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w Preliminaries 

In 1974, Jean-Luc Stehl6 has given in his paper [4], such a conjecture 1) that 

holomorphically convex domain D = ~  in C n is hyperconvex. In 1976, Jean-Louis 
Ermine has shown in his paper [1] that this conjecture is positive in case of holo- 
morphically convex Reinhardt domains ~). But, in general case, it is as yet unknown 
that this conjecture is positive or not. Evidently, holomorphically convex domain 
in C n can be approximated by an increasing sequence of analytic polyhedra and 
analytic polyhedra are hyperconvex. 

The purpose of this papel is to give such a proof that this conjecture is positive 
in case of holomorphically convex domains of some type by means of  the above 
approximation. 

Definition 1. 3) Let D be a relatively compact open set in C n. D is said to be 
hyperconvex i f  and only i f  there exists a plurisubharmonic function p(z) defined on 
a neighbourhood of  D and negative on D, such that 

{zCOlp(z) ~ c} 

is a relatively compact set in D for any c<0.  

The following lemma is easily shown from Definition 1. 

1) Cf. [4], pp. 167, 177 in which D is relatively compact in C n. 
~) Cf. [1], pp. 131--133. 
s) Cf. [4], p. 163. 
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Lemma 1. 4) Let D be a relatively compact open set in C". D is hypereonvex 
i f  and only i f  there exists a plurisubharmonic function p(z) defined on a neighbourhood 
of  ~ and negative on D such that for zED 

lira p(z) = O. 
z~OD 

In case of  D = ~ ,  Lemma 1 is modified by J.-L. Ermine as follows: 

Lemma 2. Let D : D  be a connected and relatively compact open set in C ~. 
Suppose that for any sequence S = {z~}, yEN which has no accumulating point in D, 
there exists a plurisubharmonic function ps(z) defined on D, such that ps(z)<O 
on D and 

lira p,(z 0 = 0. 5) 
V ~ - b o o  J 

Then, D is hyperconvex. 

Proof. The p roof  can be seen in [1]. 

w Indieatrices of Finite Order 

Let D1 and D~ be domains in C ~, such that C"--D2c=D1. Let f i (z)  and 
f2(z) be holomorphic on D1 and on D~ resp., and both  of  fi/f~ and fJJ'~ be 
holomorphic on DlnD~. 

We consider a current (in the sense of  G. de Rham)  on C ", defined by 

O k = 2id~d~loglfk(z)[ (k = 1,2). 

Because of  the pluriharmonicity of  log lfdAI, we have, on DlnD~, 

01--0~ = 2idzd~logl~l  = O, 

and then O1 = 03. Let us denote f = f ~  and D =/)1  and give the following definition. 

Definition 2. 6) The current on C": 

6) = 2id~ d~ log If(z)] 

is said to be a current associated to the hypersurface V"- I= { f ( z ) = O } c c D ,  where 
f ( z )  is a holomorphie funetion defined on a bounded domain D in C". 

4) CL [4], p. 163. The limitlimz~ovp(z) means that for any e>O, there exists a neighbour- 
hood U(OD) of 0D, such that Ip(z)l<e, for every zEU(OD). 

5) Cf. [1], p. 136, where the property is called "HC-convex". 
e) Cf. [2], pp. 368--369. 
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Since this current  0 is positive, closed and  of  type  (1, 1), 7) we const ruct  a f o r m  

0 ~n--1, i 
-- nn-  1 ^ ~ = -~- dz d~ log ~ v  zv zv 

and  give the following definition. 

Definit ion 3. 8) The function 

= defined on t => 0 

is said to be a projective indicatrix (o f  the current O) whose centre is the origin or 
simply an indicatrix (o f  63) of  centre O. 

I t  is shown in the pape r  o f  P. Lelong ~) tha t  there exists a limit ~ (0)=  
lira,0 ~ ( t )>0 ,  and  the funct ion ~(t) is increasing and  posit ive for  t=>0. 

Definit ion 4.1~ Indicatrix ~(t) defined for t>:to>=O is said to be o f  finite order 
2, i f  and only i f  

log ~ (t) _ 2 < + co lira sup 
t~ +~ log t 

Definit ion 5. A current 63 which is positive and closed is said to be of  finite order, 
i f  its indicatrix is o/finite order. 

Indicatr ices o f  currents  satisfy the following lemma.  

L e m m a  3.11) Let ~(t) be an indicatrix o f  a current 63 which is positive and 
closed on C n. Then, the following two conditions are equivalent for s > 0 ,  a=>0 

f+= t-~d~(t) < + 
~ a  

C1) 

(ii) l im ~ ( t ) t - ~ = 0  and 

Proof The  p r o o f  is easy. 

