$H^{\infty}+\mathrm{BUC}$ does not have the best approximation property

Carl Sundberg

§ 1. Introduction

Let L^{∞} denote the usual Lebesgue space of functions on the unit circle $[|z|=1]$ and let H^{∞} denote the bounded analytic functions on the unit disc $[|z|<1]$. By identifying functions in H^{∞} with their boundary values we may regard H^{∞} as a closed subalgebra of L^{∞}. The closed algebras between H^{∞} and L^{∞} are called Douglas algebras and have been studied extensively ([3], [4], [5], [9], [11], [14], [15]). For background and general information on Douglas algebras see [6] and [13].

Let C denote the space of continuous functions on the unit circle. It was shown by Sarason [10] that the linear span $H^{\infty}+C$ is a Douglas algebra. In fact it is the smallest such algebra properly containing H^{∞}; see [7]. In [12], Sarason asked whether $H^{\infty}+C$ has the best approximation property, i.e. whether given any $f \in L^{\infty}$ there existed a $g \in H^{\infty}+C$ such that

$$
\|f-g\|_{\infty}=\mathrm{d}\left(f, H^{\infty}+C\right)_{\overline{\overline{\mathrm{def}}}} \inf \left\{\|f-g\|_{\infty}: g \in H^{\infty}+C\right\}
$$

This question was answered affirmatively by Axler, Berg, Jewell, and Shields [1], who then raised the question of whether all Douglas algebras possess this property.

A subsequent paper of Luecking [8] provided a simpler proof of the $H^{\infty}+C$ case using the theory of M-ideals. In an unpublished manuscript, Marshall and Zame give a very simple proof of this case and also give many interesting examples of Douglas algebras possessing the best approximation property. Another such example is given by Younis in [16].

In this paper we answer the question for general Douglas algebras negatively, our counterexample being a certain "natural" Douglas algebra. In order to describe and work with this algebra it is convenient to move over to the real line \mathbf{R} and the upper half plane $\Delta=\{z=x+i y: x, y \in \mathbf{R}, y>0\}$. Henceforth in this paper L^{∞} and H^{∞} will refer to the corresponding function spaces on \mathbf{R} and Δ. Let BUC
denote the space of bounded uniformly continuous functions on \mathbf{R}. It is shown by Sarason [11] that $H^{\infty}+$ BUC is a Douglas algebra, and this is the algebra which we will show fails the best approximation property.

The following definitions and notations will be used. For $f \in L^{\infty}$ and $z=$ $x+i y \in \Delta$ we define the Poisson integral of f at z by

$$
P[f](z)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}} f(t) d t
$$

then $P[f]$ is harmonic in Δ with boundary value f, and if $f \in H^{\infty}$ then $P[f](z)=$ $f(z)$. For $z, w \in \Delta$ we define the pseudo-hyperbolic distance between z and w by $\varrho(z-w)=\left|\frac{z-w}{z-\bar{w}}\right|$. For an interval $I \subset \mathbf{R}$ and a function f on \mathbf{R} we define $\operatorname{Var}_{I}(f)=\sup _{x_{1}, x_{2} \in I}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|$ and $\|f\|_{I}=\sup _{x \in I}|f(x)|$. We denote the length of I by $|I|$. Finally we will use the following facts, the first of which is shown by Sarason in [11] and the second of which is an easy exercise with the Poisson integral formula: if $f, g \in H^{\infty}+B U C$ then

$$
\sup _{x \in \mathbf{R}}|P[f g](x+i y)-P[f](x+i y) P[g](x+i y)| \rightarrow 0 \quad \text { as } \quad y \rightarrow 0
$$

and if $f \in B \cup C$ and $0<x<1$ then

$$
\sup \{|P[f](w)-P[f](z)|: \varrho(z, w) \leqq x\} \rightarrow 0 \quad \text { as } \quad \operatorname{Im} z \rightarrow 0 .
$$

Other information about $H^{\infty}+\mathrm{BUC}$ is developed in [11] and in Exercise 8, Chapter IX of [6].

