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This is the first of a two-part paper on adjoint problems for the biharmonic 
equation in a C a domain in the plane. The study of problems which arise as adjoints 
to Dirichlet problems was suggested by the paper of Fabes and Kenig on H x spaces 
of C 1 domains [7]. Their paper shows that the Neumann problem on bounded C a 
domains with h a boundary data (see w 1.1 of [7] for details) is solvable as a single 
layer potential. In addition, the gradient of the single layer potential is used to 
establish a connection between the h a data space and the H a space of vectors of 
harmonic functions in O satisfying a generalized Cauchy--Riemann system. 

In our papers we show how analogous adjoint problems for the biharmonic 
equation arise from the potentials and Green's formulae used to study the Dirich- 
let problem. We give solutions in the form of lower order potentials, a device we 
introduced in w 5 of [3] to solve the Dirichlet problem. 

In the first paper we use the lower order potential to solve the adjoint problems 
with data in the dual of the space of Dirichlet data. We further show that by con- 

sidering biharmonic functions as the real parts of solutions of the equation 02f=0, 

(0=0x+i0y), we are able to solve a fundamental problem in two dimensional elas- 
ticity with a modified form of the lower order potential. 

The boundary data considered in the first paper is a space of cosets of linear 
functionals acting on the Dirichlet data. To obtain convergence for the potentials 
at the boundary we must extend the meaning of the coset space to include func- 
tions defined on a system of local parallel translates of the boundary. The trace of 
the potentials on the boundary is shown to have an inverse in the coset space and a 
solution of the adjoint problem is obtained. 

In the second paper [4] we extend our results to show that for the elasticity 
problem the potential has non-tangential point-wise limits almost everywhere char- 
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acterized by singular integrals. Furthermore, we show that as an operator defined 
point-wise almost everywhere, the trace of the potentials is invertible. This yields 
a solution to the elasticity problem with non-tangential pointwise convergence at 
the boundary. We point out that the invertibility of the pointwise defined trace 
depends crucially on its invertibility as an operator acting on the coset space. 

The potentials in these papers were developed to take advantage of recent 
developments in the study of singular integrals, most notably the work of A. P. Cal- 
derdn [2] and Coifman, McIntosh and Meyer [5] on the Cauchy integral on Lip- 
schitz curves. The results we obtain extend previous results to domains with C 1 
boundaries and data in LP(OQ) for 1 < p <  ~. 

These papers are the first step in the development of an H p theory for bihar- 
monic functions. One application of such a theory will be the extension of results 
for the adjoint problems to data spaces of L p functions where p<_-1. 

The appearance of the 0~ equation in a study of biharmonic functions is not 
surprising. A basic step in the application of complex methods in elasticity is writing 
a biharmonic function v as v(x,y)=Re {~f(z)+g(z)} where f and g are analytic. 

(See Chapter 5 of Muskhelishvili [9] for details). We point out that ~2 (~f(z) +g(z)) = 0 
so it is clear that the connection between the ~2 equation and biharmonic functions 
plays an important role in the theory of elasticity. 

O. Introduction 

In this paper we study adjoint boundary value problems for the biharmonic 
equation, A~u=O, in a bounded C 1 domain in R 2. The solutions of the problems 
posed here are applications of the methods and estimates developed by Cohen and 
Gosselin in [3] in obtaining multiple layer potential solutions to the interior Dirich- 
let problem for the biharmonic equation. 

We show how the adjoint problem is determined by the form of the multiple 
layer potential and solve it in both the interior and exterior of ~2. In addition we 
solve the exterior Dirichlet problem. 

We next show that the fundamental solution F for the biharmonic operator 
A s is the real part of a complex valued function satisfying 02(F+iP)=O. The real 
and imaginary parts of the solutions of this equation satisfy a system of partial 
differential equations which we apply to F + i P  to obtain a new form for the mul- 
tiple layer potential. This in turn enables us to solve the adjoint problem: 

A~v = 0 in ,Q, 

(0.1) (vxxx~+vxyy~, vxyx,+v,yys) = (~o, ~) on 0f2. 
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Finally we point out that this last problem is equivalent to finding the stress 
function from the x and y components of normal stress on the boundary of a thin 
plate, a fundamental problem in the theory of two dimensional elasticity. 

In the first section we outline briefly the main results and methods used in 
[3] to solve the interior Dirichlet problem for the biharmonic equation. We introduce 
Agmon's multiple layer potential u(f; X) where f=(f,g,h)E~v, a space of 
compatible triples defined on the boundary 0~2. We recall that fi=(u, u x, ur) has 
boundary values of the form (i+d)f where s is compact from No to itself. We 
show that ( 1 + ~ )  is invertible by considering the dual space ~ ; ,  introducing a 
lower order potential, and applying the relevant Green's formula. This argument 
shows that the adjoint d + s  is one to one on the space ~ .  