L e m m a  4. Let 2 be an order of  P(t) 
4<-20 . 

f : =  ~( t ) t -S- ldt  < + ~. 

and 20= in f  {sIf+~=t-Sd~(t)< +~o}. The,,, 

~) Cf. [2], pp. 365--369 & [3], pp. 244--245, pp. 247--250. 
s) Cf. [2], pp. 371--373. 
a) Cf. [2], pp. 371--372 & [3], pp. 259--261. 
10) Cf. [2], p. 373. 
xl) Cf. [2], pp. 373--374, Proposition 2. 
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Proof. 
20 => inf{sl li+m ~ ~(t)t -~ = O} 

= sup / s l  l im ~(t)t -~ = C, > 0} 

[log ~ (t) _ 5~. = lira sup 
t ~  + ~ l o g  t 

This shows tha t  2-<20. 

L e m m a  5. I f  an inequality 

f f =  t - " - l d~ ( t )  < + ~, 

holds for an integer Iz and a@O, the order o f  q(t) isfinite. 

Proof. The p r o o f  is easy f rom L e m m a  4. 

By means  o f  the current  o f  finite order,  the following impor t an t  propert ies  o f  
hypersurfaces  have been obta ined by  P. Lelong and  H. Skoda.  

Theorem 1.1~) Let f ( z )  be a holomorphic function on a domain D in C A and 
O be a positive and closed current on C" associated to the hypersurface V n - l =  

{f(z)  = 0 }  containing no origin. I f  6) is o f  finite order, there exists an entire function 
F(z) on C", such that 

V "-1 = {F(z) = 0}. 

Proof. The  p r o o f  can be seen in [2]. 

In  the pape r  o f  H.  Skoda,  a par t  o f  condit ions in T h e o r e m  1 is somewhat  
modified. I t  is as follows: 

Corollary ~3). Suppose that with the same hypothesis as Theorem 1, 

f+= t -~ - ld~( t )  < + o c )  

where ~(t) is an indicatrix o f  O, # is an integer and a>=O. Then, there exists an entire 
function F(z) on C", such that 

V " - I  -- {F(z) = 0}. 

12) Cf. [2], pp. 394--397, Theorem 5. 
13) Cf. [5], p. 138, Theorem 7.2. The hypothesis that O is of finite order is replaced with the 

finiteness of integral. 
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w A Class of Holomorphic Functions 

Definition 6. A set R D of  functions that are holomorphic on a domain D c C "  
is said to constitute a class, i f  the relation f ~ R 9  implies that cfERD, where c is 
an arbitrary complex number. 

For example, the set ~o  of all polynomials defined on D, or the set ~i o of 
all holomorphic functions defined on D constitute a class resp., and ffi o contains 
every class R o. Let us consider a particular class as follows: 

Lemma 6. Let 6)fl ~ be a current associated to the hypersurface V~"-x= 
{f(z)=71f~lSD, ? be a complex const.} containing no origin. Let us define 
3o={f(z)EffiD] the order o f  Oil ~ be finite for a complex const. ?}. Then, 
3o constitutes a class. 

Proof Suppose that f ( z ) ~ 3 o .  Then, g=cJ  (c: complex number) is also holo- 
morphic on D. The currents (gSl r and Ogle r that are associated to the hypersurfaces 
Vs"-I= {f(z)=?} and V0"-l= {g(z)=c?} resp. have the following relations: 

@alcr --- 2i d z dz log ]g-c~l = 2i dz delog Ic(f-7) l  = 69ylr. 

Let ~y(t) and ~o(t) be indicatrices of (gylr and Oolcr on []z[l<t resp., and 
2j, and 2g be orders of ~y and ~g resp. Evidently, we have 

This shows that 

Hence, 3D constitutes a class. 

"~0 = 2 f .  

g = cfE3D. 

Definition 7. Let D be a relatively compact open set in C". D is said to be 
R-convex, i f  and only i f  for any compact set K c D ,  the set 

= (-] {zEDll f (z )  I <= sup I/(01} 
fERD ~EK 

is also compact, where RD is a class o f functions defined in Definition 6. 

Remark. As a particular case of Definition 7, 3-convexity, ~-convexity and 
(5-convexity can be defined corresponding to classes 30, ~o  and (5 D resp. 
Especially, 15-convexity is also called holomorphic convexity. 

In Main Theorem, we are to give a proof that the Stehl6's conjecture is positive 
in case of 3-convex domains in C", and for that purpose we prepare for a definition 
of  analytic polyhedra on class 3o and a lemma. 

