

Also since $\delta_k \to 0$ and $|\tilde{I}_k|/|I_k| \to \infty$ as $k \to \infty$, we have by the Poisson integral formula that $||1-b-Sbh_k-Sbg_k||_{I_k} \leq 1$ implies that

$$\sup \{ |P[1-b-Sbh_k-Sbg_k](z)| \colon \varrho(z, z_{kn}) \leq \varkappa \} \leq 1+\lambda'_k$$

where $\lambda'_k \to 0$ as $k \to \infty$. Hence

$$\sup \{|1-b(z)-P[h_k](z_{kn})S(z)b(z)-g_k(z)S(z)b(z)|: \varrho(z, z_{kn}) \leq \varkappa\}$$

=
$$\sup \{|P[1-b-P[h_k](z_{kn})Sb-g_kSb](z)|: \varrho(z, z_{kn}) \leq \varkappa\} \leq 1+\lambda_k+\lambda'_k \to 1.$$

Writing x_{kn} =Re z_{kn} , define

$$B_{kn}(z) = b(z\delta_k + x_{kn}), \ G_{kn}(z) = 1 + P[h_k](z_{kn})S(z\delta_k + x_{kn}) - g_k(z\delta_k + x_{kn})S(z\delta_k + x_{kn}).$$

We then have that B_{kn} is a Blaschke product for which $|B'_{kn}(i)| = |b'(z_{kn})|\delta_k$ is bounded below by some positive constant not depending on k, n (since $\{z_{kn}\}$ is an interpolating sequence, see Chapter VII of [6]), $G_{kn} \in H^{\infty}$, $\|G_{kn}\|_{\infty} \leq 1+4R$, and

$$\sup \{|1-B_{kn}(z)G_{kn}(z)|: \varrho(z,i) \leq \varkappa\} \leq 1+\lambda_k+\lambda'_k.$$

A simple argument based on normal families and the open mapping theorem now yields $\lambda_k'' \to 0$ such that $\sup \{|G_{kn}(z)|: \varrho(z, i) \leq \varkappa\} \leq \lambda_k''$. Hence

$$|1+P[h_k](z_{kn})S(z)-g_k(z)S(z)| < \lambda_k'' \quad \text{if} \quad \varrho(z, z_{kn}) < \varkappa.$$

Then for such z,

$$P[1+h_k S+g_k S](z) \leq |1+P[h_k](z_{kn})S(z)+g_k(z)S(z)| + |P[h_k S](z)-P[h_k](z)S(z)| + |P[h_k](z)-P[h_k](z_{kn})||S(z)|.$$

The first term is bounded by λ_k'' , and the arguments we have used show that the second and third terms are bounded by numbers $\lambda_k^{\prime\prime\prime}, \lambda_k^{\prime\prime\prime\prime}$ which go to 0 as $k \to \infty$, since $h \in BUC$. Hence for k large enough, $|P[1+h_kS+g_kS](z)| < 1/16$ for $z \in l_k$. The Poisson integral formula (on the line $\text{Im } z = \delta_k$) together with the choice of w_k and the facts that $||1+h_kS+g_kS||_{\infty} < 5R$, $||h_k||_{\infty} < 2R$, and $||h_k||_{I_k} \le 1/2$ now implies that

$$|P[1+h_kS+g_kS](w_k)| < \frac{1}{8} \text{ and } |P[h_kS](w_k)| < \frac{9}{16}.$$

This leads to a contradiction since

$$P[1+h_k S+g_k S](w_k) = 1+P[h_k S](w_k).$$

(It is of interest to note the similarity at this point to the example at the end of Section 3 of [15].)

We have thus shown that if $g \in H^{\infty}$, $h \in BUC$, $||g||_{\infty} \leq R$, $||h||_{\infty} \leq R$, and

$$\|\chi \overline{S}\overline{b} - \chi \overline{S} - h - g\|_{I_k} \leq 1$$
 for all k ,

$$\operatorname{Var}_{I_k}(h) \geq \frac{1}{2}$$
 for some k.

Now find $g \in H^{\infty}$ such that $\|\chi \overline{S}\overline{b} - \chi \overline{S} - g\|_{\infty} \leq 1 + \varepsilon$ and define $f = \chi^2 \overline{S}\overline{b} - \chi^2 \overline{S} - \chi^2 \overline{S}$ χg , so that $||f||_{\infty} \leq 1+\varepsilon$. Clearly $||g||_{\infty} \leq 4 < 1/2 R$. Then f is supported in $\bigcup_k \tilde{\tilde{I}}_k$ and if $F = -\chi^2 \overline{S} - \chi g$ we have that $F \in H^\infty + BUC$ and $||f - F||_\infty = 1$. If, however, $\varphi \in H^{\infty}$, $h \in \text{BUC}$ with $\|\varphi\|_{\infty} < 1/2 R$, $\|h\|_{\infty} < R$, and $\|f - (\varphi + h)\|_{I_k} \le 1$ for all k, then

$$1 \ge \|\chi^2 \overline{S} \overline{b} - \chi^2 \overline{S} - \chi g - \varphi - h\|_{I_k} = \|\overline{S} \overline{b} - \overline{S} - h - (g + \varphi)\|_{I_k} \quad \text{for all } k,$$