In the second section we look at triples of functions defined in a neighborhood 
of 0(2, and make precise what we mean by convergence at the boundary to elements 
in N~. We introduce the adjoint boundary value problem and show how the exterior 
version is solved by the lower order potential. 

We solve the exterior Dirichlet problem with data in Nv and the interior adjoint 
problem with data in a subspace of N; satisfying certain moment conditions. 

In the third section we censider biharmonic functions as the real parts of com- 
plex valued functions satisfying 02f=0. We show that the real and imaginary parts 
of such functions satisfy necessary conditions analogous to the Cauchy--Riemann 
equations. By applying these conditions to the components of the kernel of the 
multiple layer potential we obtain a different form of the multiple layer potential 
and a solution to the simpler form of the Dirichlet problem 

A~u=O in O, 

(0.2) (u~,, ur) --- (g, h)CLg(Of2)• 

We show that this form of the Dirichlet problem has the natural adjoint problem 
in (0.1) which we solve in an appropriate distributional sense. 

In the fourth section we make some concluding remarks. We explain the con- 
nection of the adjoint problem (0.1) with a fundamental problem in two dimen- 
sional elasticity, and we give a physical interpretation to the moment conditions 
satisfied by the solution of the interior adjoint problem. We raise some questions 
about pointwise solutions and uniqueness and suggest possible extensions of these 
results to L I data and to Lipschitz domains. 
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1. Review of the solution to interior Diriehlet Problem 

In this section we review the multiple layer potential solution of the Dirichlet 
problem for the biharmonic equation in a bounded, simply connected C 1 domain 
in R 2. We introduce Agmon's multiple layer potential u(f; X) with density f in 
a space of compatible triples. We recall the estimates for fi = (u, u~, uy) on and 
near the boundary 0~2 which give the interior and exterior limits of the form 
( + ] + ~ ) f  where ~ is compact. The lower order potential is introduced and we 
show how it is used to show ( /+  s  is one to one. 

I.I. The multiple layer potential 

We start with the Green's formula: 
For u, v~C4(~ -) 

(1.1.1) f f o Re (Ox + iOy) 2 U(Ox-- iOy)~v dx dy 

= f ~  uK~v+uxK~v+uyK3vds(Q)+ f f ~  uA~vdxdy, 
where 

(1.1.2) K l v -  OAv OVxy 
- 0 7  +2 as ' 

K~v = (V~x-V.) y~, 

K.v = (v~x-v~)x~ +(4v~) y~ 

and x(s)~+y(s)j represents the boundary sketched counterclockwise and para- 
metrized by arclength, xs and ys denote the arclength derivatives of x and y and 
Ov Ov 
ON and ~ denote the inner normal and tangential derivatives of v on the 

boundary. 

We let fi=(u, u x, uy), ~v=(Klv, K2v, K~v), 0=(Ox+iOy) and O=(3~,-Dy). 
With this notation the Green's formula (1.1.1) has the simpler form 

(1.1.3) f f o  Re-O2uO2vdxdy= fo fiKvrds(Q)+ f f  a uA2dxdy, 

where/s r denotes the transpose (a column vector in this case) of/(v.  
We next set v= F(X-  Q) where for X= (x, y) 

(1.1.4) F(X) = - 1 [(x2 +y2) log ]/x 2 +y2 +y2] 
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is the fundamental solution for the biharmonic operator used by Agmon in [1]. 
Substituting for v in (1.1.3) we get: 

(1.1.5) 
f -2u (X) ,  XE~ 

f f Re 5 2 u0 z (F(X- . )) dx dy = f o. it (Q) KF(X- Q)T ds (Q) + Jt O, X~ ~. 

We introduce the following space of polynomials. For f2cR  2, J ( f2 )=  
{f: f=ex+fiy+?(x~+y2)+6 where ~, fl, ~, 6ER, (x,y)Ef2}. J is the four dimen- 
sional space spanned by 1, x, y and x2+y 2. We let J (0f2)={f :  f E J ,  and f is 
the restriction of (f, fx,fy) to 0f2}. A simple computation shows that Ozf=Ozf=O 
for all f E J .  Setting u=fEJ in (1.1.5) we have the reproducing property 

(1.1.6) f f(Q) gQF(X- Q) r as (Q) = ~2f(x), 
xE 

tO, Xr 

where geF(X-Q) r, the superscript Q denotes the variable with respect to which 
g acts. 

We next consider the space of compatible triples 

~p= {f  =(f,g,h): fELf(OQ)•215 and df = a.e.}. 

Definition (1.1.7). The multiple layer potential u(]; X) with density ]ENp 
defined: 

u(y; x) = f f(Q) gO F(X--Q)T ds (Q). 

