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Introduction 

Let F be a Fuchsian group (I make no distinction here between Fuchsian 
and Frechsoid groups) acting on U =  {zEC, Izl<l} such that every point of  OU 
is a limit point of  F (i.e. F is of  the first kind. The problem that will be examined 
does not arise for groups of  the second kind). We say that F is of  convergent 
type if: 

Z~er(1--[70[) < + 

otherwise we say that it is of  divergent type. 

A group is of  convergent type if and only if the conesponding Riemann surface 
is hyperbolic. It follows therefore that if  F0 is as above and is finitely generated 
then it is of  divergent type. Indeed the Riemann surface U]Fo can then be identified 
with R \ { r l ,  r2 . . . . .  rk} (for finitely many distinct rl, r2 . . . . .  rkE R) and R 
a compact surface cf. [11], [2]. 

In this papeI I shall consider a subgroup F c F  o where F 0 is finitely generated 
as above and I shall give a necessary and sufficient condition for F to be of con- 
vergent type. To state the theorem I shall need some algebraic preliminaries. 

Let G be a discrete group generated by a finite number of  generators 
gl, g2 . . . . .  gm~G. Let H c G  be a subgroup and let us fix ~1 . . . . .  ~k~G finitely 
many elements of  G. 

Let us also define Po,/tl  . . . . .  pkCP(G) k + l  probability measures on G that 
are symmetric (i.e. pj({x})=#j({x-~}) )  and which in addition satisfy: 

(i) supp P0 is finite, 
(ii) p0(gj)>0 j = l ,  2 . . . . .  m, 
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(iii) supp#jcGp{~j)  and if ord Cj=+oo (i.e. ~y r  element of 
G, N-_>I) then 

c -1 <= n2~j((~7}) <_- c n C Z  n ~ 0 

for some C > 0 ,  and all j = 1, 2 . . . . .  k. The meaning of (iii) is that /~j is essentially 
a Cauchy distribution on Z (if Gp (~j) ~ Z). 

We shall now consider the symmetric random walk on G given by the transition 
matrix P(g ,h )=l~({g - lh} ) (g ,  hEG) where / z=~=02j /2  j ( 2 j > 0 ; ~ 2 j = l ) .  

Definition. I shall say that G is recurrent with respect to H and {~ . . . . .  ~k} 
as above i f  the random walk constructed above returns infinitely often to H. (I.e. 
i f  the induced random walk on the left cosset space G/H is recurrent c f  [4], [5].) 

It will of course be shown that the above definition is independent of the parti- 
culal choice of the 2j and of the /~j ( j  =0,  1 . . . . .  k), and of the particular choice 
of  the generators g~ . . . .  , gin" It will also be shown that changing the ~j's into 
conjugate U's ' -1 oj (~ j=Tj~ jT j )  will not affect the outcome. 

Let now F o c A u t  (U) be a finitely generated Fuchsian group (of the first 
kind) and let F c F o  be a subgroup. Let # be the set of maximal cyclic paiabolic 
(i.e. each element is parabolic) subgroups of F0. By a theorem of Heins # contains 
only finitely many conjugacy classes ~ =  ~lw . . . . .  Wq~k and there is a natural one- 
one correspondance between these classes and the ideal boundary points r~ . . . . .  rk 
for which U / F o ~ R \ { r  1 . . . . .  rk} (with R compact as above) (cf. [3], [1]). This 
being said let I1 . . . . .  ~k be generators of representatives of #~ . . . . .  q~k respectively. 
We can then state 

Theorem. Let F o be a finitely generated Fuchsian group of  the first kind and 
let F c F o  be a subgroup of  Fo. Let 171, F2 . . . .  , F k c F  o be, inequivalent under 
conjugation, maximal cyclic parabolic subgroups that are a complete set o f  representa- 
tives in the corresponding conjugacy classes ( e l  just above). Let ~j be a generator 
o f  Fj ( j = l  . . . . .  k). 

Then F is o f  divergence type i f  and only i f  To is recurrent with respect to F and 
~ . . . . .  ~ .  

Observe that if F is of the first kind then, unless [F0: F ] <  +o% F will never 
be finitely generated (cf. [1] where it is implicit in the proof of 14.1). 

Deciding in general, whether F0 is recurrent with respect to some F and 
some r . . . . .  ~k, is not easy. But in specific situations we can always do it! 