It is a pleasure to express my gratitude to the Mittag-Leffler Institute for their hospitality and support during the time this research was conducted.
§ 2. Theorem. $H^{\infty}+\mathrm{BUC}$ does not have the best approximation property.
Proof. First, a bit of motivation for the construction. Returning to the unit circle for a moment, Marshall and Zame pointed out that $\left(H^{\infty}+C\right) / H^{\infty}$ has continuous best approximations, i.e. given $f \in L^{\infty}$ such that $\mathrm{d}\left(f, H^{\infty}\right) \leqq 1+\varepsilon$ and $\mathrm{d}\left(f, H^{\infty}+C\right)=1$, there exists $h \in C$ such that $\mathrm{d}\left(f-h, H^{\infty}\right)=1$ and $\|h\|_{\infty} \leqq \delta(\varepsilon)$, where $\delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. We now will do a preliminary construction whose essential point is that this property fails in $H^{\infty}+\mathrm{BUC}$, and the theorem will then follow easily.

Let $\varepsilon, R>8, \eta$ be given positive numbers - we are thinking of ε and η as being small and R as being large. For $k=1,2, \ldots$ we pick widely spaced intervals $I_{k} \subset \mathbf{R}$, all of length η. Let $I_{k} \subset \tilde{I}_{k} \subset \tilde{\tilde{I}}_{k}$ where I_{k}, \tilde{I}_{k}, and $\tilde{\tilde{I}}_{k}$ have the same midpoint, $\left|\tilde{I}_{k}\right| /\left|I_{k}\right| \rightarrow \infty$ rapidly as $k \rightarrow \infty$, and $\left|\tilde{\tilde{I}}_{k}\right|-\left|\tilde{I}_{k}\right|$ is constant. We choose all these intervals so that the \tilde{I}_{k} 's are disjoint. Denote the midpoint of I_{k} by x_{k}.

Pick x very close to $1,0<x<1$, pick $\delta_{k}>0$ to be small numbers such that $\delta_{k} \rightarrow 0$ as $k \rightarrow \infty$, and define $l_{k}=\left\{x+i \delta_{k}: x \in I_{k}\right\}$. Let $\left\{z_{k n}\right\}_{n=-N_{k}, \ldots, N_{k}}$ be a maximal set of points on the line l_{k} having pseudohyperbolic separation of adjacent points being equal to x, and such that $z_{k 0}=x_{k}+i \delta_{k}$. Thus the points $\left\{z_{k n}\right\}$ are distributed symmetrically with respect to the line $\operatorname{Re} z=x_{k}$. Define the finite Blaschke product b_{k} with these points as zeros: $b_{k}(z)=\prod_{n=-N_{k}}^{N_{k}} \frac{z-z_{k n}}{z-\bar{z}_{k n}}$. Then from the symmetry of the $\left\{z_{k n}\right\}$ it follows easily that $b_{k}\left(x_{k}+i y\right)>0$ for all $y>0$. Define $w_{k}=x_{k}+i \frac{\Pi}{320 R} \eta$.

Now set $b=\prod_{k=1}^{\infty} b_{k}, S(z)=\prod_{k=1}^{\infty} \frac{z-w_{k}}{z-\bar{w}_{k}}$. Standard methods easily show that both products converge uniformly on compact subsets of $\Delta \cup \mathbf{R}$ and define Blaschke products if the intervals are widely enough dispersed. Clearly $S \in$ BUC. It is also easy to check that if the I_{k} 's are widely dispersed then $\left|1-b\left(w_{k}\right)\right|<1 \forall k$, and if in addition $\left|\tilde{I}_{k}\right| /\left|I_{k}\right| \rightarrow \infty$ fast enough (where "fast enough" will depend on the choice of the δ_{k} 's), then $|1-b(x)|<1 / 2 \varepsilon$ for $x \notin \cup \tilde{I}_{k}$.

If x is chosen close enough to 1 , the δ_{k} 's are all small enough, and the I_{k} 's are widely enough dispersed, then the set $\left\{w_{k}\right\} \cup\left\{z_{k n}\right\}$ will be an interpolating sequence with interpolation constant close to 1 (see [2] and [6], Chapter VII); what this means for us is that if complex numbers $\alpha_{k}, \beta_{k n}$ are given for $k \geqq 1$ and $-N_{k} \leqq n \leqq N_{k}$ and $\left|\alpha_{k}\right| \leqq 1,\left|\beta_{k n}\right| \leqq 1$, then there exists $\varphi \in H^{\infty}$ such that $\|\varphi\|_{\infty} \leqq$ $1+\varepsilon / 2$ and $\varphi\left(w_{k}\right)=\alpha_{k}, \varphi\left(z_{k n}\right)=\beta_{k n}$.

