On the snow flake domain

Robert Kaufman and Jang-Mei Wu

Introduction

We show that on the boundary of the snow flake domain, harmonic measure lies completely on a set of Hausdorff dimension less than that of the entire boundary. It is surprising because the snow flake domain is highly symmetric.

Øksendal has proved that in the plane, harmonic measure is always singular with respect to area measure, and conjectured that harmonic measure is singular with respect to α-dimensional Hausdorff measure for any $\alpha>1$, see [4]. Our example hints that his conjecture may be true.

According to Lehto and Virtanen [3], the construction of the snow flake domain is due to G. Piranian.

Let T_{0} be an equilateral triangle with side length 1 and center P. We subdivide each side of T_{0} into three equal subintervals of length $1 / 3$ each; and build an equilateral triangle over each middle subinterval, exterior to T_{0} and with one side coinciding with that interval; call these triangles $S_{1, i}, i=1,2,3$ and let $T_{1}=T \cup \bigcup_{i=1}^{3} S_{1, i}$.

Suppose T_{j} has been constructed, and is a polygon with 3×4^{j} sides each, of side length 3^{-j}. We subdivide each side of T_{j} into three equal subintervals of length 3^{-j-1} each; and build an equilateral triangle over each middle subinterval, exterior to T_{j} and with one side coinciding with that subinterval; call these triangles $S_{j+1, i}$, $1 \leqq i \leqq 3 \times 4^{j+1}$ and let $T_{j+1}=T_{j} \cup \bigcup_{i=1}^{3 \times 4^{j+1}} S_{j+1, i}$. Let

$$
T=\bigcup_{j=1}^{\infty} T_{j}, \quad \bar{\Omega}=\bar{T} \quad \text { and } \quad \Omega=\bar{\Omega}^{0} .
$$

Let f be a homeomorphism from $\partial \Omega$ onto $[0,3](\bmod 3)$, such that the three vertices of T_{0} are mapped to $1,2,3 \equiv 0(\bmod 3)$, and any two endpoints of a side of T_{j} are mapped to points on $[0,3]$ of distance 4^{-j} to each other. Since vertices of T_{j} are in $\partial \Omega$, we identify vertices of T_{j} with points in $[0,3](\bmod 3)$ by their quaternary expansion whenever it is convenient to do so. The vertices of T_{j} are exactly those points in $\partial \Omega$ whose quaternary expansion terminates.

Figure: T_{2}

On $\partial \Omega, f$ satisfies the Hölder condition:

$$
|f(x)-f(y)| \leqq C|x-y|^{\frac{\log 4}{\log 3}}
$$

Therefore the $\frac{\log 4}{\log 3}$ dimensional measure of $\partial \Omega$ is positive, and it is easily seen that the $\frac{\log 4}{\log 3}$-dimensional measure of $\partial \Omega$ is finite. Hence $\operatorname{dim}(\partial \Omega)=\frac{\log 4}{\log 3}$.

Proposition. Let I and J be any two neighboring vertices of T_{j} with

$$
\begin{gathered}
f(I)=a+\sum_{i=1}^{j} a_{i} 4^{-i}, \text { where } a, a_{i}=0,1,2 \text { or } 3, \\
f(J)=f(I)+4^{-j} .
\end{gathered}
$$

Let α_{1} and α_{2} be arcs joining neighboring vertices of T_{j+2}, defined by

$$
\begin{aligned}
& \alpha_{1}=\left\{x \in \partial \Omega: f(I)+4^{-j-1} \leqq f(x) \leqq f(I)+4^{-j} \times \frac{5}{16}\right\}, \quad \text { and } \\
& \alpha_{2}=\left\{x \in \partial \Omega: f(I)+4^{-j} \times \frac{7}{16} \leqq f(x) \leqq f(I)+4^{-j} 2^{-1}\right\}
\end{aligned}
$$

