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w 1. Introduction 

Let L = denote the usual Lebesgue space of functions on the unit circle 
[]z I = 1] and let H = denote the bounded analytic functions on the unit disc [[z]< 1]. 
By identifying functions in H = with their boundary values we may regard H ~176 

as a closed subalgebra of L =. The closed algebras between H = and L = are 
called Douglas algebras and have been studied extensively ([3], [4], [5], [9], [11], [14], 
[t5]). For background and general information on Douglas algebras see [6] and [13]. 

Let C denote the space of continuous functions on the unit circle. It was 
shown by Sarason [10] that the linear span H=+C is a Douglas algebra. In fact 
it is the smallest such algebra properly containing H~176 see [7]. In [12], Sarason 
asked whethel H = + C  has the best approximation property, i.e. whether given any 
.fEL ~ there existed a gEH~+C such that 

I[f-gll~ = d f f ,  H~+C)~inf{[I f -g[]~:  gEH~+C}. 

This question was answered affirmatively by Axler, Berg, Jewell, and Shields [1], 
who then raised the question of whether all Douglas algebras possess this property. 

A subsequent paper of Luecking [8] provided a simpler proof of the H=+C 
case using the theory of M-ideals. In an unpublished manuscript, Marshall and 
Zame give a very simple proof of this case and also give many interesting examples 
of Douglas algebras possessing the best approximation property. Another such 
example is given by Younis in [ 16]. 

In this paper we answer the question for general Douglas algebras negatively, 
our counterexample being a certain "natural" Douglas algebra. In order to describe 
and work with this algebra it is convenient to move over to the real line R and the 
upper half plane A = {z=x+iy: x, yER, y>0}.  Henceforth in this paper L = and 
H ~176 will refer to the corresponding function spaces on R and A. Let BUC 
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denote the space of bounded uniformly continuous functions on R. It is shown 
by Sarason [11] that H = + B U C  is a Douglas algebra, and this is the algebra which 
we will show fails the best approximation property. 

The following definitions and notations will be used. For f E L  ~ and z =  
x+iyEA we define the Poisson integral of f at z by 

1 Y f ( t )  dt; P q(z) = -y f== (x--t)~ + y 2 

then P[f]  is harmonic in A with boundary value f ,  and if f E H  ~ then P[f] (z )= 
f (z) .  For z, wEA we define the pseudo-hyperbolic distance between z and w 

by O(z-w)=l-~-- ~ . z - w  For an interval I c R  and a function f on R we define 

Vari(f)=supxi ,x,  Ei I f (xO-f (x2)]  and ]lflli=supxciIf(x)l. We denote the length 
of I by III. Finally we will use the following facts, the first of which is shown by 
Sarason in [11] and the second of  which is an easy exercise with the Poisson integral 
formula: if f ,  g E H ~ + B U C  then 

s u P l P [ f g ] ( x + i y ) - P [ f l ( x + i y ) P [ g l ( x + i y ) l  ~ 0 as y ~ 0; 
x E R  

and i f f E B U C  and 0 < ~ < 1  then 

sup{IP[f](w)-e[f](z)[: e(z, w) _<- .} -~ 0 as I m z  -- 0. 

Other information about H = +  BUC is developed in [11] and in Exercise 8, Chapter 
IX of [6]. 

It is a pleasure to express my gratitude to the Mittag--Leffler Institute for 
their hospitality and support during the time this research was conducted. 

w 2. Theorem. H ~ + B U C  does not have the best approximation property. 

Proof. First, a bit of motivation for the construction. Returning to the unit 
circle for a moment, Marshall and Zame pointed out that ( H ~ + C ) / H  ~ has 
continuous best approximations, i.e. given f E L  ~ such that d(f ,  H~)<=l+e  and 
d( f ,  H = + C ) = I ,  there exists hEC such that d ( f - h ,  H = ) = I  and Ilhll~<-6(e), 
where 6(e)~0 as e~0.  We now will do a preliminary construction whose essential 
point is that this property fails in H a +BUC,  and the theorem will then follow 
easily. 

Let e, R>8 ,  r/ be given positive numbers - -  we are thinking of e and r/ as 
being small and R as being large. For k =  1, 2 . . . .  we pick widely spaced intervals 

l k c R ,  all of length ~. Let lkcJ ' kC[  k where Ik, ~rk, and [k have the same mid- 

point, 17~1/1I~I-~o rapidly as k~oo ,  and Ii~l-I~r~l is constant. We choose all these 

intervals so that the ik's are disjoint. Denote the midpoint of Ik by Xk. 
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Pick n very close to 1, 0 < ~ < 1 ,  pick 6k>O to be small numbers such that 
6k~0 as k~oo, and define Ik={x+ifk:X~lk}. Let {Zkn},=_~r k ..... Nk be a maximal 
set of points on the line Ik having pseudohyperbolic separation of adjacent points 
being equal to ~, and such that Zko=Xk+ifk. Thus the points {Zk,,} are distributed 
symmetrically with respect to the line Re Z=Xk. Define the finite Blaschke product 

Z - -  
bk with these points as zeros: bk(Z)= II,N2_~k Zk._______.~,. Then from the symmetry of 

Z - -  7"kn 

11 
the {zkn } it follows easily that bk(xk+iy)>O for all y>O. Define Wk=Xk+i3--~-~. 

