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1. Introduction 

It is well-known (see e.g. [1]) that a solution of a Volterra integral equation 

(1.1) v ( t ) -  f , ?  G(t, z)v('c) dr = Vo(t) 

exists, is unique, and may be obtained by a series of iterations 

(1.2) ~ = Z,7=0 v. ,  V.+l(t)  = f~o c(t, ~)~.(~)  dr. 

Moreover, if the kernel G(t, ~) vanishes sufficiently quickly (in a power scale) for 
large values of the variables, then the functions v,(t) can be bounded by a common 
power of t (for a polynomially bounded free term v0). It follows that the solution 
v(t) of (1.1) is bounded by the same power of  t. On the other hand, if G(t, "c) decays 
slowly (or grows) as t, - c ~ ,  then generally v,+l(t) v,(t) -1~~ t-~ ~.  In this case 
the series (1.2) gives only a bound of  exponential type for v(t) (even if vo(t) has com- 
pact support). 

In the present paper we study the behaviour of the solution of the equation (1.1) 
wi~h a slowly decreasing (or growing) kernel G(t, z). This problem is close in spirit 
to the investigation of the asymptotics of solutions to differential equations. Consider, 
fo r  example, the simplest equation 

(1.3) -v"( t )+q( t )v( t )  =- O, t >= to. 

If the function q(t) has compact support, then the equation (1.3) has solutions that 
equal 1 or t for large t. Similarly, if q(t)=O(t-2-~), e>0,  then solutions of (1.3) 
approach 1 or t asymptotically. The proof of this assertion may be obtained by re- 
duction of (1.3) to a Volterra integral equation. However, if q(t) decays slower than 
t -~, or grows as t-~ ~o, then the terms v, (t) of the corresponding series (1.2) obey the 
relation v,+l(t)v,(t)-l~o~, t~o~. This changes the asymptotics of v(t). In such a 
case the asymptotics of v(t) was found by Greene and Liouville (see e.g. [2]) with 
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the help of  the famous substitution 

(1.4) v(t) = q(t)-llaexp [+_f;'o q(S) 1/2 ds] w(g). 

For w(t) this gives a differential equation with coefficients, which stabilize quickly 
at infinity. With this approach one can prove that if, for example, q(t)>=ct -~ or 
q(g)<=-ct -~, c>0 ,  a<2 ,  then the equation (1.3) has solutions v+(g) satisfying 

(1.5) v+(t) ~ q (O-"exp[+_ f :oq (S ) '~ds ] ,  t - ~ .  

The precise prooI of  (1.5) also requires assumptions on the behaviour of  q'(t) and 
q"(t) as t-~oo. 

The problem of the asymptotic behaviour of  the solution v=(I-G)- lvo  (G is 
a Volterra operator with a kernel G (t, z)) of the equation (1. l) is connected with the 
study of  the kernel of  the operator ( I -G)  -1 - I  for large values of  t and z. Similarly 
to differential equations, the effective construction of ( I -G)  -1 is based on the right 
guess of  the first approximation (Ansatz) to this operator. The kernel of' the first 
approximation includes again (cf. with (1.4)) an exponential function. Our approach 
demands certain smoothness of  the kernel, but we permit arbitrary power growth at 
infinity. The main advantage of  the suggested Ansatz is that it automatically takes into 
account compensation of  terms in the series 

(1.6) (I-- a ) - i  = I+Z2=1  6". 

It turns out that such compensation is governed by the diagonal values of G(t, z). 
Our Ansatz reduces the problem to the construction of (I-Go) -~ for a kernel Go = 
Go(G) with critical decay at infinity (such decay is intermediate between the cases 
when the series (1.2) gives a polynomial or an exponential bound). We can then easily 
obtain a relatively rough estimate for the solution v(t) of the equation (1.1). In parti- 
cular, we find a wide class of  cases when c(t) is bounded by some power of t. It is 
essentially more difficult to obtain a precise estimate or the asymptotics of v(t). 
This problem requires sufficiently detailed information about  the operator ( I -G0)  -1. 
Fortunately, under rather wide assumptions on G(t, z) the operator ( / -Go)  -1 may 
be constructed explicitly with the help of  the Mellin transform. 

The need to find the asymptotics of  a solution of a Volterra equation originated 
in scattering theory. Results of the present paper are applied in [3] to scattering of  a 
quantum particle by a time-dependent zero-range potential. 

The paper is organized as follows. Some elementary information on Volterra 
integral operators is contained in section 2. The first approximation to the operator 
( I -G)  -1 (the main Ansatz) is constructed in section 3. We study the corresponding 
kernel Go with critical decay in section 4. In section 5 the operator I - G o  is inverted. 
In section 6 we apply results on ( I -G)  -1 to the original problem of  the asymptotic 
behaviour of  the solution of  the equation (1.1). 
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2. Elementary information on Volterra integral operators 

We shall consider Volterra integral operators G defined by 

(2.1) (Gf)(t) = f~ G(t, z)f(z) d~. 
o 

The number to is supposed to be fixed and positive. The function G(t, z), t~z>=to, 
in (2.1) is called the kernel of  the operator G; G(t, z) is assumed to be locally bounded. 
A Volterra operator and its kernel are always denoted by the same letter. The opera- 
tors I - G  form a group; hence the inverse operator is defined by the series (1.6). The 
proof  of  its convergence is based on the following well-known 

Lemma 1. Let 
(2.2) IG(t, z)l ~_ qo(t)ql(~). 