/s 

1.2. The basic estimates 

For u=u(f; X), the multiple layer potential with density ]ENp, we let it 
denote the triple (u, u x, uy). For Xr 

(1.2.1) it (X) =fon f(Q)s Q) ds (Q) 

where Y(X, Q) is the 3•  matrix given by the matrix product 

(1.2.2) A(X, Q) = (KQ)r (I, 0 x, 0 x) F(X-Q) 

where the superscripts indicate the variable on which the differential operators act. 
For any Pr the matrix ~f(P, Q) can be defined by (1.2.2). For PEOQ 

we tentatively define the operator ~ :  Np-~Np by 

(1.2.3) i f  f (P) = p.v. f I(o.)a(P, Q) ds(Q). 
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Theorem (1.2.4). For fE &p, 

(i) f f f (P)  exists a.e. and is compact and bounded from ~p to ~ in the Lf(Of2)• 
LP(Of2)• norm, 

(ii) non-tangential lira ~i(f, X)  = ~(i+~")f(P) a.e., X~f2 
[(-J+:~)f(P) a.e., X([~. X~P6 Of 2 

Off) For f6,,~(OD), /df(e)=/(e). 

Proof. The proof of theorem (1.2.4) is the contents of chapters three and four 
of Cohen and Gosselin [3]. It consists of applying Calder6n's theorem on the Cauchy 
integral along Lipschitz curves [2] to the multiple layer potential and its derivatives. 
The boundedness arLuments are straightforward applications of Calder6n's theo- 
rem but the compactness arguments require considerable care. They involve utilizing 
all the representations of the multiple layer potential employed by Agmon in his 
paper on multiple layer potentials [1]. 

1.3. The adjoint and the lower order potential 

The existence of a solution to the Dirichlet problem, A~u=O in f2, ti=fEN~ 
on 0f2, is established if we can invert the boundary operator ( J + ~ ) .  Because 
the boundary is C 1, it is necessary to consider the adjoint operator (~+~)*.  To 
do this we must introduce a lower order potential with density in N* the dual of Np. 

Briefly, the dual space of Np is the triple of cosets of L q functions N p -  
{0=(0, ~o, 0): OELq(O~2)•163 where 

~ = {0: f~o f(Q)O(Q) r ds(Q) = 0 for all f6~p}. 

For fC~p and dEN* we define the dual pairing by (f, O)=fo~f(Q)O(Q) r ds(Q). 
To find ~ * 0  we proceed formally. For fE~p, 0~N~, 

(1.3.1) (f, J?* 0> = <J?y, 0> = fo. f(Q)~e(p, Q) ds (Q) 0 (p)T ds (P) 

= fo./(Q)fo  ~(?' Q)O(e)rds(P)as(Q) 

= fo .  f(Q) {ge f , F ( P - Q ) O ( P )  +OCF(P-Q)q)(P) +OfF(P-Q)O (P)ds(P)} r ds(Q). 

This calculation is formal since the integral foa~e(P, Q)O(P) r ds(P) need not 
exist even in the principal value sense. Nonetheless, the calculation suggests intro- 
ducing the following potential: 
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Definition (1.3.2). The lower order potential v=v(O; X) with density OE&~ is 
defined for X r  by 

v (0; X) = foo F ( P -  X) 0 (P) + Oe~ F ( P -  X) ~p (P) + Of F ( P -  lO ~ (P) as (P) 

where F is the fundamental solution given in (1.1.4). 

Theorem (1.3.3). The lower order potential is well defined on the quotient space 
~* and is globally C t. Furthermore, if 06ker (]+:~)*,  (J', 0)=0 for fC~c(Of2) and 
v(O; X) satisfies the estimates: 

(1.3.4) v(X) = O(loglXI) as IXl -,=o, 

Ox~Oy p v(X) = O(IX[ - ' -p )  as IXl-*~ for 1 ~= a+f l  <= 3. 

The proof of theorem (1.3.3) is in theorem (5.1.3) of [3]. 

1.4. Weak identities and the invertibility of (] + :,~)* 

In this section we apply the Green's formula (1.1.3) to the form Re'O%O2v. 
Since the lower order potential may have non-integrable singularities we must intro- 
duce a partition of unity to obtain the relevant weak identities. 

There exist balls I~j:B(Pfi 6j), j = l  ..... N, PjEO~'2, such that O~cUy=IB j 
and dist(0t2, [U;=tBj]C)=6o>O. Since 0f2 is C ~ there are local coordinates 
~jCCol(R), j =  1 . . . . .  N, centered at Pj, satisfying 

(i) ~j(o) - -  ~ ( 0 ) ,  

(ii) B(Pj, 463)c~f2 = {(z, w): w > a j (z)}c~f2,  

(iii) B(Pj, 4 6 j ) c ~  c = {(z, w): w < a j ( z ) } c a ~  c. 