Here are some examples: 
Let F0 be transient (i.e. not recurrent) with respect to some F and r . . . . .  Ck, 

then it follows from the general theory [5] that it stays transient if  we increase the 
number of ~'s i.e. it is transient for F and ~1 . . . . .  ~k, 4" . . . . .  4" (~.EFo j =  1 . . . . .  s). 
In particular as soon as the cosset space Fo/F is transient (i.e. we consider the 
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previous definition with no ~'s and ,U=po ) then F0 is transient for F and any 
choice 41 . . . .  , ~kEG. 

This remark becomes particularly significant when F <~ F0 is a normal sub- 
group. Indeed in that case the only known examples of recurrent groups G (that 
are finitely generated) are the finite extension of {e}, Z and Z 2. 

When F ~ Fo the problem in fact admits a simple answer: 
(i) I f  Fo/F is cyclic by finite then F is of divergent type. 

(ii) If Fo/F is not cyclic by finite and each parabolic element in F 0 generates 
a finite subgroup in Fo/F then F is of convergent type if and only if Fo/F is 
transient. 

(iii) If  Fo/F is not cyclic by finite and there exists one parabolic element in 
F 0 that genelates an infinite subgroup of Fo/F then F is of convergent type. 

The proof of these facts which depend on the main Theorem (and also on other 
things) will appear elsewhere. 

I have tried as far as possible to make this paper independent of [5]. But to be 
honest I think it will be very difficult for the reader to embark on the proofs before 
looking at [5] first. 

Special cases of the above theorem were considered in [5] and also in [10]. 
In [10] the authors treated the case M =  the sphere minus three points and F =  
[1rl(M ), tel(M)] the commutator subgroup of nl=Fo. Their methods are very 
different from ours, 

w The Discrete Random Walk 

Let G be a discrete group generated by finitely many elements gl . . . .  , gmEG 
and let H c G  be a subgroup of G. We shall give on G and on the left coset space 
G/H its canonical left invariant metric d=dl (cf. [7], [5] w (on G we define for 
x, y, aCG d(x, y ) =  ]x-lyl; ]al---inf {n; a=g~l 1, .... g,,~- ~j-- +_ 1} on G/H we define 
d as the quotient metric of the one defined on G). 

Let us also denote by D the union of  k => 1 disjoint copies of the non-negative 
integers N =  {0, 1, 2, ...} with all their 0 points identified. We shall denote the 
points of D by {x{; i =  0, 1 . . . . .  j" = 1 . . . . .  k} and we shall assume that 

X o  = xo* . . . . .  

Let us fix 41, {2 . . . . .  {kEG k elements of G, and let us finally denote by 
O=DXG.  We shall also denote by O the graph whose set of vertices is O and 
where the following pairs of points are joined by an edge: 

(i) Two points (x0, g), (x0, h) are joined if and only if g-~h=g}; ~ = +__ 1, 
j = l  . . . . .  m. 

(ii) Two points of the form (x~, g), (x~+~, h) for some j =  1, 2 . . . . .  k and 
r=0 ,  1 . . . .  are joined if and only if g-lh={} with ~=0, +__1. 
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No other points are joined by an edge. 
The above graph is clearly connected and induces therefore a connected discrete 

(in the sense of w [5]) metric d* on O. We simply set for 01, 02CO. 

(1.1) d*(Ol,02)=inf{n/01 and 02 can be connected by n successive edges}. 

Observe that G acts on O in the obvious way (g: (x, h)~(x, gh) and the 
above graph structure is invariant by that action�9 The quotient space O/H= 
D• with the induced quotient graph structure and the induced quotient 
metric can then be defined. I shall denote that quotient metric on O/H again 
by d*. 

A random walk will now be defined on O by its transition matrix P(O, 0") 
(0, 0'EO). Together with P a measure 2 {2(0)>0 0~O} will be defined on O. 
The exact values of P and 2 are irrelevant, what is essential is that they satisfy 
the following properties: 

/ ' i :  Both P and 2 are G invarianti.e. P(gO, gO')=P(O,O') and 2(g0)=2(0) 
O, O'EO gEG. 

P2: P is symmetric with respect to 2 i.e. that r 0') =2(O)P(O, 0") is a sym- 
metric function of O, O'CO. 

•3: P lives only on the graph 0 i.e. P(O, 0")=0 unless (0, 0') is an edge 
of O, ol 0=0 ' .  

P4: For  every edge (0, 0') of O we have P(O, O')>-so>O for some fixed 
e, independent of  (0, 0'). 

/ ' 5 : 2  is essentially constant over O i.e. 

0 ~ inf2 ( 0 ) o  ~ sup 2(0) < + co. 

We shall infact impose the much stronger (but not essential) condition that there 
exist A,B>O such that 2(x[,g)=A or B according to whether i = 0  or i ~ 0  
(respectively). 