Then the kernel G, of the operator G,=G" satisfies 

(2.3) ]G,(t, z)l <= qo(t)ql(v)[(n-1)!] -1 [f~ q(s)ds] "-~, q =- qo " q l  ~ 

and for the kernel of  the operator K = ( 1 - G ) - l - 1  the estimate 

(2.4) Ig(t, z)l <- qo(t) q~(v) exp [f~ q(s) ds] 

holds. 

Actually, (2.3) may be easily verified by induction: 

IG,+l(t, z)l = G,(t, s)G(s, ~) ds <= qo(t)[(n.- 1)!] -1 

• f ~ ( f ~  q(a)da)"-Zq(s)ds.ql(z) = qo(t)q~(z)(n!)-~(f~ q(s)ds}". 

The estimate (2.3) implies convergence of  the series (1.6). This in its turn justifies the 
formula (1.6). Summation of  the estimates (2.3) over n proves (2.4). This concludes 
the proof. 

The estimate (2.2) holds for any locally bounded function G if one sets e.g. 

qo(t) = sup [G(t,~)[, qz(~) = 1, 
.~ E [to, t] 

Thus the series (1.6) is always convergent, but in general the bound (2.4) is only expo- 
nential. If, however, under the assumptions of Lemma 1 qCL~(to, ~), then K(t, "c) 
satisfies the same estimate as G(t, z). This is convenient to describe in terms of  the 
following 

Definition. Assume that for some real ~ and 

(2.5) [G(t, z)[ -< C(t/z)az~-L 
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The number ~ is called the order and ~ the type o f  the operator (or kernel) G. 

By C and c we denote generic positive constants. Clearly, the order or the type 
are not uniquely defined: any e', e ' > e ,  and 13',/~'>/~, are respectively the order or 
the type of the operator G. Lemma 1 implies that if G obeys (2.5) with e < 0 ,  then 
K = ( I - G ) - I - I  has the same order and the same type as G. If  e=0 ,  then the order 
of K also equals zero, but its type is undetermined. In case e > 0  Lemma 1 ensures 
only that 

(2.6) [K(t, v)] ~ C(t/z)P exp [C~-l(t~-z')]. 

The purpose of the present paper is to single out a rather wide class of kernels G, 
for which the bound (2.6) may be essentially improved on account of compensation 
of terms in the series (1.6). 

Let us accept the following agreement. We say that a kernel G of  the order e and 
the type fl (or the bound (2.5)) is J times differentiable if for any O<=.A+j~=j<=J 

(2.7) OJ G(t, "r) < C(t/z)~ z~_l t_jl _ ~. 
O t j x O z j ~  : 

The set of kernels satisfying (2.7) is denoted by (r J) .  As was already noted, 
Lemma 1 ensures that the set of operators l - G ,  where GEfq(~,/3)-fq(~,/~; 0), is 
a group if  ~<:0. With help of  the relations 

K(t,  : G(t, + 6 ( t ,  s) K(s, ds = G (t, ~) + K(t, s) G(s, ~) ds 

it is easy to verify a more general assertion. 

Lemma 2. The set o f  operators I - G ,  where GEfg(~, f l;J) and ~<0,  is a 
group. 

We also note 

Lemma 3. Let G1Efg(~,]~;J) with ~ < 0  and G2Ef4(0,]~;J). Then G1G~E 
~(~, /~ ;J )  and G2G~Efg(~,~';J) for any ~'>fl. 

Formal proofs of  Lemmas 2 and 3 are straightforward, and we omit them. 

3. The main Ansatz 

Here we begin the construction of the operator ( I - - G )  -1 for GE ~q(e, fl), where 
e>0 .  In this section we find the first approximation to ( I -G)  -1. We can then reduce 
the problem to the "critical" case when the estimate (2.2) holds with qo(t)ql(t)= 
O(t-1). Our approach requires a certain smoothness of G so that actually we as- 
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sume that GCN(a, fl; J) ,  where a > 0  and J is sufficiently large (at least J ~ 2 ) .  More- 
over, at the diagonal t --z  we need an estimate opposite to (2.5), i.e. 

(3.1) IG(t, t)l ~ ce-X.  

We shall seek the first approximation to the operator ( l - G )  -~ in the form 
I +  ~, where 

(3.2) q~ (t, ~) = a (t) b (z) exp [rp (t) - q9 (O]- 

The functions q~, a and b are supposed to have power behaviour and q ~ ( t ) ~ ,  as 
t ~ o .  Thus, we should choose the functions q~, a and b in such a way that the kernel 
of  12 defined by 

(3.3) I+ 0 = ( I -  G)(I+ ~) 

satisfies (2.2) with qo(t)q~(t)=O(t-1). By (3.2), (3.3) 

(3.4) 12(t, z) = - -  a(t, 0 + a (t) b (~) e ~'(0-~(~) 

- - 2  G(t, s)a(s)e ~'(~) ds b(~)e -~(~). 
Set 

(3.5) L~(t, z) = (_~)k ~o,(z)-l._~_ z [G(t, ~)a(~)~0'0)-1], k ~ 0, 

and integrate in the integral in (3.4) (n+ 1) times (1 <=n~J-1) by parts: 

f~ G(t, s)a(s)e ~'(s) ds = ~ = 0  ILk( t, t)e~(O--Lk( t, z) e~(O] 

--f:(~--~ L.(t, s))e ~'(=) ds. 