NOW set b:]]~=lb k, S(z)=]]~= 1 z-w__.._~k. Standard methods easily show that 
z - ~  

both products converge uniformly on compact subsets of A wR and define Blaschke 
products if the intervals are widely enough dispersed. Clearly SCBUC. It is also 
easy to check that if the Ik's are widely dispersed then ]1--b(wk)i<l Vk, and if 
in addition I/k[/llkl~r fast enough (where "fast enough" will depend on the 
choice of the 6k's), then l l -b(x)[<l /2e  for xCuik .  

If :~ is chosen close enough to 1, the 6k's are all small enough, and the 
lk'S are widely enough dispersed, then the set {wk}u {Zk,} will be an interpolating 
sequence with interpolation constant close to 1 (see [2] and [6], Chapter VII); what 
this means for us is that if complex numbers ~k, 3k, are given for k=>l and 
-Nk<-n<-Nk and l~kl<_-l, l/~knl<-l, then there exists ~0cn ~ such that I1~o1[~o <- 
l+e /2  and ~0(Wk)=~ k, ~ O ( Z k n ) ~ - f l k n  . 

Because of the conditions imposed on the lengths of the intervals lk, Ik, [k, 
wecan find zCBUC suchthat 0<-Z<-I, Z_=I on (-]klk, and ~--0 off Ak[k. Then 

d(ZS~-ZS,  H ~) = d ( z - z b ,  SbH ~) 

<- [l(1 - z )  (1  - b)l[ ~ + d (1 - b, S b H = ) .  

The first term is bounded by 1/2e since if xER, 1--Z(x)r then x~ (-]k ik, hence 
11-b(x)l  < e/2. To estimate the second term we write 

d (1 - b, S b n  ~) = 0inf I11 -- b - SbglI 

= inf{l[q~l[~.: ~p(wk) = 1--b(Wk), q~(Zk,) = 1--b(Zk,) = 1} <--1+ 2 

by the above comments and the fact that I1 --b(wk)]< 1. Hence d (zSb-zS ,  H = ) <  
l+e .  

What we have done so far has been to start with a function having distance 1 
from H =, namely zSS, and then to change it by the large BUC function XS 
to get a function whose distance from H = is only slightly greater than 1. The 
point of what we will do next is that it is impossible to get back to a function having 
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distance 1 from H = by adding a small BUC function. Actually we need a local 
version of this fact. 

Assume, to get a contradiction, that there is a function hEBUC and a g ~ H  ~ 
such that [[h][~-R, ]]g[[~-<-R, Varrk(h)<l/2 for all k, and I [ x S b - z S - h - g l [ r < = l  
for all k. Define hk=h--h(Xk) ,gk=g+h(Xk).  Then ]lhkll=<=2R, llgkll=<--2R, 
Ilhk[l~k<= 1/2, and 

J l Z S ~ - z S - h  -gill,, = [ I S ~ - ' S -  hk-- gkJlz,, = IJ 1 -- b - S b h k -  SbgkJtT,,, 

so that [ll--b--Sbhk--Sbgkllr<--l. Fixing attention on a point Zk. we write 

1 -- b - Sbhk - Sbgk = 1 -- b - P [hj  (zk.) Sb - gk Sb -- [hk-- P [hk] (Zk.)] Sb. 

NOW hk--P[hk](Zk.)=h--P[h](Zk.), and since hEBUC and ImZk.=Jk-+O as 
k-~r we have for z satisfying O(z, Zk.)<=~ that 

IP [(hk-- P [hk] (zkn)) Sb] (z)[ = IP [ ( h -  P [h] (Zk.)) Sb] (z)l 

= IP[hSb] ( z ) - P [ h ]  (zk.) S(z)  b (z)l <_- IP[hSb] ( z ) -  P[h] (z)P[Sb] (z) I 

+ IP[h](z)-P[h] (Zk.)l IS(z)[ Ib (z)l < 2k 
where 2k-+0 as k ~ o .  

Also since 6k+O and ITkl/llkl-,-~o as k - - ~ ,  we have by the Poisson integral 
formula that I I l - b - S b h k - S b g k l l r k < = l  implies that 

sup {IP[1--b--Sbhk--Sbgk](z) l :  O(z, zk.) ~ ~} <---- 1+2~ 

where 2 ~ - 0  as k - * ~ .  Hence 

sup {ll--b(z)--P[hk](Zk.)S(z)b(z)--gk(Z)S(z)b(z)I: r zk. ) <= ~} 

= sup {IPI l - -b- -P[h,] (zk . )Sb--gkSbl(z )] :  p(z, zk.) ~ z} ~ 1+2k+2~ ~ 1. 