Let us define an analytic polyhedron on class 3D as follows: 
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Definition 8. Let D be a relatively compact open set in C". An open set 
P ( c ~ D )  is said to be an analytic polyhedron on class JD, i f  and only i f  there exist 
k holomorphie funetions f~(z)E ~D, for a= l, 2 . . . . .  k defined on a neighbourhood 
U ( P ) ( c c D ) ,  such that 

P = {zEU(P)[]L(z) ] < 1, o~ = 1, 2, ..., k}. 

An approximation to the J-convex domain D in C" by the sequence of ana- 
lytic polyhedra on class JD is given by the following lemma. 

Lemma 7.14) Let D be a relatively compact open and J-convex set o f  C". Then, 
it is the union of  an increasing sequence of  bounded analytic polyhedra Pv, yEN on 
JD, such that 

Pv ~ c  Pv+x c c  D, D =  UP~. 
v 

Proof. Since D is the union of an increasing sequence of compact sets K~, 
yEN, it is sufficient to construct an analytic polyhedron P for an compact set 
K of this sequence, such that 

K c  P, P c c  D, 

and the functions f , (z )  (a=  1, 2 . . . . .  k) defining P, belong to J/~. 
Since D is a relatively compact j-convex domain and K c c D ,  there exists 

a compact set R, such that 
K c R c c D ,  

and for an arbitrary point z0COD, there exists a neighbourhood U(zo) satisfying 
the relation 

U(zo)mD c D - R  

(see Definition 7). For a point z~EU(zo)mD, there exists a function f.~(z)E~D 
satisfying the following properties: 

sup [f~.(z)[ = 1, [fq(za)[ > 1. 
zER 

Because of  the construction of /~, it is evident that 

IL.(z)I > 1 
/'or every point zEU(zo)nD. 

Since 0D is compact, 0D can be covered by a finite number of neighbourhoods 
U(z~,) of z~,Er ( a = l ,  2, ..., k) which are constructed as the above U(z0), and 
the corresponding functions 

f= (z) ----- fz* (z)E JD 

~4) CL [6], pp. 140---141. 
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(z* is an arbitrary fixed point in U(z~)) satisfy the following properties: 

sup IL(z)t-- 1 
zEs  

and 
I f , ( z ) l > l  on U(z=)nO. 

Therefore, we have obtained the analytic polyhedron 

e =- { z c O ] l A ( z ) l  < 1, f ,E~o ,  c~ = 1, 2, ..., k} 

which possesses the following properties: 

K c R c P ,  P c c D .  

Thus, our proof of Lemma 7 is completed. 

Remark. As we see in the proof of Lemma 7, we can choose a neighbourhood 
U(OD) of OD in C", such that the relation 

U(OD)nD c D-- P 

holds and every function f , (z)  (c~= 1, 2 . . . . .  k) defining P satisfies the following 
inequality 

I L ( z ) l  > 1 on U(OD)nD. 

w Main Theorem 

Main Theorem. Let D = D  be a connected, relatively compact and ~-convex 
domain in C". Then, D is hyperconvex. 

Proof Let S = {z~}, yEN be a sequence of points in D, such that S has no 
accumulating point in D. To prove our theorem, it is sufficient to construct a pluri- 
subharmonic function ps(Z) defined on a neighbourhood of D and negative on D, 
such that for S = {zv}, yEN, 

lira p, (z~) = 0 (by Lemma 2). 

There exists a set Es(~OD) of accumulating points of {z~}, such that for any 
ZoEE s, {z~} has a subsequence {zvk } converging to z0. Then, it is sufficient to prove 

lim ps(zvk ) = 0 
k ~ + ~  

for the above {z~k}. 
Since D is ~-convex, there exists an increasing sequence of bounded analytic 

polyhedra P~, yEN on class ~/~, such that 

zuEP v (/~ = 1, 2 . . . .  ,v) 
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and 
P , , c ~ P ~ + I c c D ,  D = U P  ~ ( b y L e m m a 7 ) .  

Corresponding to {P,}, yEN, let us consider a sequence {s~}, yEN such that 
8~>0, s~O (as v~+oo). 

For  each Pv, we can choose kv holomorphic functions .[,,,~,(z) (~ = 1, 2 . . . . .  k 0 
defined on a neighbourhood U ( P , ) ( c D )  of  P , ,  such that 

ev = {zEU(P~,)llf,,,~,(z)l <: 1, a = 1, 2 . . . . .  k~}. 

Since fi ,~E~o, the current O rv.~l ~ associated to the (complex) hypersurface 
(z,) 

V "-Iv,, = {fi,~(z) = 7[7 be a complex const, and 171 = 1} 

is of  finite order. Then, there exists an entiie function (r) F~,,(z) on C", such that 
(~,) 

V "-lv,~ = {F}, r2 (z) = 0} (by Theorem 1). 