Let us now prove that the above conditions are compatible by constructing 
such a walk. Let: 

N =  Card {g[; i = 1 . . . .  , rn, ~ = 0, +_1}, 

nj = Card t4".; . . . .  , t J  ~ = 0 , + 1 } ;  j - ~ l ,  2, k, 
and let us set: 

1 
(1.2) P[(xo, g), (Xo, ggT)]- i-~1,2 m, e = §  0; 2N' 

1 
(1.3) P[(x0, g), (x{, g~)] :- 2nj k ; j = 1 . . . .  , k, e = -k 1, O; 

1 
(1.4) P[(x,,g), (xr• z"nj' r = l ,  j = l , . . . , k ,  e = _ + l ,  0; 



A characterisation of Fuchsian groups of convergent type 297 

P is zero for all other pairs. This is dearly a Markovian matrix. P~---P5 are veri- 
fied as soon as A/k=B. By the property /'1 we see that we can define a random 
walk on O/H by: 

PH(H01, H02) = Z~,O~HO~ P (O~, O) 

and that this walk is symmetric with respect to the measure 2H(HO)=2(0) on O/H 
and satisfies the analogues of P3 and P4 for the quotient graph. 

The problem is to decide whether a walk PH that satisfies P~, P3, P4 is transient 
or recurrent. 

The point here is that two such walks on G/H that satisfy P2, P3, P4 and 
have the same symmetrising measure 2 H are both admissible for the metric d* of 
O/H (in the sense of w [5]). The general theory tells us therefore (cf. [5] w that 
if one is transient so is the other. The transience becomes therefore an intrinsic 
property of O/H (and possibly also of the measure 2). 

Let us now denote by: 

{0(n) = (x(n), g(n)); n ~ 0}; x(n)~D, g(n)Ea 

the path of our random walk on O and let us define successive stopping times: 
TI< r2<  ... by 

T1 = inf {n > O; x (n) = Xo} 
T~ = inf {n > T1; x (n) = Xo} 

T, = inf {n > T,_I; X ( n )  = X0}. 

If  we only consider the path for which x(0)=x0 we see that the paths: 

[0(0), O(TI), 0(T2)...1 

now define a left translation invariant walk on G, which I shall call P*. 
P* induces in turn a random walk on the coset space G/H which I shall call 

P~. The following proposition is then clear: 

Proposition. Let P be a random walk on 0 that satisfies the properties P~--P6 
then P is transient i f  and only i f  P~ is transient. 

(Alternatively P as above is transient if and only if  P* returns infinitely often 
to H.) 

The transition probability P*(g, h) (g, hEG) is given by some measure #EP(G) 
with P*(g, h)=l~({g-lh}) which can easily be computed. 

To be specific let P be the walk given by (1.2), (1.3), (1.4), let us denote rio 
the measure on G that charges the point g~ by 1IN (e=0, :t: 1, i =  1 . . . . .  m). Let 
us also denote by fij the measure on G that charges the points ~} (~=0, + 1) by 
1/nj (with the same notations as in (1.2), (1.3), (1.4)). Let us finally consider R the 
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random walk on N----{0, 1 . . . .  } given by: 

R(O, O) = 1 1 -~, R ( o ,  1) = ~ (n =~ 1) •, R ( n , n +  l ) =  ~ 

(and R(i , j )=O for all other values of i, j 6 N )  and denote by {p,; n =0 ,  1 . . . .  } 
the distribution of its first return time to 0. More explicitly: 

P,  = Prob 0 [first return occurs at time t =  n]. 

It is well known (cf. [8] or just about any other book of probability) that p , ~ n  -3/~, 
Once we have all that, a moments reflexion gives us that the transition measure of 
P* is: 

. = p0 0+ ; lpj( +z } 
Two facts have to be pointed out: 

(F~): # in (1.5) is symmetric and can be written as 

where /z0, tt~ . . . . .  /lk; g~ . . . . .  g,,; ~ . . . .  , ~ ;  0 q > 0 ,  ~ 2 j - -  1) satisfy conditions (i), 
(ii), (iii) of  the introduction. 

The best way to see Ft is not to compute but  to use potential theory and esti- 
mate the hitting probability of  two dimensional random walk on the real axis which 
is Cauchy. (Think of  Brownian motion; if  you do not  like this then compute!) 