Writing Xk.=ReZk., define 

Bgn (z) = b (z6 k + xk. ), Gk. (z) = 1 + P [hk] (Zk.) S (z6k + Xk.) -- gk (Z6k + Xk.) S (z3 k + Xk. ) . 

We then have that Bk,, is a Blaschke product for which IB~,,(i)t=lb'(Zk.)13k is 
bounded below by some positive constant not depending on k, n (since {Zk.} 
is an interpolating sequence, see Chapter VII of [6]), GK.EH ~, IIGk.ll=<-I +4R, and 

sup {[1--Bk.(Z)Gk,,(z)[: O(z, i) <= Z} <---- 1+2k+2~. 

A simple argument based on normal families and the open mapping theorem now 
yields 2k -*0 such that sup {IGk.(z)l: e(z, t ) - ~ } = 2  k. Hence 

I I+P[h j ( zk . )S ( z ) - -gk ( z )S ( z ) [  < 2~' if e(z, zk.) < z. 

Then for such z, 

P[1 + h k S +  gkS](z) <- I1 +P[hkJ(Zk,,)S(z)+gt,(z)S(z) I 

+ IP[h~S](z)-P[hj(z)S(z)l + [P[hk](z)--P[hk](Zk.)[ IS(z)[. 
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The first term is bounded by 2~', and the arguments we have used show that the 
tpp ptp# 

second and third terms are bounded by numbers 2 k , 2 k which go to 0 as k ~ ,  
since h~BUC. Hence for k large enough, ]P[I+hkS+gkS](z)I<I/16 for ZClk. 
The Poisson integral formula (on the line Im Z=6k) together with the choice of 
w k and the facts that Ifl+hkS+gkSl[~<5R, Ilhkll~-<2R, and [lhklls<=l/2 now 
implies that 

iP[l +hkS+gkS](wk)[ < 1 9 -g-and [e[h~Sl(w~)l  < 1--~" 

This leads to a contradiction since 

P[1 + h k S + gk S] (Wk) = 1 + P[hk S] (Wk). 

(It is of interest to note the similarity at this point to the example at the end of Sec- 
tion 3 of [15].) 

We have thus shown that if gCH ~, hCBUC, I[glt~<=R, Ilhll~<=R, and 

][zSb-zCS-h-g[]r~ <= 1 foral l  k, 
then 

( h )  1 Varik _--> y for some k. 

Now find gEH ~ such that ][xSN-xS-gl[~ ~ 1 +5 and define J '=)(S~-Z2$-  

)(g, so that []fl[~<-l+e. Clearly 11gll~<=4<l/2R. Then f is supported in Uk[k 
and if  F=-Z~ '~-zg  we have that F E H ~ + B U C  and ] [ f - F I I ~ = I .  If, however, 
q)EH ~, hCBUC with 11~o1[oo<1/2 R, [Ihlloo<R, and Ilf-(~0+h)[Ir <=1 fox all k, then 

1 >-Ilz2$b-Z2$-zg-q)-hlb~ = l['2E-$-h-(g+cp)[lr~ for all k, 

so Varr h=>l/2 for some k since g+(pEH ~ and []g+q~lI~<=R. 
It is now easy to find a function with no best approximant in H = + B U C .  

For j = l , 2  . . . .  pick positive ej, Rj>8, tlj such that ej~O, R j ~ ,  tlj~O as 

j ~  o~. Carry out the above construction to get intervals 1~ c l~ c [~ such that IILI--~j, 

functions f j  supported in Uk[~ with []fjN~<-l+~j, and functions Fj supported 

in U k ~  such that Fj~H=+BUC and ] l f j - F j i ] ~ = l ,  and such that if  q ~ H  =, 
hEBUC with ll~ol[~<-l/2Rj, I[h[l=<=Rj and Ilfj-(~0+h)llr~<=l for all k then 

Varz d (h)=>l/2 for some k. This can be done so that Uk[~W~Uk]~,=O if J~r 
so that the supports of the various Jj's are disjoint. Let f = Z , ~ l f J .  Since 
~.=IFjEH=+BUC and 

liT-Z;_-: F, = IIzL: (sJ- Fx) +ZL,++lSjI[  
sup l + e j ~ l ,  we have that 

j~_N+I 
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d ( f , H ~ + B U C ) - < _ I .  However  say we cou ld  f ind q0CH~ ' ,hCBUC such tha t  

[If-(q~+h)[L~<=l.  I f  ./ is h igh  enough  then  } l t p l l ~ < l / 2 R  i and  ] lh l l~<R i .  Then  

IIf-(q~§ implies  tha t  IIfj-(~o+h)]lr~_<-i for  all  k, which then implies  

tha t  Varrg ( h ) ~  1/2 for  some k. Since ]i~l = ~ / j ~ 0  this would  violate  the  un i fo rm 

cont inu i ty  o f  h. This  comple tes  our  proof .  
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