
On the snow flake domain 

Robert Kaufman and Jang-Mei Wu 

Introduction 

We show that on the boundary of  the snow flake domain, harmonic measure lies 
completely on a set of  Hausdorff dimension less than that o f  the entire boundary. It is 
surprising because the snow flake domain is highly symmetric. 

Oksendal has proved that in the plane, harmonic measure is always singular with 
respect to area measure, and conjectured that harmonic measure is singular with 
respect to a-dimensional Hausdorff measure for any a > 1, see [4]. Our example hints 
that his conjecture may be true. 

According to Lehto and Virtanen [3], the construction of the snow flake domain 
is due to G, Piranian. 

Let To be an equilateral triangle with side length 1 and center P. We subdivide 
each side of To into three equal subintervals of length 1/3 each; and build an equila- 
teral triangle over each middle subinterval, exterior to To and with one side coincid- 
ing with that interval; call these triangles $1,~, i=  1, 2, 3 and let T1 = T u ~j3 $1,~. i=1 

Suppose T s. has been constructed, and is a polygon with 3X4 j sides each, of 
side length 3 -j.  We subdivide each side of Tj into three equal subintervals of length 
3 - i -1  each; and build an equilateral triangle over each middle subinterval, exterior 
to Tj and with one side coinciding with that subinterval; call these triangles Sj+I,~, 

I I3X4J+l l<=i<--3X4J+1 and let Tj+l=Tst_)wi=l Sj+I, i. Let 

T =  U T j ,  f 2 = T  and O = ~ ~  
j = l  

L e t f b e  a homeomorphism from 0f2 onto [0, 3] (rood 3), such that the three vertices 
of To are mapped to 1, 2, 3---0 (rood 3), and any two endpoints of a side of Tj are 
mapped to pNnts on [0, 3] of distance 4 - j  to each other. Since vertices of Tj are in 
0f2, we identify vertices of Tj with points in [0, 3] (mod 3) by their quaternary expan- 
sion whenever it is convenient to do so. The vertices of Tj are exactly those points in 
0f2 whose quaternary expansion terminates. 



178 Robert Kaufman and Jang-Mei Wu 

5 

Figure: T2 

On 0f2, f satisfies the H61der condition: 
logZl 

I f ( x ) - f ( y ) ]  ~- C [ x -  yl loga. 
log 4 . . . .  

Therefore the -olmenslonal measure of  0f2 is positive, and it is easily seen that 
log 3 

log 4 . . . .  
t h e  -oamenslonal measure of  0f2 is finite. Hence dim (00)=  log____~4 

log 3 log 3" 
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Proposition. Let I and J be any two neighboring vertices of  Tj with 

f ( 1 ) = a + ~ / = l a i 4  -i, where a , a , = 0 , 1 , 2  or 3, 

f ( J )  = f ( I )  +4  - i .  

Let ~1 and c~2 be arcs joining neighboring vertices of  Tj+2, defined by 

cq = {xCOf~: f ( I ) + 4 - J - l  <= f (x)  <= f ( I ) + 4 - J x  ~---~}, and 

e ~=  {xE0f2 : f ( I ) +  4-J 'XI~- <= f ( )x  N f ( I )  + 4-~ 2 -1} . 

Then there exists an absolute constant C > I  so that 

(1) o(~1____)) > C, 
co(~0 

where o is the harmonic measure with respect to [2 at P. 

A better result can be proved with more effort, but  this suffices for the example. 

To prove the Proposition, we let A be the endpoint of'~l with f (A )= f ( I )+  4 - i -  1, 
B be the endpoint of c% with f (B)=f ( I )+4-J2  -1 and C be the vertex of  Tj+ 1 adja- 
cent to B with f ( C ) = f ( l ) + 4 - J - l •  From the construction, B is not on T i,  hence 
A, B and C fbrm an equilateral triangle. Let y be the subarc of  Of 2 that contains B and 
has endpoints A and C, F be the arc in O joining A to C, such that the domain G 
bounded by y w F is similar to (2. Let Q be the center of  G, and f2 0 denote the com- 

ponent of  f 2 \ (AQw QC) that contains P. 
We claim that 

(2) oY(cq, Q) ~ or(~2, ~2) for Y~AQwQC. 
By symmetry, 

o r ( F ,  G) < 1/2 for every Y 6 ~ w Q C .  