Because of the conditions imposed on the lengths of the intervals $I_{k}, \tilde{I}_{k}, \tilde{\tilde{I}}_{k}$, we can find $\chi \in$ BUC such that $0 \leqq \chi \leqq 1, \chi \equiv 1$ on $\bigcap_{k} \tilde{I}_{k}$, and $\chi \equiv 0$ off $\bigcap_{k} \tilde{\tilde{I}}_{k}$. Then

$$
\begin{aligned}
& \mathrm{d}\left(\chi \bar{S} \bar{b}-\chi \bar{S}, H^{\infty}\right)=\mathrm{d}\left(\chi-\chi b, S b H^{\infty}\right) \\
& \leqq\|(1-\chi)(1-b)\|_{\infty}+\mathrm{d}\left(1-b, S b H^{\infty}\right) .
\end{aligned}
$$

The first term is bounded by $1 / 2 \varepsilon$ since if $x \in \mathbf{R}, 1-\chi(x) \neq 0$, then $x \notin \bigcap_{k} I_{k}$, hence $|1-b(x)|<\varepsilon / 2$. To estimate the second term we write

$$
\begin{gathered}
\mathrm{d}\left(1-b, S b H^{\infty}\right)=\inf _{g \in H^{\infty}}\|1-b-S b g\|_{\infty} \\
=\inf \left\{\|\varphi\|_{\infty}: \varphi\left(w_{k}\right)=1-b\left(w_{k}\right), \varphi\left(z_{k n}\right)=1-b\left(z_{k n}\right)=1\right\} \leqq 1+\frac{\varepsilon}{2}
\end{gathered}
$$

by the above comments and the fact that $\left|1-b\left(w_{k}\right)\right|<1$. Hence $d\left(\chi \bar{S} \bar{b}-\chi \bar{S}, H^{\infty}\right)<$ $1+\varepsilon$.

What we have done so far has been to start with a function having distance 1 from H^{∞}, namely $\chi \bar{S} \bar{b}$, and then to change it by the large BUC function $\chi \bar{S}$ to get a function whose distance from H^{∞} is only slightly greater than 1 . The point of what we will do next is that it is impossible to get back to a function having
distance 1 from H^{∞} by adding a small BUC function. Actually we need a local version of this fact.

Assume, to get a contradiction, that there is a function $h \in \mathrm{BUC}$ and a $g \in H^{\infty}$ such that $\|h\|_{\infty} \leqq R,\|g\|_{\infty} \leqq R, \operatorname{Var}_{I_{k}}(h)<1 / 2$ for all k, and $\|\chi \bar{S} \bar{b}-\chi \bar{S}-h-g\|_{I_{k}} \leqq 1$ for all k. Define $h_{k}=h-h\left(x_{k}\right), g_{k}=g+h\left(x_{k}\right)$. Then $\left\|h_{k}\right\|_{\infty} \leqq 2 R,\left\|g_{k}\right\|_{\infty} \triangleq 2 R$, $\left\|h_{k}\right\|_{I_{k}} \leqq 1 / 2$, and

$$
\|\chi \bar{S} \bar{b}-\chi \bar{S}-h-g\|_{y_{k}}=\left\|\bar{S} \bar{b}-\bar{S}-h_{k}-g_{k}\right\|_{y_{k}}=\left\|1-b-S b h_{k}-S b g_{k}\right\|_{y_{k}},
$$

so that $\left\|1-b-S b h_{k}-S b g_{k}\right\|_{\boldsymbol{I}_{k}} \leqq 1$. Fixing attention on a point $z_{k n}$ we write

$$
1-b-S b h_{k}-S b g_{k}=1-b-P\left[h_{k}\right]\left(z_{k n}\right) S b-g_{k} S b-\left[h_{k}-P\left[h_{k}\right]\left(z_{k n}\right)\right] S b .
$$