Then there exists an absolute constant $C>1$ so that

$$
\begin{equation*}
\frac{\omega\left(\alpha_{1}\right)}{\omega\left(\alpha_{2}\right)}=C \tag{1}
\end{equation*}
$$

where ω is the harmonic measure with respect to Ω at P.
A better result can be proved with more effort, but this suffices for the example.
To prove the Proposition, we let A be the endpoint of α_{1} with $f(A)=f(I)+4^{-j-1}$, B be the endpoint of α_{2} with $f(B)=f(I)+4^{-j} 2^{-1}$ and C be the vertex of T_{j+1} adjacent to B with $f(C)=f(I)+4^{-j-1} \times 3$. From the construction, B is not on T_{j}, hence A, B and C form an equilateral triangle. Let γ be the subarc of $\partial \Omega$ that contains B and has endpoints A and C, Γ be the arc in Ω joining A to C, such that the domain G bounded by $\gamma \cup \Gamma$ is similar to Ω. Let Q be the center of G, and Ω_{0} denote the component of $\Omega \backslash(\overline{A Q} \cup \overline{Q C})$ that contains P.

We claim that

$$
\begin{equation*}
\omega^{Y}\left(\alpha_{1}, \Omega\right) \geqq \omega^{Y}\left(\alpha_{2}, \Omega\right) \quad \text { for } \quad Y \in \overline{A Q} \cup \overline{Q C} \tag{2}
\end{equation*}
$$

By symmetry,

$$
\omega^{Y}(\Gamma, G)<1 / 2 \quad \text { for every } \quad Y \in \overline{A Q} \cup \overline{Q C}
$$

Also for $Y \in \overline{A Q} \cup \overline{Q C}$,
(3)

$$
\omega^{Y}\left(\alpha_{i}, \Omega\right)=\omega^{Y}\left(\alpha_{i}, G\right)+\int_{\Gamma} \omega^{Z}\left(\alpha_{i}, \Omega\right) d \omega^{Y}(Z, G)
$$

and for $Z \in \Gamma$,
(4)

$$
\omega^{Z}\left(\alpha_{i}, \Omega\right)=\int_{\bar{A} \overline{\boldsymbol{Q}} \cup \overline{\Omega C}} \omega^{Y^{\prime}}\left(\alpha_{i}, \Omega\right) d \omega^{Z}\left(Y^{\prime}, \Omega_{0}\right)
$$

Let R be the point on $\overline{A Q}$ with $|\overline{A R}|=\frac{1}{100}|\overline{A Q}|$, then there exists $C_{0}>1$ so that

$$
\begin{equation*}
\omega^{Y}\left(\alpha_{1}, G\right) \geqq C_{0} \omega^{Y}\left(\alpha_{2}, G\right) \text { for } \quad Y \in \overline{A R}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{Y}\left(\alpha_{1}, G\right) \geqq \omega^{Y}\left(\alpha_{2}, G\right) \quad \text { for } \quad Y \in A \bar{Q} \cup \overline{Q C} \tag{6}
\end{equation*}
$$

It follows from (3), (4) and (6) that if $Y \in \overline{A Q} \cup \overline{Q C}$, then

$$
\begin{aligned}
& \omega^{Y}\left(\alpha_{2}, \Omega\right)-\omega^{Y}\left(\alpha_{1}, \Omega\right) \\
& \leqq \int_{\Gamma}\left[\int_{\overline{A Q} \cup \overline{Q C}}\left(\omega^{Y^{\prime}}\left(\alpha_{2}, \Omega\right)-\omega^{Y^{\prime}}\left(\alpha_{1}, \Omega\right)\right) d \omega^{Z}\left(Y^{\prime}, \Omega_{0}\right)\right] d \omega^{Y}(Z, G) \\
& \leqq 1 / 2 \max _{Y^{\prime} \in \overline{A Q} \cup \overline{Q C}}\left(\omega^{Y^{\prime}}\left(\alpha_{2}, \Omega\right)-\omega^{Y^{\prime}}\left(\alpha_{1}(\Omega)\right) .\right.
\end{aligned}
$$

This gives (2).
In fact, from (2) and the maximum principle, we see that

$$
\begin{equation*}
\omega^{Z}\left(\alpha_{1}, \Omega\right) \supseteqq \omega^{Z}\left(\alpha_{2}, \Omega\right) \quad \text { for every } \quad Z \in \Omega_{0} \tag{7}
\end{equation*}
$$