Insert this expression into (3.4) and choose the functions q~, a and b so that in (3.4) 
-G(t ,  0 cancels Lo(t, ~)b(O and a(t)b(~) exp [~0(t)-~o(z)] cancels -Lo(t,  t)b(z). 
exp [q~(t)-q~(O]. By (3.5) this yields two equations 

(3.6) a( t )b ( t )  = qr qr = a ( t ,  t). 

The second equation (3.6) determines uniquely (up to an insignificant (see (3.2)) 
constant factor) the function (p(t). The first equation (3.6) determines b if a is given 
(or vice versa). So one of the functions a or b is arbitrary. The relations (3.6) ensure 
that both a and b do not equal zero. Under the conditions (3.6) the equality (3.4) 
takes the form 

(3.7) fJ(t, z) = - -~=xLk( t ,  t)b(z)e~(t)-~(o+.~2=xLk(t, Ob(O 

L.(, s>)e.., . . ,  . s  b(.> 
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Let us estimate ~2(t, z). Set n =  1 in (3.7), take an arbitrary power function 
a ( t ) = t  ~ and define 

(3.8) = f o(Re a(s, s))+ ds. 

Here, as usual, ( f )+  = f  if f ~ 0  and ( f ) +  = 0  if f<=0. By (3.1), (3.5), (3.6) the kernel 
Ll(t ,  z) satisfies 

ILl(t, ~){ -~ c(t/r)P~ ~-~, 

and this estimate admits at least one differentiation. It follows that the first sum in 
(3.7) is bounded by 

c(t/~)~-~ -~ exp [ ~ ( 0 -  ~(~)], 

and the second by C(t/x)~z -1. The last term in (3.7) does not exceed 

c f~  (t/s)Ps ~-~-1 [e o(S)-~~ ds z ~-1-~ <- Cl(t/z)az -1 exp [ ( ( t ) - ( (z) ] ,  

if 2<:~+fl.  Thus relation (3.7) ensures 

Theorem 1. Let GEfr fl; 2), where e > 0 ,  and let the condition (3.1) hoM. 
Define the kernel ~b by the formulae (3.2), (3.6) and a ( t ) =  t z, 2 < e + f l .  Then the kernel 

(see (3.3)) satisfies 

(3.9) If2(t, z)l -~ C(t/z)Pz -1 exp [~(t)-~(z)]. 

By Lemma 1 for the kernel of  K = ( I + f 2 ) - ~ - I  the bound 

(3.10) IK(t, z)l ~ C(t/z) ~ - ~  exp [~(0-~(~)1 

holds. Here 7 is some real number that depends on the constant C in (3.9). So Theo- 
rem 1 has the following 

Corollary. Under the assumptions o f  Theorem 1 

(3.11) (I--  G)-I  = ( I +  ~b) ( I+  K), 

where the kernel K satisfies (3.10)for some 7. 

Theorem 1 leaves the number 7 in (3.10) undetermined. Below (see sections 4 
and 5) we shall find this number under more special assumptions on G(t, z). 

4. The improvement of the first approximation 

To find the number 7 in (3.10) we have to study in detail the structure of  the 
operator ~. Note that the number 7 is of  interest only in case the function ~(t) (see 
(3.8)) is bounded (or increases slower than In t) at infinity. Therefore we assume that 

(4.1) Re G(t, 0 <= O. 
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Under this assumption ~(t)=0,  and the last factors in the right-hand sides of (3.9), 
(3.10) may be omitted. Thus both operators f2 and K have zero order; the type of 
equals/3 and the type of K is indefinite. Our problem is to determine it. 

Let us return to the equality (3.7). According to the conditions G~N(e, 13; J )  
and (3.1) 

0J(~0" (t)) -~ =~ j 
�9 - ~  ~ Ct 1-~- j ,  0 <= J, 

0 
so that the operator ~0'(~)-~- z in (3.5) lowers the order of the kernel by e units. It 

follows that the kernels Lk(t, t)b('c) and Lg(t, z)b('c) in (3.7) have the order - ~ ( k -  1). 
Since by (4.1) l exp [q~(t)-~0(z)]l <= 1, the k th term in each of the sums in (3.7)has also 
the order - e ( k -  1). Moreover, the order of  the last term in (3.7), defined by the in- 
tegral, may be made arbitrary low by the choice of  n. Thus the equality (3.7) gives 
us the expansion of O(t, z) in a sum of kernels of decreasing orders. Thereby the 
order of two first terms, corresponding to k =  1, equals zero. 