Now $h_{k}-P\left[h_{k}\right]\left(z_{k n}\right)=h-P[h]\left(z_{k n}\right)$, and since $h \in \mathrm{BUC}$ and $\operatorname{Im} z_{k n}=\delta_{k} \rightarrow 0$ as $k \rightarrow \infty$ we have for z satisfying $\varrho\left(z, z_{k n}\right) \leqq \chi$ that

$$
\begin{aligned}
& \quad\left|P\left[\left(h_{k}-P\left[h_{k}\right]\left(z_{k n}\right)\right) S b\right](z)\right|=\left|P\left[\left(h-P[h]\left(z_{k n}\right)\right) S b\right](z)\right| \\
& =\left|P[h S b](z)-P[h]\left(z_{k n}\right) S(z) b(z)\right| \leqq|P[h S b](z)-P[h](z) P[S b](z)| \\
& +\left|P[h](z)-P[h]\left(z_{k n}\right)\right||S(z)||b(z)|<\lambda_{k}
\end{aligned}
$$

where $\lambda_{k} \rightarrow 0$ as $k \rightarrow \infty$.
Also since $\delta_{k} \rightarrow 0$ and $\left|\tilde{I}_{k}\right| /\left|I_{k}\right| \rightarrow \infty$ as $k \rightarrow \infty$, we have by the Poisson integral formula that $\left\|1-b-S b h_{k}-S b g_{k}\right\|_{I_{k}} \leqq 1$ implies that

$$
\sup \left\{\left|P\left[1-b-S b h_{k}-S b g_{k}\right](z)\right|: \varrho\left(z, z_{k n}\right) \leqq x\right\} \leqq 1+\lambda_{k}^{\prime}
$$

where $\lambda_{k}^{\prime} \rightarrow 0$ as $k \rightarrow \infty$. Hence

$$
\begin{gathered}
\sup \left\{\left|1-b(z)-P\left[h_{k}\right]\left(z_{k n}\right) S(z) b(z)-g_{k}(z) S(z) b(z)\right|: \varrho\left(z, z_{k n}\right) \leqq x\right\} \\
=\sup \left\{\left|P\left[1-b-P\left[h_{k}\right]\left(z_{k n}\right) S b-g_{k} S b\right](z)\right|: \varrho\left(z, z_{k n}\right) \leqq x\right\} \leqq 1+\lambda_{k}+\lambda_{k}^{\prime} \rightarrow 1 .
\end{gathered}
$$

Writing $x_{k n}=\operatorname{Re} z_{k n}$, define

$$
B_{k n}(z)=b\left(z \delta_{k}+x_{k n}\right), G_{k n}(z)=1+P\left[h_{k}\right]\left(z_{k n}\right) S\left(z \delta_{k}+x_{k n}\right)-g_{k}\left(z \delta_{k}+x_{k n}\right) S\left(z \delta_{k}+x_{k n}\right) .
$$

We then have that $B_{k n}$ is a Blaschke product for which $\left|B_{k n}^{\prime}(i)\right|=\left|b^{\prime}\left(z_{k n}\right)\right| \delta_{k}$ is bounded below by some positive constant not depending on k, n (since $\left\{z_{k n}\right\}$ is an interpolating sequence, see Chapter VII of [6]), $G_{k n} \in H^{\infty},\left\|G_{k n}\right\|_{\infty} \leqq 1+4 R$, and

$$
\sup \left\{\left|1-B_{k n}(z) G_{k n}(z)\right|: \varrho(z, i) \leqq x\right\} \leqq 1+\lambda_{k}+\lambda_{k}^{\prime}
$$

A simple argument based on normal families and the open mapping theorem now yields $\lambda_{k}^{\prime \prime} \rightarrow 0$ such that $\sup \left\{\left|G_{k n}(z)\right|: \varrho(z, i) \leqq x\right\} \leqq \lambda_{k}^{\prime \prime}$. Hence

$$
\left|1+P\left[h_{k}\right]\left(z_{k n}\right) S(z)-g_{k}(z) S(z)\right|<\lambda_{k}^{\prime \prime} \quad \text { if } \quad \varrho\left(z, z_{k n}\right)<\varkappa .
$$

Then for such z,

$$
\begin{aligned}
& P\left[1+h_{k} S+g_{k} S\right](z) \leqq\left|1+P\left[h_{k}\right]\left(z_{k n}\right) S(z)+g_{k}(z) S(z)\right| \\
+ & \left|P\left[h_{k} S\right](z)-P\left[h_{k}\right](z) S(z)\right|+\left|P\left[h_{k}\right](z)-P\left[h_{k}\right]\left(z_{k n}\right)\right||S(z)| .
\end{aligned}
$$