(F2): let #' k , , = ~ = 0  2j/~j be ano.ther measure that satisfies conditions (i), 
�9 / 

(ii) and (iii) but for different set of generators g~ . . . .  , g,,, and new points 

~ = ~j~jTf 1, 7j~G j = 1 . . . . .  k 

conjugate to the previous ones. Then the walk defined on G by # is transient 
if and only if the walk defined on G by #" is transient. The easiest way to see this 
is to observe that for some constant C > 0  we have 

# <= Ce-le~'; #" <= C e - l e .  

and to use the general theory developed in w 4 [5]. 

w Metrics on Finite Riemann Surfaces 

I shall say that M is a finite Riemann surface if it can be identified conformally 
with 2 0 \ { z  1 . . . . .  zk} ( z j E 2 0 j = l  . . . . .  k) where 20 is a compact Riemann surface. 
The points zj (that are then ideal boundary points of  M)  will be called the punc- 
tures of  M. I shall also fix finitely many pairs (uj, vj) j = l  . . . . .  s (u j6M,  
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vj=l, 2, 3 . . . .  ). I shall consider now a class of smooth (say C 3) metrics on 
M \ { u  1 . . . . .  u s } = M "  that I shall call almost flat ramified metrics (A.F.R.M. in 
short) with respect to z 1 . . . . .  z k and ul, . . ,  us. These will be the Riemannian 
metrics g on M" that are conformal and for which there exist A t  . . . . .  Ak and 
B1 . . . . .  Bs punctured Nhds. of  zl  . . . . .  z k and u~, .... u s respectively (i.e. A y z j  

is a Nhd. of  zj in ~ and B i u u  j is a Nhd. of  uj in M)  and for which the metric 
satisfies the following two conditions: 

(i) The metric restricted to A i ( j =  1 . . . .  , k) reduces to the f l a t  metric ds ~= 

C Idz]~ of  the punctured disc, for some C, and some local conformal coordinate 
Izl 

z for which A j={0< lz1< l} .  
(ii) The metric restricted to Bj ( j '=  l . . . . .  s) in terms of some local conformal 

coordinate u (B j = ( 0 <  ]u]< 1)) takes the form 

(2.1) ds 2 = (p2(u)[ul-~(l-~)Idu] ~ 

for some function ~o that extends to a smooth (C a say) positive function to B j w u j .  

The points uj ( j  = 1 . . . . .  s) will be called the ramification points of the metric 
g, and the D will be called their ramification index. The above metrics behave 
well under branched coverings. 

Indeed let M - - ~  M be a branched covering with ramification points only 
P 

above ul . . . . .  us the A.F.R.M. g on M" can then be pulled back to R, a metric 
on M ' = M \ p - l { u l  . . . . .  us}. Near each point w0Ep-l(uj), in terms of  a local 
coordinate w, the metric g looks like CpZ(w)w-m-lle)]dw[ 2 with Oj=Vfll.t, where 
/~ is the ramification index of p at w0 and ~ satisfies conditions as in (2.1). 

It follows in particular that if # = v i ,  for w0~p-~(uj) ( j = l  . . . . .  s), then the 
pull pack metric ~ extends to a smooth metric on M'ww0. An A.F .R .M. ,  pulled 
back on a branched covering as above, will also be called an A .F .R .M.  on ~t. 

To help your intuition, the way to think of an A. F. R. M. with no ramification 
points, is to take ~r the compact surface and glue infinite straight pipes (flat cylinders) 
at small circles around the points z~ . . . . .  Zk. So that M ends up by looking like 
a sphere, with a number of handles and also a number of infinite straight pipes 
glued to it. 

Let us consider now a general Riemannian manifold M (complete or not) 
and let E c M  a discrete subset such that: 

(2.2) d({,~) > 1/A; ~, ~ E ,  ~ # 

d ( x , E )  < A;  V x E M  

for some large A. Such creatures, of course, exist in abundance, in any manifold. 
It suffices to choose a subset E c M  that is maximal under (2.2). I shall call such 
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a subset a grid. A grid ~ as above, will always be considered as a discrete metric 
space (~, d), with the metric d it inherits from the Riemannian metric of  M. 

Let (A, d) be a metric space that satisfies the following conditions: 

1) for some ~ > 0  d(x, y) ->~>0 Vx, yEA, x # y ,  
2) for all A > 0  there exist B > 0  s.t. 

card {y]d(x, y )<A}<B;  xEA. 

3) there exists C > 0  such that for all x, yEA we can find a "chain" 
X=Xo, xl . . . .  , xj=yEA such that j<-Cd(x, y) and d(xi, xi+i)<=C i=0 ,  1 . . . . .  j - 1 .  
We shall say that (A, d) is a discrete connected metric space. (S, d) above satis- 
fies 1) and 3) it satisfies 2) if M is "reasonable" cf. [5]. 