We let (9o be an open set such that OoC:;.Q,(U~=IBj)uOoDO, OoD 
{Xkf2:dist(Of2, X ) > @ }  d~o ca {XE f2: 60 and dist (0~2, X) =<-4-'1 = 0. 

Let Be be a ball centered at the origin such that Bn/2 ~ •. Let ~s  = B s \ ~ .  Let OR 
be an open set such that OR u ( I f  f= 1 Bj) D ~?R, 0R c De, OR D {XE f~R: dist (00, AT) > 

~ }  and d)Rn{XEf2.: dist 46~ (0f2, X)-<_--:-j = 0. 
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We next define the following subsets and subarcs. For 0<t<6o/8, 

Dj, t = {(z, w): w > c~i(z)+t}c~B(P J, 45/), 

~j,t = {(z, ~ i (z)+t )}nB(Pj ;  46j) 

for j =  1, 2 . . . . .  N and D,+l, t=00.  
Then let 

Ej, t = {(z, w): z < ~j(x) - t }nB(Pf  46j), 

ej, t = {(z, ccj(z)-t)}nB(Pfi 46j) 
for j =  1 . . . .  , N and 

E N + l , t  ~ {~R �9 

/- ~N+I is a smooth partition of unity subordinate to Finally we assume that tqjlj=l 
tr ~N+i is a smooth partition of unity subordinate to the cover B~ . . . .  , BN, 0o and o m = l  

the cover Bx, ..., BN, ~PR. We then have the following theorem: 

Theorem (1.4.1). Let v(0; X) denote the lower order potential with density 
0~ ~*. Let ~ denote the unit inner normal at Pj. Then, 

(i) I f  f~C2(~2)c~C~(~),f denotes (f, fx,fr) at 0(2 and t>0 ,  then 

lim ~N+I  f Re lljO2fO2v dxdy 
t ~ O  J =  .1 Dd, t  

N 
=- lim,_o Zj=, f o. f o. tlJ(Q)f(Q)A(P-tNj' Q) ds(Q)O(p)r ds(e) 

= < ( - l + ~ ) f ,  0> = </, ( - i + ~ ) * 0 > .  

(ii) I f  (f, 0}=0 for every ~C~r and v=v(0;  X) is the lower order potential 
with density OE~* and f~C2(~ ~) n C1(~ *) with the growth properties f= O(log IX]) 
as IXl-*o%L=O(lXl-O as ]x[-~o and fy=O([X[ -1) as lX[-+~o, then 

lira l i m ~  'N+x f f  Es, Re ~j-~2fO2 v dx dy R~w t~O ~ j = l  

N = ~im -Z j=x fo  ~ foa r + t~j, Q)ds(Q)O(P) r as(P) 

= - < ( / + ~ ? ) f ,  0> = - <f, ( i +  ~ ) *  0>. 

Proof. (i) is (5.2.25) of [3]. Part (ii) is essentially proved in lemma (5.2.2) of 
[3], the one difference being that in [3] it was just done for f=v(O; X). A close 
examination of the argument shows that the theorem still holds with the growth 
conditions on f given in this theorem. 

We next have the following theorem which is a corollary of theorem (1.4.1) 
and which shows that Ker (1 +off)* c ~ .  
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Theorem (1.4.2). f f  OEKer (I+YF)* and v=v(O; X) 
tial with density OE~ v, then 

(i) f f ~oRe-O2va=v dx dy = - ( f ,  (i + :~)*0) = O, 

(ii) vE~(~9,~EoC(Of2) and :~b= b, 

(iii) f f  . Re-O~vO2odxdy = ((--i+o,~)b, O) = O, 

(iv) vEor in f2 and O~v= 0 in g2. 

(v) For fEC~(f2)nC~(O), t > O  

is the lower order poten- 

(f, ( - i + Y f ) * O ) =  limZ]=+ll f f o  Re(j-O~fO~vdxdy = O. 
d,t 

Finally we have the existence of a solution to the interior Dirichlet problem: 

Theorem (1.4.3). For fE~p, there exists fE~p such that u=u(fi; X) satisfies 

A2u = O in I2, 

non-tangential lira f i(X)= f(P) a.e. 
X--PE OF~ 

X E ~  

Proof. Since 0EKer ( i+ . ,~)*~(f ,  (/+Y{')*0}=O and (f, ( - / + J ' ) * 0 } = O ,  we 
have (f, 0)=0 for all ]E~p. Hence 0E&~. This shows that ( i + ~ ) *  is one 
to one. By the Fredholm theory we know that ( 1 + # )  is one to one and onto. 

Hence for fC ., there exists fiE . such that (/+#)i--Y. Setting u=u(Y;X) 
we meet the conditions of the theorem. 

2. The adjoint problem 

The calculations in (1.3.1), though purely formal, suggest that in some sense 
the operator :,~*0=/~v(P) where v is the lower order potential with density dE&* 
and/s  is the triple of differential operators defined in (1.1.2). The adjoint boundary 
value problem is then to find a function v which is biharmonic in f2 and which sat- 
isfies / ~ v = 0 E ~  on the boundary of O. 