Let  us considel a fixed point ~.EOD-Es.  For any neighbourhood V(5) of  5, 
there exists a number v0, such that for any v~=vo 

OP~ n V(2) # O, 

and for a point z*EOP~nV(2,), there exists at least a function f , ,~(z)  defining P~, 
such that 

Z * f~,~( ~ ) = ? v ,  17"1=1. 

We can assume without loss of generality a = l ,  * -  7 ~ -  1 and consider an entire func- 
tion F~l~(z) corresponding to the hypersurface {f , ,~(z)=l} .  Since log IF(.~l)(Z)l= > 
- f l ~ > - ~  (fl~>0: const.) on a neighbourhood U,(OD)(cU(D))  of  01) as shown 
in Lemma 7, Remark, log F ~ ] v,l(z)} is continuous on U,(DD) and from the compact- 
ness of 01), there exist 

max log IF~(1)l (z)l = M~, minlog IF~(,1)l (z)l = m,  
zEOD zEOD 

and 

l~l v ~ m v - - L  (l~,[v-- mv) , 
Ev 

(in case of  My = m,, rh, = m ~ -  1 -  l/e0. 

The real hypersurface W~, ~ = {[fi, ~ (z) l = 11 f i ,  �9 (z) E ~o} is expressed as a union 
of  complex ones, such that 

W,,,~ = U{f~,~(z) = Ylf~,,~,(z)E~D, 7 be a const, and 171 = 1}. 
7 

Therefore, for each o~ (0~= 1, 2 ..... , k~) and each 7 (]71=1), we can choose a number 
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c , , , > 0 ,  such that  
sup (log ]F~,~ ) (z) l-- c~,~) < rh~ on D, 

l~=a<_-k~, [y] =i 

where F~,~((~) z) is an entire function corresponding to the hypersurface {f,,~(z)--7}. 
Because the family of entire functions F~(~,)~(z) are uniformly upper bounded on 
compact set DX {l?l = I} .15) Then, the function 

q~ (z) = sup {log tF~, ~] (z)I, sup (log [F~,~ ) (z)l--cv,,)} 

is evidently cont inuous plur isubharmonic  on a ne ighbourhood  U(D) o f  D and 
satisfy the tollowing relations:  

max ~o~ (z) - max ~p~ (z) = M~ (by maximum principle) 
zEOD zED 

and 
rain r (z) = m~. 
z ~ D  

Let  us define a funct ion 

r = ~d~v(z)-Mv} 
M~-- m~ ' 

(in case that  M~=mv, ip~(z)=e~{~o~(z)--M~}). Then,  ~pv(z) 
harmonic  on U(D) satisfying the following inequalities: 

~ ( z ) < 0  on D, 

--e~ <= tp,(z) <= O on OD, 
* and especially on the point  z v 

5,{ ~ sup (log F~,)~(z*~)l-c~,~)-M,} 

My--/nv 

(in case that M~=m~, r  

is cont inuous plurisub- 

~(r~- M~) 
M v _ m  v < --1--%, 

Fur thermore ,  let us construct  a funct ion ps(z) in the form of  the upper envelope, 
such that  

Ps (z) = l i ~ s u p  qs (~), qs (~) = sup ~v (~). 
yEN 

Obviously,  Ps(Z) is cont inuous plur isubharmonic  on U(D), and ps(Z)<-O on D. 
But, we can not  accept the equal sign, because o f  ~ v ( z * ) < - 1 ,  z*CD, v~N (by 
maximum principle). Then,  we have 

P s ( Z ) < 0  on D. 

At  last, we are to  show that  

lim ps(z~) = O. 

as) Cf. [2], pp. 376--379 Proposition 5 in which there exists a number c~ > 0 such that l iall > 6 > 0 
and [2], pp. 394--397, Theorem 5. 
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From the construction of ps(Z), it is shown that for any zones, 
neighbourhood U(zo) which is independent of Pv, such that 

~ f(zo)  

and ps(Z) is continuous on U(zo). Therefore, for any e>0, 

[ps(z)-ps(zo)[ < T o n  f(Zo). 

For this e, we can choose  a sufficiently laxge integer k0, such that 

for 

there exists a 

0 < e ~ - < ~  for k>=ko. 

Since Ps (zo) >= sup ~; N { q ~  (z0) }, - ev~ =< ~v~ (z0) ~ 0, it follows that 

2 < Ps (Zo) ~ O. 

Hence, we can conclude that 

]ps(z~)l < 
z~Sc~U(zo) ,  k>=ko. This shows in general that for S = {z~}, v~N, 

lira ps(z~) = O. 
V ~ + e o  

Thus, our proof of Main Theorem is completely finished. 
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