As we shall see in section 6, the precise bound, or the asymptotics, of the solu- 
tion v(t) of the equation (1.I) requires estimates not only for f2 but also for its deri- 
vatives. So we need to verify that t 2~ (0 , /~ ;  m), where m > 0  (in section 6 we set 
m = 2). Unfortunately, because of the factor exp [q0 ( t ) -  q~ (~)], differentiation of the 
first sum in (3.7) does not decrease its order. This trouble may be overcome on account 
of the factorisation of this sum into the product of factors depending only on t or x. 
We shall now show that for a suitable choice of a(t), which is undetermined up to 
now, and for a sufficiently large n the function 

(4.2) z(t) = z~,=~ Lk(t, t) 

decays arbitrarily quickly at infinity (namely, z (t) a -  ~ (t) = O (t - (" + 1~)). Thus the 
order of 

(4.3) f2~(t, r) = z (t) b (z) exp [q~ ( t ) -  q) (~)] 

turns out to be negative. In fact, it depends on n and tends to - - ~  as n - ~ .  This 
permits us to prove that f21~f#(-e,/3; m) for ~>0 and m>0 .  In virtue of (3.5) 
the equality z ( t ) = 0  may be regarded as a linear differential equation of order n for 
the function a(t). Probably, we could have taken one of  the solutions of this equa- 
tion for the function a(t). This requires a study of  the asymptotics of  its solutions. 
Another possibility is to construct an explicit, though approximate, solution of  the 
equation z ( t )=0 .  This way is considerably simpler, and we follow it. 

To describe our construction, set 

(4.4) (Dka)(t) = ( - - 1 )  ~ ~o'(s)-~-~ [a(t,  s)q~'(s)-la(s)] (s = t). 
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We shall seek a(t) as a sum 

a = Z ; = I  aj .  
Then 

(4.5) 

Z = Z ; = l O k Z ; = l a j  = Z ? = l ( Z ~ = l O l + l _ j a j ) - } - Z k + j ~ = n + 2 O k a j ,  1 ~ k,  j ~ t,. 

Let J>=2n-1. We submit the functions aj to the conditions 

(4.6) ~ = l  Dl+ l_jaj  = O. 

The system (4.6) may be solved successively. For l=1  the equation D~a~=O in 
detailed notation reads a~(t)=h(t)a~(t), where h(t)=Gt(t ,  t)G(t, 0 -1. Here and 
in what follows we denote by Gt(t, z) and G,(t, z) the partial derivatives of some kernel 
G(t, z) with respect to its first and second argument, respectively. It follows that 

(4.7) al(t) = exp [ L  h(s)ds]. 

Since under our assumptions h ( t ) : O ( t - ~ ) ,  t~o% we can define 

20 = sup [t Re h(t)], 21 : inf [tRe h(t)]. 
t>=to t~_t o 

Then 

(4.8) 

and 
(4.9) 

For l<l<-n 

ct ~ ~ lal(t)l ~ Ct ~o, 

a~J)( t )a l ( t )  -1  = o ( t - J ) ,  1 -~ j <= J.  

we shall regard (4.6) as an equation for a t . Set 

(4.10) r, = cp" a;IZJ--l tD,+l_jaj ,  4, = ayla,  �9 

In terms of ~l the equation (4.6), i.e. a~-hat=a~r l, takes the simpler form 

(4.11) ~[(t) = r,(t), l >= 2. 

Let us show that rt satisfies 

(4.12) [rz(t)[ <= Ct -1-(t-1)', 

the function ~l(t) may be defined by 

(4.13) ~,( t) =- - f t rl(s)ds 

and 

(4.14) I~,(t)l-<- Ct -(*-~)'. 

Moreover, the estimate (4.12) may be differentiated ( J - l )  times and (4.14) ( J - l +  1) 
times. For the proof assume that (4.12)--(4.14) hold for all l <  10. We shall establish 
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their validity for l=lo. It suffices to prove (4.12). Actually, since e > 0  the equation 
(4.11) gives (4.13) and this in its turn implies (4.14). Let us start from the definition 
(4.10). By (4.4), (4.9) the operator a'~Dkal lowers the order by ak units. So on ac- 
count of (4.14) for ~j, j<lo,  

(4.15) <= 

The estimate (4.15) may be differentiated ( J - j - k +  1) times. Thus, all summands 
t - - 1  q~ a~ Dzo+l_j(a~j) in (4.10) are bounded by t ~-l-to~ and these estimates are (J-lo) 

times differentiable. This concludes the proof of (4.12). The relations (4.5), (4.6) 
ensure that 

a { l z  = Zjq_k~nd_Z a{1Dk(alCj). 
l~_j ,k~n 

By condition (4.15) this yields the estimate a~(t)z(t)=O(t-("+l)~), which is 
( J - 2 n + l )  times differentiable. Now we set ~- - (~+. . .+~,  and summarize the 
results obtained. 

Lemma 4. Let G ~ ( ~ , f l ; J ) ,  ~>0, ~o'(t)---G(t, t), J_~2, l<=n~_(Y+l)/2 
and let condition (3.1) hold. Define z(t) by formulae (3.5), (4.2) and a~(t) by formula 
(4.7). Then there exists a function ~(t) (depending on n), 

(4.16) 

such that./'or a = a l ( l + r  

(4,17) 

Ir c t  

the function z satisfies 

Iz(t)l <= Ctao-("+~)% 

Moreover, estimates (4.16) and (4.17) may be differentiated ( J -  n + 1) and ( J -  2n + 1) 
times, respectively. 