In this section we make precise the notion of convergence at the boundary in 
the space ~ .  Then we solve the exterior and interior adjoint problems, obtaining 
a solution to the exterior Dirichlet problem as well. 
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2.1. Convergence in Np and the exterior adjoint problem 

We let Bt, B N and ~r q N . . . .  {(J}j=l '  { J}j=l be as in w Let ~o :{X:  dist(X,O~)< 
~o/8}. For 0=(0, q~, O), a triple of functions defined on ~2 o, Nj the unit inner 
normal at Pj, and 0<t<3o/8 , we define 

(2.1.0 
and 
(2.1.2) 

Or" (e) : 2;=1 ?~j (P) 0 (P-~ gN j) 

Ot + (e) = ZjN1 ~j (e) 0 i N -  IN j). 

We say O~-ELq(OQ)•215 if foorlj(P)f(P)O(P+tRj)rds(P)< ~o 
for j = l ,  ..., N and all fEN o and similarly we say O+ELq(OQ))<Lq(OQ))<Lq(OO) 
if fo~j(P)f(P)O(P-tNj)rds(P)<oo for j = I , . . . , N  and all fEN,.  We define 
the dual pairings 

(/, Or > = f ,lj (e)/(e) 0 (e+ t j) T as (e) 
and 

(/, Ot +) = z ) N l f  o~ ~j(e)/(e)O(P-t-Nj) r ds(P). 

If we identify elements (01) + and (02) + for which (f, (01)+)=(f, (02) +) for all 
fENp, then we consider them as elements in Np. For c~EN* we define 

(2.1.3) ~ =  0 + = l i m 0 t  + if lim(f, 0t + ) =  (f ,~)  
t ~ 0  t ~ 0  

for all fEN w We also define 

(2.1.4) ~ = 0 -  = l i m 0  7 if lim(f, 0 F ) =  ( f ,d)  
t ~ 0  t ~ 0  

for all fCN . 
We know from theorem (1.4.3)that ( l + ~ ) *  is one to one and onto on N~. 

Hence, there exists a triple 0EN~ such that ( i + ~ ) * 0 = 0 .  Let v=v(O, X) be the 

lower order potential with density 0. I f /~  is the set of differential operators defined 
by (1.1.2), then define 

(/~V) + = Z ; = I  ~j (P) s  (P -- iN j). 

Note that R is an operator on the boundary and in defining (/(v) + we are extend- 
ing/ (v  to the point P-t_Nj as follows: for ~p=xs(P)i+ys(P)j, the unit tangent 
vector at PEOs and Np the unit inner normal at P, we define Kv(P-t_Nj)=(K1, 

K2, K3) ( P -  t.Nj) where K 1 v ( P -  tNj) = (VA v ( P -  tNj), Np) + 2 (Vvxv (P - t_Nj), re), 
K2 v ( P -  t_~ j) = (Vx, ( P -  t_~ j) - v,, ( P -  tN j)) ys (P ), and K3 v ( P -  tN j) = (v~ ( P -  tN j) - 
vy,(P-- tN j) ) xs(P) +4Vxy(P- tN j) y,(P ). 
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From the proof of theorem (1.4.1), (see lemma 5.2.2 of [3] for details), we 
know that for any fE ~v, 

(2.1.5) lira (f, (/~v) +) = l i m ~ .  ~ 1 f qj (P) f (P)~v(P- tNs)rds(P)  
t~O t~O J= d Of 2 

= = <1, = <1, 0>. 

We thus have the following existence theorem for the adjoint problem. 

Theorem (2.1.6). For OE ~ ,  there exists a function v defined in ~c such that 

A~v = O in ~c, 

lim (/, (~v) +) = (f, 0), 
t ~ 0  

for all ]ENp and in fact the function v is a lower order potential with density in N~. 

2.2. The interior adjoint and exterior Dirichlet problems 

In this section we consider the exterior Dirichlet and interior adjoint problems 
for the biharmonic equation. Throughout this section we assume f2 is a bounded 
simply connected C 1 domain in R 2. We start by noting that for fE J (Of2), ( I -  : ~ ) f=  0. 
This tells us that for some elements in ~p the exterior Dirichlet problem cannot be 
solved with a multiple layer potential. We begin this section by defining 

(2.2.1) V+ = {fE~v: ( / - ~ ) f =  0}, 

w +  = = 0}. 

The main element in solving the boundary value problems is the following: 

Theorem (2.2.2). For V+~={OEN;: (/,  0)=0 for all fEV+} and 14/+~= 
{fE~,:  (/,  0 )=0 for all OEI/V+} 

(i) ~*=V+ ~ @W+ =Range ( I - ~ ) * O W + ,  

(ii) ~o = Range ( i -  ~ )  | V+. 