Next we observe that

$$
\begin{align*}
\omega^{P}\left(\alpha_{i}, \Omega\right) & =\int_{\overline{\bar{Q}} \cup \overline{\Omega C}} \omega^{Y}\left(\alpha_{i}, \Omega\right) d \omega^{P}\left(Y, \Omega_{0}\right) \tag{8}\\
& =\int_{\overline{R Q} \cup \overline{Q C}} \omega^{Y}\left(\alpha_{i}, \Omega\right) d \omega^{P}\left(Y, \Omega_{0}\right) \\
& +\int_{\overline{A R}}\left[\omega^{Y}\left(\alpha_{i}, G\right)+\int_{\Gamma} \omega^{Z}\left(\alpha_{i}, \Omega\right) d \omega^{Y}(Z, G)\right] d \omega^{P}\left(Y, \Omega_{0}\right) .
\end{align*}
$$

From (5), (6), (7) and (8), we see that

$$
\omega^{P}\left(\alpha_{1}, \Omega\right) \geqq \omega^{P}\left(\alpha_{2}, \Omega\right)+\left(C_{0}-1\right) \int_{\overline{A R}} \omega^{Y}\left(\alpha_{2}, G\right) d \omega^{P}\left(Y, \Omega_{0}\right)
$$

To complete the proof, we need only show that for some $c>0$,

$$
\begin{equation*}
\int_{\overline{A R}} \omega^{Y}\left(\alpha_{2}, G\right) d \omega^{P}\left(Y, \Omega_{0}\right) \supseteqq c \omega^{P}\left(\alpha_{2}, \Omega\right) \tag{9}
\end{equation*}
$$

Because $\partial \Omega_{0}$ is a K-quasiconformal circle for some positive K independent of j, the harmonic measure on $\partial \Omega_{0}$ satisfies the doubling property [2]. Therefore, there exists $c>0$ so that

$$
\begin{equation*}
\omega^{P}\left(\overline{A^{\prime} R}, \Omega_{0}\right)>c \omega^{P}\left(\overline{A Q} \cup \overline{Q C}, \Omega_{0}\right) \tag{10}
\end{equation*}
$$

where A^{\prime} is the midpoint of $\overline{A R}$. By symmetry

$$
\begin{equation*}
\omega^{Q}\left(\alpha_{2}, G\right)=\frac{1}{12} \tag{11}
\end{equation*}
$$

Hence by (10), (11), the Harnack principle and the maximum principle,

$$
\begin{aligned}
& \int_{\overline{A R}} \omega^{Y}\left(\alpha_{2}, G\right) d \omega^{P}\left(Y, \Omega_{0}\right) \geqq \int_{\overline{A^{\prime} R}} \omega^{Y}\left(\alpha_{2}, G\right) d \omega^{P}\left(Y, \Omega_{0}\right) \\
& \quad \geqq c \int_{\overline{A^{\prime} R}} \omega^{Q}\left(\alpha_{2}, G\right) d \omega^{P}\left(Y, \Omega_{0}\right) \geqq c \omega^{P}\left(\overline{A^{\prime} R}, \Omega_{0}\right) \\
& \quad \geqq c \omega^{P}\left(\overline{A Q} \cup \overline{Q C}, \Omega_{0}\right) \geqq c \omega^{P}\left(\alpha_{2}, \Omega\right)
\end{aligned}
$$

This proves (9) and hence the Proposition.
To prove the main assertion, let γ_{0} denote any of the three subarcs of $\partial \Omega$ joining the vertices of the basic triangle T_{0}, γ_{n} any of the 3×16^{n} subarcs into which $\partial \Omega$ is divided by the vertices of $T_{2 n}$, so that the diameter of an arc γ_{n} is $c 9^{-n}$. Let E be a subset of the boundary, and suppose that for large n, E is contained in the union of $c r^{n}$ arcs γ_{n}, where $0<r<16$. Then plainly E has Hausdorff dimension at most $\log r / \log 9$.

We find a set F, with $\omega(F)=1$, but $F=\bigcup_{1}^{\infty} E_{k}$, and each E_{k} has the property named above, with a common value $r<16$; so that $\operatorname{dim} F \leqq \log r / \log 9$.