According to (4.8), under the assumptions of Lemma 4, the functions a and 
b=q~" a -1 have estimates 

(4.18) la(0]-~ Ct zo, Ib(t)l <= Ct ~-~1-~, 

which are ( J - n +  1) times differentiable. The inequalities (4.17), (4.18) imply that the 
kernel (4.3) satisfies 

L I OtmlOz~ f21(t, z) ~ Ct-("+l)~+~o+m~ (~-1) z~-~-~1+'~2 (~-I), 

O<=m<=J-2n+l. In particular, ~21CN(-s, B, m), if (n-m)e=>2o-C~-fl and 
(n-m)e=>2o-X~+s. 

Let us now consider the second sum in the right-hand side of (3.7). By Lemma 4 
the kernel Lk(t, z)b(~) (see (3.5), (3.6)) belongs to the class ~ ( - e ( k - 1 ) ,  fl; J - n -  
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- k + l ) .  Since a = a l ( l + 4 ) ,  the kernel of zero order is 

(4.19) Ll(t,  z)b(z) = - a(v) -~ ~ [G(t, z)G(z, z)-I  a(z)] 

= -al(z),lff----~[G(t, "c) G(z, z ) - la l (v )] - ( l+~(z) ) - l~ ' ( z )G( t ,  z) G(z, z) -1. 

Due to the equation a'~=ha~ the first summand here equals 

(4.20) G(z, 0-2[G(t ,  z) G~(v, z ) -G( z ,  z)G~(t, z)] -- f20(t, z). 

The kernel f2 o has zero order and (4.16) ensures that the second summand in (4.19) 
belongs to the class f# ( -~ ,  fl; J - n ) .  The sum of  this term and of  ~ = ~  Lk(t, z)b(z) 
will be denoted by f2~(t, ~). Thus f22Cff(-~, fl; J - 2 n + l ) .  

It remains to consider the integral of  the right-hand side of (3.7): 

(4.21) f2z(t, = L, +1 (t, s) q~'(s) e ~(s) dsb ('c) e -~(*). 

Let us make use of  the bound 

(4.22) [L,+l(t, ~)] <= C(t/z)Pz -~(n+l)+ao, J >= 2n, 

which may be differentiated ( J - 2 n )  times. Inserting (4.22) into (4.21) and taking 
(4.1), (4.18) into account, we find that for n a > 2 o - f l ,  n~=>20-21+=+e the kernel 
f2~ has order - e  and type ft. Differentiation of  (4.21) with respect to t shows that 

( 0  L.+l(t, s)l ~o'(s)e ~'(~) dsb(z)e -~(~). O~Qz(t, "c) = L.+l(t, t)cp'(t)b(z)e~(O-~(') + f~  
Ot 

The first summand in the right-hand side is quite similar to t21(t, z), and the second to 
f2~(t, z). The derivative of  (4.21) with respect to -r is 

Of2z(t, r______~) _ L.+l(t, z)q~'(z)b(z) 

q- f ~ L, +1 (t, s) ~o" (s) e ~(s) ds [b'(z) - b (z) q~'(z)] e -  ~(*). 

Here L,+l(t ,  ~)~0'(z)b(~) is analogous to terms in the second sum in (3.7), and the 
second summand in the right-hand side has the same structure as f23(t, z). Thus, the 
same considerations as above permit us to estimate the derivatives of  f23(t, ~). 
Omitting at this place simple calculations, we formulate only the result. The kernel 
f23(t, "c) belongs to f~ ( -e ,  fl; m) if m<=J-2n+l ,  na>2o-  fl, (n-m)a>=2o-Ct-f l  
and (n-m)~>-2o-21+a+e.  

Let us summarize our results. Denote by [. ] the integral part of  a positive num- 
ber. Set ~ =  - f21 + 12z- I2 a and choose n so that 

(4.23) vo ---- ~ - l m a x  {20-fl, 20-2~+~} < n <- J/2 
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(this implies of course that J=>2[v0] + 2). Then the kernel 0 has negative order and 
type/3. The kernel 0 belongs to f r  m), where e>0,  l<=m<=J-2n+l, if 

(4.24) v -= ~-1 max {2o -~ - f l ,  20-21+c~} < n - m .  

Let now J=>2v+4. Then the inequalities l<=m<=J-2n+l and m + v < n  hold for 
n=[(J+v-1) /3]+l ,  m=[(J-2v-1) /3] .  In this case 0 ~ ( 9 ( - e ,  13; [(J-2v-1)/3]) ,  
e>0,  and the bounds (4.18) for the functions a, b are differentiable at least 
[ ( 2 J - v +  1)/3] times. Thus we obtain 

Theorem 2. Let GCfr J), e > 0 ,  let the conditions (3.1), (4.1) hoM and let 
the kernels f2 and [2 o be defined by formulae (3.3) and (4.20), respectively. 1 f  J>= 
2[vd+2,  then there exists a kernel �9 o f  the type (3.2) such that 

(4.25) f2(t, ~) = f2o(t, z)+ f2(t, z), 

where ~2 has negative order and type /3. I f  J=>2v+4, then (4.25) holds with ~2~ 
fr /3; [(J-2v-1)/3]) ,  a>0.  

The functions a, b and ~ in (3.2) are connected by the equations (3.6) and 
a=a l (1  + O, where al is defined by (4.7) and ~ satisfies (4.16). Moreover, (4.16) may be 
differentiated (J-iv0])  times i f  J~2[Vo]+2 and [ ( 2 J - v +  1)/3] times i f  J=>2v+4. 