The first term is bounded by $\lambda_{k}^{\prime \prime}$, and the arguments we have used show that the second and third terms are bounded by numbers $\lambda_{k}^{\prime \prime \prime}, \lambda_{k}^{\prime \prime \prime \prime}$ which go to 0 as $k \rightarrow \infty$, since $h \in \mathrm{BUC}$. Hence for k large enough, $\left|P\left[1+h_{k} S+g_{k} S\right](z)\right|<1 / 16$ for $z \in l_{k}$. The Poisson integral formula (on the line $\operatorname{Im} z=\delta_{k}$) together with the choice of w_{k} and the facts that $\left\|1+h_{k} S+g_{k} S\right\|_{\infty}<5 R,\left\|h_{k}\right\|_{\infty}<2 R$, and $\left\|h_{k}\right\|_{r_{k}} \leqq 1 / 2$ now implies that

$$
\left|P\left[1+h_{k} S+g_{k} S\right]\left(w_{k}\right)\right|<\frac{1}{8} \text { and } \quad\left|P\left[h_{k} S\right]\left(w_{k}\right)\right|<\frac{9}{16} .
$$

This leads to a contradiction since

$$
P\left[1+h_{k} S+g_{k} S\right]\left(w_{k}\right)=1+P\left[h_{k} S\right]\left(w_{k}\right)
$$

(It is of interest to note the similarity at this point to the example at the end of Section 3 of [15].)

We have thus shown that if $g \in H^{\infty}, h \in \mathrm{BUC},\|g\|_{\infty} \leqq R,\|h\|_{\infty} \leqq R$, and

$$
\|\chi \bar{S} \bar{b}-\chi \bar{S}-h-g\|_{I_{k}} \leqq 1 \quad \text { for all } k
$$

then

$$
\operatorname{Var}_{I_{k}}(h) \geqq \frac{1}{2} \quad \text { for some } k
$$

Now find $g \in H^{\infty}$ such that $\|\chi \bar{S} \bar{b}-\chi \bar{S}-g\|_{\infty} \leqq 1+\varepsilon$ and define $f=\chi^{2} \bar{S} \bar{b}-\chi^{2} \bar{S}-$ χg, so that $\|f\|_{\infty} \leqq 1+\varepsilon$. Clearly $\|g\|_{\infty} \leqq 4<1 / 2 R$. Then f is supported in $\cup_{k} \tilde{I}_{k}$ and if $F=-\chi^{2} \bar{S}-\chi g$ we have that $F \in H^{\infty}+\mathrm{BUC}$ and $\|f-F\|_{\infty}=1$. If, however, $\varphi \in H^{\infty}, h \in$ BUC with $\|\varphi\|_{\infty}<1 / 2 R,\|h\|_{\infty}<R$, and $\|f-(\varphi+h)\|_{r_{k}} \leqq 1$ for all k, then

$$
1 \geqq\left\|\chi^{2} \bar{S} \bar{b}-\chi^{2} \bar{S}-\chi g-\varphi-h\right\|_{I_{k}}=\|\bar{S} \bar{b}-\bar{S}-h-(g+\varphi)\|_{I_{k}} \quad \text { for all } k
$$

so $\operatorname{Var}_{I_{k}} h \geqq 1 / 2$ for some k since $g+\varphi \in H^{\infty}$ and $\|g+\varphi\|_{\infty} \leqq R$.
It is now easy to find a function with no best approximant in $H^{\infty}+$ BUC. For $j=1,2, \ldots$ pick positive $\varepsilon_{j}, R_{j}>8, \eta_{j}$ such that $\varepsilon_{j} \rightarrow 0, R_{j} \rightarrow \infty, \eta_{j} \rightarrow 0$ as $j \rightarrow \infty$. Carry out the above construction to get intervals $I_{k}^{j} \subset \tilde{I}_{k}^{j} \subset \tilde{I}_{k}^{j}$ such that $\left|I_{k}^{j}\right|=\eta_{j}$, functions f_{j} supported in $\bigcup_{k} \tilde{\tilde{I}}_{k}^{j}$ with $\left\|f_{j}\right\|_{\infty} \leqq 1+\varepsilon_{j}$, and functions F_{j} supported in $\bigcup_{k} \tilde{I}_{k}^{j}$ such that $F_{j} \in H^{\infty}+\mathrm{BUC}$ and $\left\|f_{j}-F_{j}\right\|_{\infty}=1$, and such that if $\varphi \in H^{\infty}$, $h \in \mathrm{BUC}$ with $\|\varphi\|_{\infty} \leqq 1 / 2 R_{j},\|h\|_{\infty} \leqq R_{j}$ and $\left\|f_{j}-(\varphi+h)\right\|_{\tilde{z}_{k}^{\prime}} \leqq 1$ for all k then $\operatorname{Var}_{L_{k}^{j}}(h) \geqq 1 / 2$ for some k. This can be done so that $\bigcup_{k} \tilde{\tilde{I}}_{k}^{j_{1}} \cap \bigcup_{k} \tilde{\tilde{I}}_{k}^{j_{2}}=\emptyset$ if $j_{1} \neq j_{2}$, so that the supports of the various f_{j}^{\prime} s are disjoint. Let $f=\sum_{j=1}^{\infty} f_{j}$. Since $\sum_{j=1}^{N} F_{j} \in H^{\infty}+\mathrm{BUC}$ and