Proof. The proof follows from two lemmas. 

Lemma (2.2.3). I f  t)EW+ and v=v(O; X) is the lower order potential with 
density O, then vEJ(~?) and ~EJ(0~2). 

Proof. Using theorem (1.4.2) part (v) and the monotone convergence theorem, 

f f . Re-O~vO2v dx dy = (b, ( - i + ~ * ) 0 )  = O, 
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since 0EW+. This implies v~:,-vyy=Vxy=O since Re'OZvO2v:(Vxx-%y)2q-4V2xy. 
By lemma 13.1 of Agmon [1], vEJ(Q)  and by the continuity of b, we have bEJ(0f2). 

Lemma (2.2.4). Let J ( 0 f 2 ) x = { 0 E ~ :  (f, 0 )=0 for all fEJ(0f2)}. Then 
y ( 0 a ) •  w+ = {0}. 

Proof. Assume 0EJ(0f2) • c~ W+. We know from lemma (2.2.3) that for OEW+, 
v(O; X)EJ(f2) and since v is globally C ~ we have ~Eo~(0f2). Since 0EoC(0f2) • 
we know from (5.1.6) and (5.1.7) of [3] that v(O; X) satisfies the growth condition 
of theorem (1.4.1) part (ii). Then because ~EJ(0f2) and 0E~'(0f2) • we can apply 
(1.4.1) to get 

(2.2.5) f f r~o Re'O2vO2v dx dy = - ((i +.Y[")b, O) = -2@, O) = O. 

From Agmon's lemma (lemma 13.1 of [1]) we know that vEJ(O~). 
If f satisfies the hypothesis of theorem (1.4.1) part (ii) and f =  (fi f~, fy) restricted 

to 0[2 then we have 

(2.2.6) <L 0) = (/, 

= _ ~ / l i m  ~ N+I ; ;  ReqfO2fO2vdxdy 2 [.t~0 j = l  J J D d ,  t 

} 1 {o-o},  --lira l i m ~  'u+~ f f  Re(fO~fO~vdxdy = - T  
R ~  t~O ~ j = l  J J  Ej, t 

since vEY(~ u ~c)::,02v ~ 0. 

The restriction of C 2 functions and their gradients to the boundary 0~ is dense 
in g~p so we conclude that (f, 0 )=0 for all fENp. In other words J ( O s ? ) ' n  
w + = { G  

Proof of theorem (2.2.2)part (i). J(0~?)cV+, by theorem (1.2.4), and 
d imJ(0f2)=4 .  By the Fredholm theory V+ is finite dimensional so dim W+= 
dim V+ = m _-> 4. Furthermore ~'(0~?)'DV~ and by lemma (2.2.4) ~ ' (0~)•  
W+ = {0} so V+ ~ c~ IV+ = {0}. Since i -  ~ has Fredholm index zero, V+ x is a sub- 
space of N* of codimension m. Thus we have * • ~v = V~ | W+. Finally, !z~ = 
Range (i-A2)* so we also have ~*=Range  (]-~)*OW+. 

To show part (ii) we need only show that Range ( l -A2)nV+ ~ {0}. Let 
f0ERange(l-AP)nV+.  Then for O E ~ ,  we know from part (i) that 0=01+02 
where O~EV+ ~ and 02EW+. It follows that (fo, O)=(fo, Dl'~-02)=(/0, D1)-~- 
(fo, O~)=0 since ( fo ,0 , )=0  as foEV+ and O1cv+ ~, and (fo,02) since 
foERange(/-Y2")=W+ • and 02EWe-. Thus fo=O so M n = R a n g e ( / - ~ ) @ V + .  

Corollary (2.2.7). J(0~2)=V+ and dim V+ =dim W+ =4. 
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Proof. * -  • ~v-V~_ OW+ =J(Of2) • | implies that V • =J(012) • Hence 
V + : J ( 0 0 )  since V+ and J(Of2) are subspaces, Finally dim V + : d i m J O I 2 ) = 4 .  

Theorem (2.2.8). I f  f (  ~v, there exists a Junction w such that 

A2w = 0  in ~c, 

non-tangential xliemoa•(X)= f(P)  a.e. 
XEO 

where ~ is a bounded, simply connected C I domain in R z. 

Proof. Since Np= Range ( ] - ~ )  �9 V+, for any fE Np we have f=fo +ft 

where f0=(-/+yP)j~o and f~EV+ =Jf~f2).  
Since ftEJ(0f2), it is the  restriction to 0f2 of a triple 0=(g ,  gx, &) where 

gEJ .  Set w=u(f0; X)+g(X)  where u(j~; X) is the multiple layer potential with 

density J~o. By theorem (1.2.4) and the definition of g, A%~,:0 in Dc and 

(2.2.9) non-tangential lira ~ ( x )  = (-l+~)/o(e)+O(e) 
X ~ P E  0~ 

XED 

= fo(P)  + f , ( P )  = f (P) .  