Remark 1. Under the assumptions of  Theorem 2 the functions a and b satisfy 
(4.18), which are differentiable (J-[vo]) times if J=>2[vo]+2 and [ ( Z / - v + l ) / 3 ]  
times if J@2v+4 .  

Remark 2. Let the function h(t)=Gt(t, t)G(t, t) -~ satisfy for some # the con- 
dition 

(4.26) h (t) - ~tt-x ~ L1 (to, ~). 

Then (see (4.7)) a~(t)=ct"(1 +o(1) )  so that one can take 20=21=2 = Re # in Theo- 
rem 2. 

Remark 3. One can omit condition (4.1) in Theorem 2. Then (for example, in 
the case J=>2v+4) the assertion of  Theorem 2 remains true if we replace the asser- 
tion 0 C f r  fl; [(J-2v-1) /3])  by the estimates 

I (2(t, z) C(t/'c)tsz-l-~t-"~z-"~exp[~(t)-((z)], 

where O~=ml•  1)/3]. 
By the equality (3.3) the construction of ( l -G)  -1 is reduced to the inversion of  

the operator 1 +  O (t2 = - G o  in the notation of the Introduction). The operators f2 o 
and consequently 12 always have zero order. Thus Lemma 1 ensures only that the 
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kernel K = ( I +  Q)-I_/ also has zero order, but its type remains undetermined. The 
meaning of the equality (4.25) is that it distinguishes a truly singular (of zero order) 
part ~20 of the operator O. The summand f20 can be expressed simply in terms of the 
original kernel G. Under some additional assumptions this allows us to construct the 
operator (I+f20) -~ and to evaluate the type of the operator K. 

5. Inversion of the singular part 

In this section we need more special assumptions on G(t, z). We accept now 
The condition o f  asymptotic homogeneity. Let 

(5.1) G(t, z) = g ( t / v ) z ' - l+G( t ,  ~), ~ > O, 

where g(z)  is a J1 times differentiable function, Jl=>3, 

(5.2) ]g(J)(z)l ~ Cz p-j, 0 ~ j ~ J1, z >= 1, 

g(1)r  and the kernel G belongs to the class N(~-g ,  fl; J2), e>0,  J~>=J2~l. 
The conditions of Theorem 2 are also supposed to hold. Note, however, that 

(3.1) follows from the above assumption. Under the conditions of this section the 
expression for the singular part of f2 may be further simplified. Actually, by easy 
computations we get according to (4.20) that 

(5.3) ao(t ,  = 

where o~(z)=g(1) -1 [zg'(z)-~g(z)] ,  ~=g'(1)g(1) -~ and ~ E f # ( - ~ , f i ; J 2 - l ) .  
Moreover, in this case (4.26) is fulfilled with Iz=x so that one can take 2o=)~=)~= 
Re x and (see (4.23), (4.24)) 

(5.4) Vo = max{(2-hg/~, 1}, v = max{(; t - f i ) /oc- l ,  1}. 

Now we insert (5.3) into (4.25) and collect s~ and ~ together. Then ~+~--=O,E 
f~(_e, f l ; jo) ,  where J ~  { J ~ - l ,  [ (J -2v -1 ) /3]} .  Set Qs(t, z) = co (t/z) "c -1. 
Then the equality (4.25) reads 

(5.5) = 

The summand Os has zero order, and it determines the truly singular part of the ker- 
nel O. Since the order of f2~ is negative, the inversion of I +  f2 may be easily reduced 
(see below) to the inversion of I +  f2~. It is important for us that with the help of the 
Mellin transform one can construct the operator ( /+  (2,) -1 explicitly. 

Recall some basic facts about the Mellin transform (see e.g. [4]). For  any func- 
t ionf(z),  defined for z =  > 1 and increasing as z-~ co not quicker than some power o fz  
(i.e. If(z)l<=Cz%), we set 

](p) = z - ' - V ( z )  az. 
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The Mellin transform f (p) is defined at any rate in the half-plane Re p > a o ,  is an 
analytic function there and f ( p ) ~ O  as R e p ~  co. If, moreover, 

(5.6) z f ( z  <= Cz"o 

for k = l ,  then f (p)=O(]p]  -1) as p ~ ,  Rep>=a for any a > a 0 .  If the estimate 
(5.6) holds for O~k<=n, where n=>2, then 

(5.7) f (p)  _ ,,-x -k > - - ~ = ~  A P  +O(IpI-") ,  P ~oo, R e p  = a > ao, 

f0=f(1) .  Conversely, if a function f ( p )  is analytic in the half-plane R e p > a 0  and 
satisfies (5.7) for some n ~ 2 ,  then f (p )  is the Mellin transform of a function f ( z )  
such that f (k) (z )=O(z ' -k)  for any a>o- 0 and O<=k<=n-2. Note that the Mellin 
transform of 

A (z/OA (r 
is fl(P)f2(P). 

For  kernels (5.1) we shall find the type of the operator K =  ( I t  ~)-~ in terms of 
some parameters of the Mellin transform ~ (p) of the function g(z). By (5.2) the func- 
tion ~ (p) is analytic in the half-plane Re p >/~ and satisfies there (5.7) with n =Jx ~3.  
Thus there are only a finite number of  its zeros in the half-plane R e p ~ / ~ t e  for  
any e:>O. Denote bypo the maximum of the real parts of  these zeros. I f  ~(p) does 
not have any zero for Rep>/~ ,  then we set p0=/L To compute the type of  K we 
introduce 

(5.8) 

Let us seek the operator 

(5.9) 

The equality 

60=  max{p0,2}, 2 = R e x .  