Also for YEAQ• QC, 

J(c~, ~) = or(c~i, G)+fr  oz(~i, ~)doY(Z, G); (3) 
and for Z~F,  

(4) o z (~i, s = f _ __ o r' (~i, D) doZ(Y ', Qo). 
�9 : AQUQC 

1 
Let R be the point on AQ with [AR] = - : ~  1AQ[, then there exists C0>1 so that 

l o t )  

(5) or(~l, G) => C0oY(~, G) for /Z<AR, 
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and 

(6) or(a1,  G) ~ or(a2, G) for YEAQuQC. 

It follows from (3), (4) and (6) that if YEAQ u QC, then 

o Y (~ ,  f2) -  o ~ (~1, ~) 

<-- f r [ f  YSu~ (Or (a2, 0 ) - o r  (al, f2)) doZ(Y', f2o)] door(Z, G) 

<= 1/2 max (oY'(0t2, ~c'~)--(.oY'((~i(~"~)). 
Y" C AQ U QC 

This gives (2). 
In fact, from (2) and the maximum principle, we see that 

(7) oZ(~l, f2) => coZ(c%, f2) for every ZEf2 o. 

Next we observe that 

(8) o'(~i, a) = f A,~u,,c'r(~"' a) doe(Y, do) 

= fRquac  ~ ~) d~ ~o) 

+ f ~  [oY(~,, c )+f r  oZr a)do'(z, G)] ao~(y, a0). 

From (5), (6), (7) and (8), we see that 

oP(cq, f2) -> oP(a2, f2)+(C0-1)  fj_~ or(a~, G)dJ'(Y, f2o). 

To complete the proof, we need only show that for some c>0,  

(9) f ~ or(o~2, G)doe(Y, f2o) >= coI'(~2, 0). 

Because 0f20 is a K-quasiconformal circle for some positive K independent of  j, 
the harmonic measure on 0f20 satisfies the doubling property [2]. Therefore, there 
exists c > 0  so that 

(10) ov (A'R, f2o) > coP (JtQvoQC, f2o) , 

where A' is the midpoint of  AR. By symmetry 

1 (11) 090 (a,, G) = -~-.  
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Hence by (10), (11), the Harnack principle and the maximum principle, 

c) a P(r, 00) _-> a) 00) 

> c  ~o(~2, G)d~oe(y, f2o) > c~oe(A-TR g2o) 

>= cooe ( A Q u Q C ,  f2o) >= c~e (c~2,12). 

This proves (9) and hence the Proposition. 
To prove the main assertion, let ~0 denote any of  the three subarcs of 012 joining 

the vertices of the basic triangle To, 7. any of the 3 •  16" subarcs into which 0g2 is 
divided by the vertices of  T2., so that the diameter of an arc 7. is c9-". Let E be a sub- 
set of the boundary, and suppose that for large n, E is contained in the union of 
cr ~ arcs 7., where 0 < r < 1 6 .  Then plainly E has Hausdorff dimension at most 
log r/log 9. 

We find a set F, with w ( F ) =  1, but F-= U~ ~ Ek, and each Ek has the property 
named above, with a common value r <  16; so that dim F=<log r/log 9. 

The curve 0f2 is endowed with a natural sequence F0 ~ F1 ~ F~ ~ Fz ~ . . .  
... ~ F. ~ ... of a-algebras: F. is the discrete algebra determined by the arcs 7., 
so that/~o has 8 elements; F.  has 23• elements for n =  > i. Suppose now that in each 
arc 7., we choose a distinguished subarc 0 7,+1 in a certain way, and let Z.+I(X)--- 1 
if XE~~ Z.+I(X)=0 elsewhere on ~.. The conditional expectation with respect to 
~, E(Z.+IlF.) can be described as follows 

(12) E(z,+!lF,)----co(7~ on ?,. 

Then Lemma 1 below shows that 

(13) ~ n  2.+1 = Z ~  E(Z.+I lF. )+o(N)  m-almost everywhere. 