The curve $\partial \Omega$ is endowed with a natural sequence $F_{0} \subseteq F_{1} \subseteq F_{2} \sqsubseteq F_{3} \sqsubseteq \ldots$ $\ldots \sqsubseteq F_{n} \sqsubseteq \ldots$ of σ-algebras: F_{n} is the discrete algebra determined by the arcs γ_{n}, so that F_{0} has 8 elements; F_{n} has $2^{3 \times 16^{n}}$ elements for $n \geqq 1$. Suppose now that in each arc γ_{n}, we choose a distinguished subarc γ_{n+1}^{0} in a certain way, and let $\chi_{n+1}(X)=1$ if $X \in \gamma_{n+1}^{0}, \chi_{n+1}(X)=0$ elsewhere on γ_{n}. The conditional expectation with respect to $\omega, E\left(\chi_{n+1} \mid F_{n}\right)$ can be described as follows

$$
\begin{equation*}
E\left(\chi_{n+1} \mid F_{n}\right)=\omega\left(\gamma_{n+1}^{0}\right) / \omega\left(\gamma_{n}\right) \text { on } \gamma_{n} . \tag{12}
\end{equation*}
$$

Then Lemma 1 below shows that

$$
\begin{equation*}
\sum_{1}^{N} \chi_{n+1}=\sum_{1}^{N} E\left(\chi_{n+1} \mid F_{n}\right)+o(N) \quad \omega \text {-almost everywhere. } \tag{13}
\end{equation*}
$$

We consider two extreme ways to choose the distinguished arcs γ_{n+1}^{0} : when γ_{n+1}^{0} is the subarc of γ_{n} of greatest ω-measure, we write χ_{n+1}^{+}; when $\omega\left(\gamma_{n+1}^{0}\right)$ is least, we write χ_{n+1}^{-}. Using the Proposition and (12), (13) we get

$$
\begin{equation*}
\sum_{1}^{N} \chi_{n+1}^{+} \geqq \sigma \sum_{1}^{N} \chi_{n+1}^{-}-o(N) \omega \text {-almost everywhere, with } \sigma>1 \tag{14}
\end{equation*}
$$

and since $E\left(\chi_{n+1}^{+} \mid F_{n}\right) \geqq 1 / 16$ we have further

$$
\begin{equation*}
\sum_{1}^{N} \chi_{n+1}^{+} \geqq N / 16-o(N) \quad \omega \text {-almost everywhere. } \tag{15}
\end{equation*}
$$

Let E_{k} be the set on $\partial \Omega$ defined by

$$
\begin{equation*}
\sum_{1}^{N} \chi_{n+1}^{+} \geqq \sigma^{1 / 2} \sum_{1}^{N} \chi_{n+1}^{-} \text {for all } N \geqq k \tag{16}
\end{equation*}
$$

From (14), (15) and (16) it follows that $\omega\left(E_{k}\right)$ increases to 1. From (16) and Lemma 2, we see that for large N, E_{k} is contained in a union of $c r^{N}$ arcs γ_{N}, with a number $r<16$ dependent only on α. Hence $\operatorname{dim} E_{k} \leqq \log r / \log 9$; and with $F=\bigcup_{1}^{\infty} E_{k}$, we have $\operatorname{dim} F<\log 4 / \log 3$ but $\omega(F)=1$. This proves our assertion.

A limit theorem. Let (X, P, F) be a probability space and $F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \ldots \subseteq F_{n} \ldots$ an increasing sequence of σ-algebras contained in F; let f_{n} be F_{n}-measurable for $n \geqq 1$ and $0 \leqq f_{n} \leqq 1$, and let $g_{n}=E\left(f_{n} \mid F_{n-1}\right), n \geqq 1$.