( I t  f2,) -~ in the form I t  7 ~, where 

7~(t, ~) = ~(t /z)z  -1. 

~2s + ~ + ~2~ 7 ~ = 0 ensures that 

co (t/z) t O (t/z) t f~  co (tla) 0 (a/z) dala = O. 

After the change of  variables a = z ( ,  t=z~ we get 

co(z)+O(z)+ f ;  co(z/ )q,(o = o. 

The Mellin transform of  this equation yields 

~b(p) t~(p) tdg(p)~(p)  = O, 
so that 

~(p) = -~(v)[1 +~(p)]-l .  

Since th(p) = - 1 +g(1)-~(p-• it follows that 

(p) = - 1 + g (1) (p  - ~ ) - 1 ~  ( p ) - i  
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Thus the function ~(p) is regular in the half-plane Rep>60 .  The relation (5.7), 
where n=J1, for ~(p) yields (5.7) with n = J ~ - I  for ~(p). So ~(p) is the Mellin 
transform of a function 0(z), which satisfies 

10U)(z)l _<- Cz ~-j, o <-j <- J1-3,  

for any 6>6 o. By (5.9) it follows that ~PEN(0, 6; J~-3) .  
Let us return to the construction of ( I+  f2) -~. The relations (5.5) and ( I+  70 �9 

(I+~2~)=I show that 
(~+~)-~ = ( z +  ~ ' ) [ / + ~ , ( z +  ~)]-1. 

Let the numbers v0 and v be defined by (5.4). I f  J_->2[v0]+2, then g2, has negative 
order and type 6. By Lemma 3 the same is true for the operator ~2,(/+ ~). Now 
Lemma 2 ensures that 

[I+Qr(I+ 7 0 ] - l - I  = KoEN(-e,  6), ~ > O. 

Applying Lemma 3 once more we find that 

(5.10) (I+g2) -1 = ( I+  70(I+Ko) = I+K,  

where KEN(0, 6). Quite similarly, if the conditions of Theorem 2 hold for J ~ 2 v + 4 ,  
then the operator K in (5.10) belongs to the class N (0, 5; J o), where J0 = rain {J~-3,  
J~-- 1, [ ( J -2v  - 1)/31}. 

We summazize our results in the following 

Theorem 3. Let GEN(e, f l ; J ) ,  a>0 ,  Re G(t, t)<=O. Assume that the condition 
o f  asymptotic homogeneity holds. Let further ~ be the same as in Theorem 2, let 5o 
be defined by (5.8) and let 5 be any number greater than 5o. Then the operator ( I - G )  -1 
is represented by formula (3.11), where KEN(0, 3) i f  J=>2[v0]-1-2 and KEN(0, 6; J0) 
i f  J>=2v+4. 

6. Asymptotics of solutions 

Here we use the results of Theorems 1 and 3 on the structure of the operator 
( I - G )  -1 to obtain a bound, or asymptotics, of the solution v(t) of the integral equa- 
tion (1.1). In virtue of the formula (3.11) the function v (t) admits the representation 

(6.1) v(t) = w(t)+a(t)e~(t) f~oe-~'(Ob(z)w(z ) dr, 

where w = Vo + Kvo. At first we shall obtain a bound for v (t) under the conditions of 
Theorem 1. Assume that for some real 70 the free term v0 satisfies 

(6.2) Iv0(t)l <= Ct,o exp [~(t)]. 
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By (3.10) it follows that a similar bound holds for w(t).  The equality (6.1) ensures 
now that 

(6.3) Iv(t)l ~ Ct ~ exp [((0], 

where ~ is some real number. In particular under the additional assumption (4.1) the 
solution v(t)  is polynomially bounded. 

This assertion may be essentially improved if the conditions of  Theorem 3 are 
fulfilled. Assume now that GEfr fl; J ) ,  where J ~ 2 v + 7 ,  and let the condition 
of  asymptotic homogeneity hold for J l =  5, J2 = 3. Then by Theorem 3 K6 fr (0, 6; 2). 
For v0 suppose that 

(6.4) lV(o j) (t)l <= CtOo - j ,  0 <= j <= 2. 

The equality W=Vo+Kvo ensures that a similar bound is valid for w: 

(6.5) [w(J)(t)[ <= C?-J ,  0 <= j <= 2, 6 > ao. 

Set 
fo  = ((p')-~bw, Pl = (q)')-iPo 

and integrate twice by parts in (6.1): 

v (t) = w (t)-- a (t) (Po (t) + Pl (t)) + a (0 e~(t) 

(6.6) X [(P0 (to) + Pl (to)) e -  tp(to) 2t- s e-  *(')p~ (z) dz].  

By the equality a b = q /  the functions w(t)  and a(t)po(t) cancel each other on the 
right-hand side of  (6.6). The constant po(to)+pl(to) will be denoted by I. So (6.6) 
reads 

(6.7) v(O = [t+ e -e(') p; (z) dz].  