Remark (2.2.10). If 0EW+, we know from lemma ~2.2.3) that the lower order 
potential v (0; X) has boundary values ~3E J (~f2). For XE f2 we know v(X) E or (f2), 
but for XEO c, v(X) need not be a polynomial. In fact for /~EW+ and 0#0,  we 
know from lemma (2.2.3) that 0~V+ ~. This suggests that Iv(0; X)I-v(IX[2 log IX[) 
as IXl-~o since the moment condition of theorem (1.3.3) is not satisfied. This 
means that v(O; X) is not a polynomial in ~ but agrees with the polynomial 
on the boundary ~f2. In other words, the exterior Dirichlet problem with data in 
J(~f2) can have two distinct solutions. 

Theorem (2.2.11). For ~EV~+, there exists a function v such that." 

A2v = O in f2 

l~m (f,  (gv ) ; - )  = (], o) 
t ~ O  

for all fE ~1,. 

Proof. From theorem (2.2.2) part (i), * • . ~p=V+~3W+ Since Range ( 1 - ~ ) * =  

V~ we know that for OEV~ there is a 0 E ~  such that (- i+=~2)*0=0. 

Let v=v(0; X) be the lower order potential with density /~. Then v is bihar- 
monic in f2 and for fE ~p 

(2.2.12) Jim ~ (f, (Rv)7) = ((-]+3~')f, ~) = (I, (--i+~f;') *~) = (i, 0). 



230 Jonathan Cohen and John Gosselin 

Remark (2.2.13). The restriction that OEV-~ is to be expected. From the Green's 

formula (1.1.3) we know that for f~J(f2)  and wCC~(O) biharmonic, 02f=0 
so that 

(2.2.14) 0 = f fa  Re-O2fO2w dx dy = foa f(Q)Kw(Q)r ds(Q). 

In other words, if w is biharmonic and smooth in ~, KwCV+ ~. 

3. The biharmonie Cauehy--Riemann equations 

In this section we consider biharmonic functions as the real parts of complex 

valued functions f satisfying 02f=0. The real and imaginary parts of solutions of 

-O~(U+iV)=O satisfy a system of partial differential equations which we shall refer 
to as the biharmonic Cauchy--Riemann equations. 

The fundamental solution F for the biharmonic operator (1.1.4) is the real 

part of the complex valued function F+iff=-l[zzl~ w h i c h i s a r c  

a solution of the equation -02(F+iff)=O. The components of the kernel of the 
multiple layer potential are formed by applying a vector of differential operators 
to the fundamental solution F. The form of these differential operators enables 
us to apply the biharmonic Cauchy--Riemann equations and transform the ker- 
nel to be written as a new vector of differential operators applied to the "biharmonic 
conjugate" ft. 

Using the compatibility condition {-~=gxs+hys)and the "conjugate" form 

of the kernel, the multiple layer potential can be integrated by parts to obtain a 
multiple layer potential which essentially depends only on g and h. This multiple 
layer potential solves the version of the Dirichlet problem which calls for a bihar- 
monic function in 12 whose gradient is specified on the boundary. 

The most important result of changing the form of the multiple layer potential 
is that it also changes the adjoint problem. We introduce a new dual space, a new 
set of boundary conditions and a modified lower order potential to solve the new 
adjoint boundary value problem. In our concluding remarks we point out how the 
new adjoint boundary value problem is one of the fundamental problems in the 
theory of two dimensional elasticity. 

Throughout this chapter we assume that I2 is a bounded simply connected C 1 
domain in R 2, bounded by a simple closed contour 0f2. If this is not explicitly stated 
in the following definitions, lemmas and theorems, it is to be assumed. 



Adjoint boundary value problems 231 

3.1. The biharmonic Cauehy--Riemann equations and the modified multiple 
layer potential 

Let f = U + i V  and assume 02f=0 where we recall 0=O~+/Oy. Equating real 
and imaginary parts we see that U and V satisfy the coupled system of second order 
partial differential equations: 

(3.1..1) 

Since Af=O-3f and 02f=0 

U ~ -  Uyy = 2V~y, 

-2U~y = V ~ - K y .  

we see that "OAf=O-O~f=O so that Af is analytic. 
This guarantees that the usual Cauchy--Riemann equations apply to A U and Aid. 
That is, 
(3.1.2) (AU)x = (AV)y, 

(A u), = - ( ~ v ) ~ .  

The systems of equations (3.1.1) and (3.1.2) will be referred to as the biharmonic 
Cauchy--Riemann equations (B.C.R.). 