Lemma 1. $f_{1}+\ldots+f_{n}-\sum_{1}^{n} g_{j}=o(n)$, a.e.
This result can be improved with a quantitative bound for $o(n)$, but this would have no effect on the main result. To prove it we write $h_{n}=f_{n}-g_{n}, n \geqq 1$, so that $-1 \leqq h_{n} \leqq 1, \int h_{n}^{2} \leqq 1 / 4$, and $h_{1}+h_{2}+\ldots+$ is an orthogonal series. Hence by Chebyshev's inequality

$$
P\left(\left|h_{1}+\ldots+h_{N^{4}}\right|>N^{3}\right)<N^{-2} \quad(N=1,2,3, \ldots)
$$

hence $h_{1}+\ldots+h_{N^{4}}=0\left(N^{3}\right)$ a.e. Since $-1 \leqq h_{n} \leqq 1$, we also get $h_{1}+\ldots+h_{N}=$ $0\left(N^{3 / 4}\right)$, a.e.

A combinatorial result. Let $\delta>0$, let N be a large integer, and let $A(N, \delta)$ be a collection of sequences n_{1}, \ldots, n_{N} defined as follows: each $n_{i}=0,1,2, \ldots, 15$, and the number of occurrences of 0 is at least $1+\delta$ times the number of occurrences of 1 . Let $C(N, \delta)$ be the cardinal number of $A(N, \delta)$.

Lemma 2. For large N,

$$
\log C(N, \delta) \leqq N \log 16-\eta N
$$

where $\eta>0$ depends only on δ.
Proof. $C(N, \delta)$ is a sum $N!\Sigma^{\prime}\left(r_{0}!r_{1}!\ldots r_{15}!\right)^{-1}$, where Σ^{\prime} means that the sum is extended over those integers $r_{0}, r_{1}, r_{2}, \ldots, r_{15}$ such that $\sum_{0}^{15} r_{j}=N$ and $r_{0} \geqq(1+\delta) r_{1}$. Since the number of ways to choose $r_{0}, r_{1}, \ldots, r_{15}$ is certainly $<(N+1)^{15}$, it will be sufficient to obtain the bound claimed for each individual term $N!\left(r_{0}!, r_{1}!, \ldots, r_{15}!\right)^{-1}$. If r_{j} is not too small, a rough application of Stirling's formula yields

$$
\log r_{j}!=r_{j} \log r_{j}-r_{j}+0(\log N)
$$

and this is true at $r_{j}=0,1$ if $r_{j} \log r_{j}$ is defined to be 0 . Writing $r_{j}=t_{j} N$ we have

$$
\log \left(r_{0}!r_{1}!\ldots r_{15}!\right)=N \log N-N+N \sum_{0}^{15} t_{j} \log t_{j}+0(\log N)
$$

and therefore our claim is reduced to the estimate $\sum_{0}^{15} t_{j} \log t_{j} \geqq-\log 16+\eta$; in verifying this claim we allow t_{0}, \ldots, t_{15} to assume real values, subject to the obvious restraints. Now $t \log t$ is strictly convex on $[0,1]$, so its minimum for all possible real
values, namely $-\log 16$, is attained only when $\frac{1}{16}=t_{0}=t_{1}=\ldots=t_{15}$. On any set of values, whose closure misses this set, the minimum must be strictly larger, as claimed, that is $\Sigma t_{j} \log t_{j} \geqq-\log 16+\eta$ if $t_{0} \geqq(1+\delta) t_{1}$.

This Lemma is suggested by a calculation in [1].
Research partially supported by the National Science Foundation and the Center for Advanced Study at Illinois.

References

1. Besicovitch, A. S., On the sum of digits of real numbers represented in the dyadic system, (On sets of fractional dimensions II), Math. Annalen 110 (1934-35), 321-330.
2. Jerison, D. S. and Kenig, C. E., Boundary behaviour of harmonic functions in non-tangentially accessible domains, Adv. Maths. 46 (1982), 80-147.
3. Lehto, O. and Virtanen, K. O., Quasiconformal Mappings in the Plane, Springer-Verlag (1973).
4. $\emptyset_{\text {KSEndal, }}$., Brownian motion and sets of harmonic measure zero, Pacific J. Math. 95 (1981), 193-204.

Received November 9, 1983
R. Kaufman and Jang-Mei Wu University of Illinois Urbana, Illinois 61801

Added in proof: Atter submitting this paper, we received a letter from L. Carleson, containing substantial improvements of our result. More recently N. G. Makarov proved Øksendal's conjecture and solved Carleson's problem on harmonic measure [Duke Math. J., 40 (1973), 547-559].