Two discrete connected metrics as above dl, d2, on the same space A, will 
be called equivalent if for every a > 0  we can find some b > 0  such that 

dl(x ,y)<-a=~d2(x,  y)<=b 

as (x, y) _<- a =. da (x, y) <= b 

for all x, yEA. This is equivalent to the existence of some c > 0  such that: 

l d,(x, y) ~ dl(X, y) <-- cd2(x, y); Vx, yEA. 
c 

Let us go back now to M a finite Riemann surface endowed with an A.F .R.M.  
g (punctured at z i . . . . .  z k and ramified at (ul, vi) . . . .  , (u,, v~) as above). A grid 
A c M  can then be found in M '  that can be identified with D the union of k 
distinct copies of  N (with the zeros identified) (cf. w and the identification is a metric 
equivalence if we give on D the natural graph metric (of. (1.1)) on D where the 
edges of that graph are just the pairs J J (x~, xi+l) ( j = l  . . . .  , k; i = 0 ,  1 . . . .  ). 

The way to obtain such a grid is clear. We fix some point moEM" which we 
identify with xoED, we then choose appropriately, sequences (m[)T= 1 ( j  = 1 . . . . .  k) 
such that m[i-=:--~ ~ zj (topologically in 3~r and where we make the steps 
du(m[, J mi+i) (1-<j<_-k i_->O) all more or less equal and very large, dm indicates 
the distance on M" induced by the Riemannian structure g. (Observe that for 
an A.F .R.M.  every ramification point lies at a "finite distance".) 

It will be important to pull back grids by p:  )~ t~M a covering map. ()~t is 
a covering manifold and we endow /~ with the pull back metric of  M.) Let ~ c M  
be a grid on M, and let us assume that there exists some ct > 0  such that for every 
closed loop d(t)EM d(O)=d(1)E~ (O-<t<=l) in M, that is not  homotopically 
zero, we have (length of  d(t) O<-t<-l)_->e. It is then clear that p - l ( ~ ) ~  is 
a grid in ~ .  
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The above condition is deafly verified for the grid A ~ D  that we have 
constructed on a finite Riemann surface M, where M is endoved with an A. F. R. M. 
ramified at ul . . . .  , u~EM, and where p is any branched covering of M ramified 
only above ul . . . . .  us. 

w Grids Associated to the Fuchsian Group 

Let G be a finitely generated Fuchsian group of the first kind acting on the 
unit disc U. By [2], [11] it follows that the surface U/G=M is a finite surface, 
say 3~r~{zl, ..., zk} (M compact), and that the coveling Pc: U-~M is ramified 
only over finitely many points (us, ~)  ul . . . .  ,u~EM ~1, ~2 . . . . .  ~s -->2. Let then 
H c G  be a subgroup of G, let M =  U/H be the intermediate surface, and let 

U-p M p . . . . .  M Pv---- P 'P 

be the factorisation of the universal covering. Observe that if wEp-l(uj) (1 = j  =k)  
and if uCU is such that ~(u)=w then: 

(3.1) (ramification index of  ~ at u) • (ramification index of p at w)=Qj. 

Let us now fix some A.F .R.M.  g on M ' = M \ { u  1 . . . .  , us} with punctures 
at zl . . . . .  ZR, ramification points at ul . . . . .  us, and corresponding indices 

Vl, . . . ,  V s ~ l .  

We shall then lift (as explained in w that metric to ~, an A .F .R .M.  on 
) ~ ' = p - l ( M ' ) ,  and gv, an A .F .R .M.  on U'=pv l (M' ) .  

If  we let A c M  be the grid constructed in w then p- l (A)  and pvl(A) 
are grids in M '  and U' respectively. 

Our aim will be to describe the above two grids in terms of G and H. 
Towards that let us fix 41, 42, .--, 4kEG parabolic elements in G that generate 

maximal (in G) cyclic subgroups which correspond to the punctures zl . . . . .  z k in 
the obvious way (e.g. cf. [1], [3]). Observe that two different 4i, 4j are not conjugate 

P I in G i.e. 4i~q~-14j~o rp~G, and a diffelent choice 41,~2, -.., 4'k of these ~'s 
would consist of conjugate elements). The exact choice of ~j among all its conjugates 
will be done later. 

Using then G, 41 . . . . .  4kEG, and some fixed set of generators ga . . . . .  g,n~G, 
I shall construct the discrete metric space 6)=D•  with its graph metiic d* 
(a different choice of the generators gj would give me an equivalent metric). I shall 
also consider the quotient space 6)/H=D• with the quotient metric d*. 