$$
\begin{gathered}
\left\|f-\sum_{j=1}^{N} F_{j}\right\|_{\infty}=\left\|\sum_{j=1}^{N}\left(f_{j}-F_{j}\right)+\sum_{j=N+1}^{\infty} f_{j}\right\|_{\infty} \\
\leqq \leqq \sup _{j \geqq N+1} 1+\varepsilon_{j} \rightarrow 1, \text { we have that }
\end{gathered}
$$

$d\left(f, H^{\infty}+\mathrm{BUC}\right) \leqq 1$. However say we could find $\varphi \in H^{\infty}, h \in \mathrm{BUC}$ such that $\|f-(\varphi+h)\|_{\infty} \leqq 1$. If j is high enough then $\|\varphi\|_{\infty}<1 / 2 R_{j}$ and $\|h\|_{\infty}<R_{j}$. Then $\|f-(\varphi+h)\|_{\infty} \leqq 1$ implies that $\left\|f_{j}-(\varphi+h)\right\|_{I_{k}^{j}} \leqq 1$ for all k, which then implies that $\operatorname{Var}_{I_{k}^{j}}(h) \geqq 1 / 2$ for some k. Since $\left|\tilde{I}_{k}^{j}\right|=\eta_{j} \rightarrow 0$ this would violate the uniform continuity of h. This completes our proof.

References

1. Axler, S., Berg, I. D., Jewell, N. and Shields, A., Approximation by compact operators and the space $H^{\infty}+C$, Ann. of Math. 109 (1979), 601-612.
2. Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
3. Chang, S.-Y., A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
4. Chang, S.-Y., Structure of subalgebras between L^{∞} and H^{∞}, Trans. Amer. Math. Soc. 227 (1977), 319-332.
5. Chang, S.-Y. and Garnett, J. B., Analyticity of functions and subalgebras of L^{∞} containing H^{∞}, Proc. Amer. Math. Soc. 72 (1978), 41-46.
6. Garnett, J. B., Bounded analytic functions, Academic Press, New York and London, 1981.
7. Hoffman, K. and Singer, I. M., Maximal subalgebras of C(Γ), Amer. J. Math. 79 (1957), 295305.
8. Luecking, D., The compact Hankel operators form an M-ideal in the space of Hankel operators, Proc. Amer. Math. Soc. 79 (1980), 222-224.
9. Marshall, D. E., Subalgebras of L^{∞} containing H^{∞}, Acta Math. 137 (1976), 91-98.
10. Sarason, D., Generalized interpolation in H^{∞}, Trans. Amer. Math Soc. 127 (1976), 191-203.
11. Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
12. Sarason, D., in Spaces of Analytic Functions (Lecture Notes in Math., Vol. 512 pp. 117-129). Springer-Verlag, Berlin and New York, 1976.
13. Sarason, D., Function theory on the unit circle, Lecture notes, Virginia Poly. Inst. and State Univ., Blacksburg, Virginia, 1979.
14. Sundberg, C., A constructive proof of the Chang-Marshall theorem, J. Functional Anal. 46 (1982), 239-245.
15. Sundberg, C. and Wolff, T., Interpolating sequences for $Q A_{B}$, to appear in Trans. Amer. Math. Soc.
16. Younis, R., Best approximation in certain Douglas algebras, Proc. Amer. Math. Soc. 80 (1980), 639-642.