According to the bounds (4.18) and (6.5) the first summand in (6.7) satisfies 

(6.8) la (t)p~(t)l <= C? -~. 

Let us consider the cases 6o -2 -e_ ->0  and ~ o - 2 - ~ < 0  separately. If  t 5 o - 2 -  
a_->0, 

(6.9) 

S ince  

(6.10) 

If 6 o - ~ - - a < O  

(6.11) 

then by (4.1) and p[( t )=O(t  a-~-~-a) 

e~O(,) f t  e_~(,)p~(z) d~ < Ct ~-~-~ 
t o 

a(t )=O(t~) ,  the relations (6.7)--(6.9) ensure that 

v (t) = O (t ~ 

and g o = R e g ( 1 ) < 0 ,  then 

Re 9"(t) = go t~ -a + O (t =-a-*)  < 2 - 1  go t=-l .  
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Thus in this case the bound (6.9) remains true. Moreover, by (6.11) the function e ~'(t) 
vanishes quicker than any power of t -1 as t~oo. So the bound (6.10) holds again. 

In case 6 0 - 2 - ~ < 0  , g0=0 we assume additionally that G(t, t) is purely ima- 
ginary. Then the integral over (to, t) in (6.7) may be treated as a difference of  integrals 
over (to, oo) and (t, oo). Each of  these integrals is absolutely convergent. The integral 
over (to, ~o) changes only the constant I. The integral over (t, ~o) is O(t~-~-~). Under 
these circumstances the solution v(t) has the asymptotics 

v(t) = la (t)e~(t) + O(t~-~). 

Since the difference a( t ) -a l ( t )  is O(t~-'), we can replace here a(t) by a~(t). In 
explicit notation it means that 

(6.12) v(t) = lexp{f~o[Gt(s, s)G(s, s)-~+G(s, s)]ds}+O(ta-~). 

We collect the results on the asymptotic behaviour of v (t) in 

Theorem 4. 1) Let GEf#(~, 13; 2), ~>0 ,  let condition (3.1) hoM and let vo(t) 
satisfy (6.2)for some 7o. Then for the solution v(t) o f  the integral equation (1.1) the 
estimate (6.3) holds with some real 7. In particular, under the additional assumption 
(4.1) the function v(t) is polynomially bounded i f  vo(t ) has this property. 

2) Let GEfg(ce, f l ; J ) ,  ~>0 ,  J_->2v+7, let the condition o f  the asymptotic 
homogeneity hold for J1=5,  J~=3  and let Vo(t ) satisfy (6.4). Then 

a) the bound(6.10) is valid i f  g o = R e g ( 1 ) < 0  or g0-0 ,  ReG(t,t)<:O, ~<= 
~o-2, 

b) the asymptotics (6.12) is valid i f  g0--0, Re G(t, t )=0 ,  ~ > 8 0 - 2 .  

It is sufficient in Theorem 4, part 1, to assume smoothness of  G(t, ~) only for 
t ~-c_-> tl, where t~ is arbitrarily large. Actually, splitting the integral in (1.1) into the 
sum of integrals over (to, tO and (tl, t) we can reduce equation (1.1) to a similar 
equation for t>=tl and the new free term 

v~(t) = Vo(t) + f [] G(t, r)v(z) dr. 

The same consideration can of  course be applied also to the conditions of  the second 
part of  Theorem 4. 

In conclusion we note that under the assumptions of  Theorem 4 the estimation of  
absolute values (see Lemma 1) of the terms of  series (1.2) gives only the inequality 

(6.13) Iv(t)[ _-< Ct p exp [d(t)], 
where at any rate 

t d(t) z~ o tPo [G(s, s)[ ds. 
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The improvement  of (6.13) takes place in Theorem 4 due to mutual compensation of 
terms in (1.2). This is connected with restrictions on the values of  the argument  of  
G(t,  t). So the condition Re G(t,  t)<=O ensures that  v( t )  is polynomially bounded. 
I f  the values of  G(t, t) lie outside some sector larg zl<=O, 0C(0, re/2), then by (6.3) 

(6.14) Iv(t){ ~ Ct~exp [cos of', IG(s, s) lds].  
0 

Since the last integral increases as t ~, both bounds (6.13) and (6.14) are of  the same 
exponential order. However, the constant multiplier of  t ~ in (6.14) is smaller than that 
in (6.13). 

Acknowledgements .  I t  is a pleasure to thank Professor L. Carleson and the staff 
of  the Institut Mittag--Leffler  for their hospitality during my stay at the Institute. 

References 

1. MlCHL~N, S. G., Lectures on linear integral equations, Fismatgiz, Moscow, 1959 (in Russian). 
2. OLVER, F. W. J., Introduction to asymptotics and special functions, Academic Press, New York 

and London, 1974. 
3. YArAEV, D. R., Scattering theory for time-dependent zero-range potentials, Ann. Inst. H. 

Poincard Sect. A (N. S.) 40 (1984), 343--359. 
4. LAVRENTJEV, M. A. and SHABAT, B. V., Methods of the theory of functions of a complex variable, 

Nauka, Moscow, 1965 (in Russian). 

Received August 22, 1983 D. R. Yafaev 
Leningrad Branch of the 
Mathematical Institute (LOMI) 
Fontanka 27 
Leningrad, 191011 
USSR 