We then have: 

Proposition. (i) p~ l (A)c  U" can be identified up to metric equivalence with O. 
(ii) p - l ( A ) c M "  can be identified up to metric equivalence with 6)/H. 
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It is enough to prove (i) since (ii) then follows by taking the quotient by H. 
The strategy to prove (i) is the following: 
(a) I shall find Q a Borel fundamental domain of  U'~M" (which will in 

fact have a piecewise smooth boundary) and an identification I: O~p-~l(A) that 
commutes with the action of G and such that I(DX {e})=pvl(A)nQ (e is the neutral 
element of  G). I shall even make sure (just to be on the safe side!) that 

(3.2) d{[p~l(A)nQ], CQ} > O. 

I shall then prove: 
(b): 3 A > 0  with the property: OED• d*(O,q~)<=l implies 

dv(I(O ),/(p))<_-A: d v denotes here the distance induced by gv. 
(c): V B > 0 3 C > 0  with the property: XEpvl(A)nQ, YEpvl(A) and 

dr(X, Y)<=B implies that d*(J(X), J(Y))<-C where J=1-1. 
If  we use the group action G on U'  (which now acts freely) and a moments 

reflection we see that the proposition follows from (a), (b) and (c). 

Step (i). Let us start with 21) whele M = M \ { z l  . . . . .  Zk} and let us introduce 
afinite number of  cuts on M so as to make it simply connected. Each cut consists 
of  simple smooth arcs of the form l(t) (0 <- t ~ 1) [possibly l (0)=l(1)  but no other 
double points]. We require that the points zl, ..., z~, ul . . . . .  us lie in the union 
of these cuts. We require further that each z~ lies in only one cut, say li(t), with 
li(O)#li(1)=zi, and I i is a geodisc for the A . F . R . M .  on M ' ;  that cut, observe, 
will have to look eventually like a generator of  the flat cylinder that is the Nhd. 
of  the ideal point zi in M. 

The above can be done in many ways. 
We obtain then Q by lifting (by monodromy) the set M \ { a l l  the cuts} and 

adjoining to that open simply connected domain a number of its boundary curves. 
I shall also make sure that d(A, union of cuts)>0. Having done that I shall identify 
D with A and A with pvl(A)nQ. Let I:  {e}XD~pvl(A)nQ be the composed 
identification. The group action of  G on O and on pvl(A) induces then an 
identification of  O with pvl(A) [by I(g, x)=gI(e, x)EU]. 

Step (ii). It is here that a more specific choice of the ~j's (and of  the metric) 
helps. We shall choose punctured Nhds. Aj of zj in _~r and a local coordinate 

Idzl 
z in Aj such that A j = { 0 < l z ] < l }  and such that the metric g becomes C iz[2 

We shall also choose some ~jEG that corresponds to zj and is such that ~j=~j(1),  
where ~j(t) is a one parameter group of parabolic transformations on U that 
induces the transformations p[~j(t)fi(z)]=e2~itz for zEAj and fi(z)=p-l(z)nQ. 

To prove (b) observe first that we may as well assume that O=(x[, e) with 
i very large, ~0 can only be then (x~+ 1, ~.)e =0,  + 1. By what has just been said the 
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curve 7={~j(t)I(O); --l  <= t _<- l} passes through I(0) and its length is dearly 
bounded by a constant. 

The above specific choice of the ~j's is by no means essential, but it does 
clarify the picture. Another way to get a clear picture is to start with a fundamental 
domain Q0 that is geometrically rigid (e.g. the Poincar6 fundamental domain). 
In [9] w one can find a description of  the above geometry. 

Step (iii). Let B > 0  be given. I distinguish two cases: 

Case 1. J(X)=(x~,e) with j = l  . . . . .  k and i<-io for some large i0 to be 
specified later. Finitely many points have that property and so only finitely many 
choices of  Y exist, by (3.2), that satisfy do(X , Y)<=B [observe that away from 
the ramification points the volumes of  balls of radius r for the A . F . R . M  stay 
bounded above and below by positive numbers only depending on r]. From this 
it follows that some C =C(B, io) can be found that satisfies condition (c). 

Case2. J(X)=(x~,e) with j = l  . . . .  , k  and i>io with i0 as in Case 1: let 
YCp~X(A) and let J(Y)=(x[)', g) let us join X with Y in U" with a curve 7 of 
gv-length less then 2B. The curve Pv(?) is then a curve in M" of length ~2B 
joining m4" to m~ j; (points of the grid A). 