0 , We consider two extreme ways to choose the distinguished arcs 7o+1. when 
7~ is the subarc of 7. of greatest o~-measure, we write X++I; when o9(7~ is least, 
we write X~-+I. Using the Proposition and (12), (13) we get 

(14) ~nx ~.++1 >= a~'~ n Z2+l-o(U)  ~o-almost everywhere, a > 1, 

and since 

(15) 

Let E k be the set on 0f2 defined by 

(16) N + ~1 ;f.+l => a1/2~Z2+1 for all N _  -> k. 

with 

E(Z++I{F,)~I/16 we have further 

~ Z++I ~ N / 1 6 - o ( N )  o-almost everywhere. 
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From (14), (15) and (16) it follows that ~o (Ek) increases to 1. From (16) and Lemma 2, 
we see that for  large N, Ek is contained in a union of cr N arcs 7N, with a number 
r <  16 dependent only on ~, Hence dim Ek<=log r]log 9; and with F = U ~  Ek, we 
have dim F < l o g 4 / l o g 3  but o ) ( F ) = I .  This proves our  assertion. 

A limit theorem. Let (X, P, F) be aprobability space and Fo c= F1 c= F2 c=... c= F,... 
an increasing sequence of  a-algebras contained in F; let f ,  be F,-measurable for n>= 1 
and 0-<f,=<l, and let g,=E(fnlF,_1), n>=l. 

Lemma 1. f l+ . . .  + f n - z ~  gj=o(n), a.e. 

This result can be improved with a quantitative bound for o(n), but this would 
have no effect on the main result. To prove it we write h , = f , - g , ,  n>=l, so that 
-l<_-h,<=l, f h , = l / 4 ,  and h~+h2+...+ is an orthogonal series. Hence by Che- 
byshev's inequality 

P(lhl-~...-~hN4 [ > N 3) < N -~ (N = 1, 2, 3, ...) 

hence hl+...+hN4=O(N 3) a.e. Since -1-<=h,<=1, we also get h , + . . . + h N =  
0(N3/~), a.e. 

A combinatorial result. Let 6>0 ,  let N be a large integer, and let A(N, J) be 
a collection of  sequences n~, ..., nu defined as follows: each hi=0,  1, 2, ..., 15, and 
the number of occurrences of 0 is at least 1 + 6 times the number of  occurrences of  1. 
Let C(N, 5) be the cardinal number of  A(N, 6). 

Lemma 2. For large N, 

log C(N, J) N N log  16- t /N,  

where t />0  depends only on 6. 

Proof. C(N, 5) is a sum N!X'(ro! r,! ... r~5!) -x, where X' means that the sum is 
extended over those integers r0, rl,  r2 . . . . .  raa such that z ~  5 r j=N and r0=>(1 +5)r~. 
Since the number of  ways to choose ro, r~ . . . .  , r15 is certainly < (N +  1) 15, it will be 
sufficient to obtain the bound claimed for each individual term N! (r0 !, rx ! . . . .  , r~5 !)-1. 
I f  rj is not  too small, a rough application of  Stirling's formula yields 

log rj! = rj log r j - r j  +O(log N), 

and this is true at rj=O, 1 if rj log rj is defined to be 0. Writing r j=t jN we have 

log (r0! rl! ... rls!) = Nlog  N -  N +  Nz~015 tj log t j+0( log  N), 

and therefore our claim is reduced to the estimate ~ S t j l o g  tj-_>-log 16+t/;  in 
verifying this claim we allow to . . . .  ,65 to assume real values, subject to the obvious 
restraints. Now t log t is strictly convex on [0, 1], so its minimum for all possible real 
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1 
values, namely - l o g  16, is attained only when - - = t 0 = t l  . . . .  =f is .  On any set o f  

16 
values, whose closure misses this set, the minimum must be strictly larger, as claimed, 
that  is Zt~log t s ~ - l o g  16+t/  if  to>=(l+6)q .  

This Lemma is suggested by a calculation in [1]. 
Research partially supported by the National  Science Foundation and the Center 

for Advanced Study at Illinois. 
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Added in proo f :  Atter submitting this paper, we received a letter from L. 
Carleson, containing substantial improvements  of  our result. More recently N. G. 
Makarov  proved  Oksendal 's conjecture and solved Carleson's problem on harmonic 
measure [Duke Math. J., 40 (1973), 547--559]. 