so $\operatorname{Var}_{I_k} h \ge 1/2$ for some k since $g + \varphi \in H^{\infty}$ and $||g + \varphi||_{\infty} \le R$. It is now easy to find a function with no best approximant in $H^{\infty} + BUC$. For j=1, 2, ... pick positive $\varepsilon_j, R_j > 8, \eta_j$ such that $\varepsilon_j \rightarrow 0, R_j \rightarrow \infty, \eta_j \rightarrow 0$ as $j \to \infty$. Carry out the above construction to get intervals $I_k^j \subset \tilde{I}_k^j \subset \tilde{I}_k^j$ such that $|I_k^j| = \eta_j$, functions f_j supported in $\bigcup_k \tilde{\tilde{I}}_k^j$ with $||f_j||_{\infty} \leq 1 + \varepsilon_j$, and functions F_j supported in $\bigcup_k \tilde{I}_k^j$ such that $F_j \in H^\infty + BUC$ and $||f_j - F_j||_\infty = 1$, and such that if $\varphi \in H^\infty$, $h \in \text{BUC}$ with $\|\varphi\|_{\infty} \leq 1/2 R_j$, $\|h\|_{\infty} \leq R_j$ and $\|f_j - (\varphi + h)\|_{H^1_k} \leq 1$ for all k then $\operatorname{Var}_{I_k^j}(h) \ge 1/2$ for some k. This can be done so that $\bigcup_k \tilde{I}_k^{j_1} \cap \bigcup_k \tilde{I}_k^{j_2} = \emptyset$ if $j_1 \ne j_2$, so that the supports of the various f_j 's are disjoint. Let $f = \sum_{j=1}^{\infty} f_j$. Since $\sum_{i=1}^{N} F_{i} \in H^{\infty} + BUC$ and

$$\|f - \sum_{j=1}^{N} F_j\|_{\infty} = \|\sum_{j=1}^{N} (f_j - F_j) + \sum_{j=N+1}^{\infty} f_j\|_{\infty}$$

$$\leq \sup_{j \geq N+1} 1 + \varepsilon_j \to 1, \text{ we have that}$$

 $d(f, H^{\infty} + \text{BUC}) \leq 1$. However say we could find $\varphi \in H^{\infty}$, $h \in \text{BUC}$ such that $\|f - (\varphi + h)\|_{\infty} \leq 1$. If j is high enough then $\|\varphi\|_{\infty} < 1/2 R_j$ and $\|h\|_{\infty} < R_j$. Then $\|f - (\varphi + h)\|_{\infty} \leq 1$ implies that $\|f_j - (\varphi + h)\|_{I_k^j} \leq 1$ for all k, which then implies that $\text{Var}_{I_k^j}(h) \geq 1/2$ for some k. Since $|\tilde{I}_k^j| = \eta_j \to 0$ this would violate the uniform continuity of h. This completes our proof.

References

- 1. AXLER, S., BERG, I. D., JEWELL, N. and SHIELDS, A., Approximation by compact operators and the space $H^{\infty} + C$, Ann. of Math. 109 (1979), 601—612.
- CARLESON, L., An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
- 3. CHANG, S.-Y., A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
- CHANG, S.-Y., Structure of subalgebras between L[∞] and H[∞], Trans. Amer. Math. Soc. 227 (1977), 319-332.
- 5. CHANG, S.-Y. and GARNETT, J. B., Analyticity of functions and subalgebras of L^{∞} containing H^{∞} , *Proc. Amer. Math. Soc.* **72** (1978), 41–46.
- 6. GARNETT, J. B., Bounded analytic functions, Academic Press, New York and London, 1981.
- 7. HOFFMAN, K. and SINGER, I. M., Maximal subalgebras of $C(\Gamma)$, Amer. J. Math. 79 (1957), 295-305.
- 8. LUECKING, D., The compact Hankel operators form an *M*-ideal in the space of Hankel operators, *Proc. Amer. Math. Soc.* **79** (1980), 222–224.
- 9. MARSHALL, D. E., Subalgebras of L[∞] containing H[∞], Acta Math. 137 (1976), 91-98.
- 10. SARASON, D., Generalized interpolation in H^{∞} , Trans. Amer. Math Soc. 127 (1976), 191–203.
- 11. SARASON, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- 12. SARASON, D., in *Spaces of Analytic Functions* (Lecture Notes in Math., Vol. 512 pp. 117–129). Springer-Verlag, Berlin and New York, 1976.
- 13. SARASON, D., Function theory on the unit circle, Lecture notes, Virginia Poly. Inst. and State Univ., Blacksburg, Virginia, 1979.
- 14. SUNDBERG, C., A constructive proof of the Chang-Marshall theorem, J. Functional Anal. 46 (1982), 239-245.
- 15. SUNDBERG, C. and WOLFF, T., Interpolating sequences for QA_B , to appear in *Trans. Amer.* Math. Soc.
- 16. YOUNIS, R., Best approximation in certain Douglas algebras, Proc. Amer. Math. Soc. 80 (1980), 639-642.

Received June 14, 1983

Department of Mathematics University of Tennessee KNOXVILLE, Tennessee 37916