If  i0 is large enough this forces j = j '  and li--i'l<=D (D depending only 
on B). Furthermore the curve Pv(?) will then lie entirely on the flat cylinder of 
M corresponding to the ideal boundary point zj, and the number of times that 
this curve can go round that cylinder has to be bounded by a fixed multiple of B. 
This forces g to be ~ with k bounded by a fixed multiple of B. 

The upshot is that Y can only be of the fo~m x j ( v ,  CJ) with 

[i-i'[ <--D and lk! <=D 

(D only depending on B). The proof is complete. 

w Proof of the Theorem 

All the notations of the previous section will be preserved. I shall refer to formula 
(3.1) and consider first a special case. I shall assume namely that for every 
j = l ,  2 . . . . .  s there exists some /zi=>l such that 

(4.1) [ramification index of  p at each wEp-l(uj)]=p~. 

This is certainly the case if the coverning Pu is unramified (i.e. if  G already 
acts freely on U) or if H is normal in G (for then G/H acts transitively on 
p-l(uj)). 



304 N. Th. Varopoulos 

Proof of the special case. I shall specialise here vj=#~ ( j = l  . . . . .  k) (vj being 
the remification indices of  the A.F .R.  M on M. considered in w By what has 
been said in w the metric g extends then to a smooth metric on M. It is an easy 
matter to verify that this extended metric is complete and its curvature is bounded 
from above and below, and also that p-l(A)cM- is also a grid for (M, g). [Cf. 
Appendix.] To be able to apply the general theory of  [5] (especially w I shall 
need to make one final construction. 

I shall decompose M into disjoint Borel subsets Mo, M { j = I  .... , k i = 1  . . . .  
such that with the identification of D with A we have for some appropriate r, R > 0 :  

(4.2) B,(xl) c M/" c Bg(x/); j = 1, ..., k, i = 0, 1, . . . ,  

where I denote 1 2 Mo=M~=.. .=M~=M o and B~(x) in M '  is the metric ball 
centered at xEM" and radius ~z, M{' denotes M]nM'. 

It is clear that I can also make the choice of A and the decomposition such that:  
(i) Each M{j  = 1 . . . . .  k; i =  > 1 lies entirely in the flat cylinder that corresponds 

to zj. 
(ii) Volvt(M])=B i=>l j = l , 2  . . . . .  k i.e. that the Riemannian volume is 

independent of i and j .  
(iii) Vol (Mo)=A and A/B=k, (Mo=M'nMo). 
Only (ii) and (iii) are essential here. I only put down (i) to help you see how 

we get (ii). 
I can then consider a decomposition of  the fundamental domain Q c  u '  into 

(4.3) Q~=Qnp~X(M~ ") j =  l ... . .  k; i=O, 1,... 

1__ 2__ 
(Qo-Qo-.. .  =Q0). 

It is clear then that a decomposition of the whole of U' can be thus obtained 
by acting on the Q['s by G. The sets of  that decomposition are gQ~ (i>=o, 
l~_j~_k, gEG). By identifying gQ[ with hgQ{ for hEH gEG i>=O,l<-j<=k 
we obtain a disjoint Borel decomposition of 3~' into sets that I shall denote abu- 
sively by: 

(4.4) OQi; OEG/H i>=O, j =  l, 2 ..... k. 

It is clear that with the identification of O/H=D• with p-~(A) 
we have: 

(4.5) B,((x}, 0)) ~ ~Oi ~ B~((x}, ~)) 

for R, r > 0  as in (4.2) and all i , j  and O. It is just as clear that Vol~(OQ~)=B, 
i=>0; Vol~t(OQo)=A where A and B are as in (ii) and (iii). To obtain from this a 
decomposition of  M we have to accommodate somewhere the points p-1 {u~ . . . . .  us}. 
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But by condition (i), that now comes handy, we see that all the u s can be made to 
1__ 2__ lie in M0. So we shall adjoin to Qo-Qo- . . .=Q~  the points p- l{u  1 ..... us}c~Q. 

The rest is done by the group action as before! 
We finally see that (4.4) supplies us with a decomposition of M which together 

with the grid p-l(A) satisfies all the conditions of the main theorem in [5] w 
[Cf. Appendix.] 

That main theorem in [5] and the proposition of w in this paper completes the 
p loof in  the special case that we have considered. 

The point where the above proof breaks down, when (4.1) fails, is that we cannot 
extend the Riemannian metric ~ from ~ \ p - 1  {ul . . . . .  us} to the whole of M. 

The decomposition of M /  that satisfies (4.1) (i), (ii), (iii) and the decomposi- 
tions (4.3) and (4.4) can be made however as before. This time it will really be essential 
to have all the ramification points Ul . . . . .  us well in the interior of  M0; their 
preimages on )~ will then be well in the interior of w{OQo[~EG/H}. The only 
singularities of  the metric ~ lies on these preimages, and this, for any choice of  
Vl, vz . . . .  , vs=>l. I shall modify the metric ~ at small disjoint punctured neigh- 
bourhoods of  the points of p-~{Ul . . . . .  us} so as to make the metric g smoothly 
extendable to M. 

To do that, we consider (g~)~A ]AI=o s A.F .R .M. ' s  on M '  obtained by the 
0 s choices 1 <_-vj-<Q=max 0j and make sure that all these metrics coincide outside 
very small disjoint Nhds. of the u/s.  It is clear then that with an appropriate partion 
of unity on M '  we can obtain a metric g = ~ , ~ a  2,g,  (g- is the pull back of  
g~ on M')  that extends smoothly on M and that g coincides with each ~, outside 
p-~ (union of small Nhds. of the uj's). 

It is an easy, if a little tedious, matter to velify that the 2's can be chosen so 
that the curvature of ~ is bounded. This simply involves the W2 a and Hess'(2#) 
(W=covariant  derivative w.r.t. ~, and Hes :=Hess i an  w.r.t. ~) .  

It is also easy to see that the ).'s can be chosen so that p-~(A) remains a grid 
identifiable up to metric equivalence with .O/H, and that (4.5) will still hold for 
some R, r>0 .  Indeed it is a matter of  observing that in everything that we have 
done, when we considered the distance of  two points --" we x, yEM , could have 
considered the length of  some curve that joined x to y and stayed away from the 
points p-l{u 1 . . . . .  us}. 

The property Vol~(pQ[)=B=Vol~(pQ[) i ~ l  is clear by the definition, 
and what is also clear is that we can also guarantee that:  

0 < d l  = inf [Vol E (TQ0)] -< sup [Vol E (~Q0)] <= A2 < + oo. 

A further modification of  g in each of the disjoined open sets p- l ( f l )  where 
f2~M0 is a very small open set away from the previous Nhds. and from everything 
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else will guarantee then that: 

VOl#modified [$Q0] = A. 

By changing B if  necessary we can also have A/B=k. [The way to change 
B the last minute is to give to MoCM small pieces from the flat cylinders, and 
change the size of  the slices M{ of  the flat cylinders.] 

After we have done all that we are back to a situation where the Theorem in 
w [5] applies. 

The proof  is completed as before. 

Remark. Another way to finish this last proof  is to go back to P5 in w and 
relax the condition that 2 (0) takes only two values. 

Appendix to w 

We preserve all the notations of  w and w 
For  every ujEM (ramification point of  Pv with index r we can find Bj 

some Nhd. of  uj in M that admits a local coordinate u such that u (u j )=0  
Bj=(]u[ < 1) and such that it has the following property: 

Every connected component B of  p-l(Bj)cM, intersects p-l(uj) at only 
one point, ~ say, and there exists some local coordinate z of  B such that z ( ~ ) = 0  
B = ( I z I < l )  and such that u(p(fl))=(z(fl))" (fl~B) where /~ is the ramification 
index of  p at ~ .  

The above is clear in the special case H=G, M= U,p=pv. Indeed if we first 
fix some ~p-d~(ui) then it is clear that we can do the above with Bj=p(B) where 
B is some appropriate Nhd. of ~.  But then the group action of  G on U allows 
us to go to any other point of  pvl(uj) .  From this special case the general case 
follows at once since for any ~Epv~(uj) Hr~(stabiliser of  ~ )  is a finite cyclic 

group. 
Let us assume that g is an A .F .R .M.  on M such that ~, the pulled back 

metric on B \ ~ ,  extends smoothly to ~ (with the notations just above). The 
metric ~, with the above coordinates on B, looks like @(zU)ldz] ~ with (p=rpj 
( j = l  . . . . .  s) as in (2.1). The above 9 only depends on j and not on ~ .  It follows 
that the curvature K(M) and the injectivity radius i(M) of ~ on the set (IzI < 
1 /2 ) c B  are both controlled by constants that only depend on j =  1 . . . .  , s and on p. 

Let us observe also that outside the set p- l ( f2)  (where f2 is some fixed Nhd. 
of  u I . . . .  , us in M) we can control K()~) and i(M) by the curvature and the 
injectivity radius of  g on M\f2. 

From the above two facts we finally conclude that when ~ extends smoothly 
on )~ a global uniform control of  K()~) and i(.M) can be obtained. 
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