The fundamental solution for the biharmonic operator introduced by Agmon in 

[1] and used by Cohen and Gosselin in [3] is F(X)= [(x z +y2) log (x ~ +y2)1/2 +y2] 

where X=(x, y). A simple computation shows: 

(3.1.3) 

where 

(3.1.4) 

--1 f 1 1 ~] 
F = Re ~ / S z  log z + ~- 5 z -  ~- z ] = Re (F+ iff) 

- 1 {(x~ + y~) arg (x + iy ) -  xy}. 

is not single valued since arg (x+iy) is not. However, when necessary we /v 

will be able to specify a specific branch of the argument. 
It follows from the B.C.R. equations that 

(3.1.5) Fxx - Fyy = 2ffx,, 
--2F~y = Fx~-Fyy 

and 
OAF OAF 
ON Os ' 

O 0 
where - - ~  represents differentiation with respect to the inner normal and 0---)- 

represents tangential differentiation where the arc is traversed counterclockwise. 
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OAF OAff 
The equation ON - Os is simply the usual Cauchy--Riemann equation in 

rotated coordinates.) 
We next consider the kernel of the multiple layer potential. By applying (3.1.1) 

and (3.1.2) we get 
OAF O 

( X -  Q) + -~- 2F~y ( X -  Q) 

(3.1.6) -~QF(X-Q)T = I (Fxx(X-Q)-Fyy(X- Q))y~(Q) 

[ (F~ - Fyr) (X - Q) x, (Q) + 4F~ (X - Q)ys (Q) 

= 2ffxr(X_Q)y,(Q) 
2ff~y ( X -  Q) x~ (Q) + 2 (ff ry ( X -  Q) - fi~x ( x -  Q))y~ (Q) 

where all the differentiations are taken with respect to Q. 
0 ~ OAF 0 

We would like to substitute -20--~F~ for ---0~+-~s 2F~y in the firstcom- 

portent of the kernel of the multiple layer potential and apply an integration by 
f ~  

2~ xff-~+y ~- which is not single-valued. We fix Po~O~ and since 

~ is simply connected we can define a branch of arg (X-Po) for X~f~. To per- 
form the integration we fix a path 0~?0 beginning at Po(O~ and proceed counter- 
clockwise around the boundary. For each fixed X ~ ?  we continue arg (X-Q)  
as Q traverses OP0. Using the compatability condition (f'=fx~+hy~) we get 

(3.1.7) Laf(Q)(-2 ff----~ff~,,,(X-Q)ds(Q) =-2f(Q)F~,,(X-Q)];~ 
+ 2 foao g (Q) x, (Q) ffx~ ( X -  Q) + h (Q) y, (Q) ;,x ( x -  Q) ds (Q). 

This computation gives us a new expression for the multiple layer potential. 

(3.1.8) u(f; X) = - 2 f ( Q ) ~ ( X -  Q)I~ +2f0~o g(Q)Lff(X-Q)Tds(Q) 

where Y,v=(L~v, L2v) with L~v=vx~x,+vxyy, and L2v=v~yx~+vyyy~ and g(Q)= 
(g(Q), h(Q)). 

For X ~  fixed we can define a branch of arg (X-Q)  for QEO and integrate 
by parts to obtain the same expression as in (3.1.7). Since fELl(Of2) we may assume 
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f i s  continuous at P0 and so we can evaluate the boundary term in (3.1.7) to get 

(3.1.9) -2f(Q)ffx~(X-Q)l'rff [--41rf(Po), XEI2 
= t 0, x r  

which is independent of the choice of X in each of the two regions t2 and ~ .  We 
know that the multiple layer potential u(f; X) is single-valued so that by (3,1.9) 
we know that fOOo~(Q)Eff(X-Q)T ds(Q) is also single-valued where ~ and Lff 
are defined by (3.1.8). 

It also follows from (3.1.9) that if u(f; X) is the multiple layer potential with 
density f and ~=(ux, ur) then from (3,1.7) we have the representation 

(3.1.1 o) (x) = -f g (a) E (X, Q) as (Q) 
where 

[OX L~P(X-Q) OX L~ff(X-Q)] 
g(X, Q) = 2 t~L~P(X-Q) ~L~P(X-Q)J" 

It is useful to note that all the derivatives of the function ff in the components 
of Y(X, Q) are single valued. This can be verified by a simple computation. 

3.2. The Dirichlet problem and the mcdified multiple layer potential 

If we want to study the Dirichlet problem A~u=O in f2, fi=(ux, uy)=(g, h) 
on 0f2 we see from w 3.1 that we need only study the simpler form fi given by (3.1.10). 
The kernel matrix ~ is only 2X2 and the components of r have singularities of 
the order IX[ -1. Furthermore, the Dirichlet data involves only pairs (g, h) rather 
than compatible triples (f,  g, h). 

Definition (3.2.1). Let ~6p = {(g, h): gELr(0s2), hELP(~s and f~ g dx + h dy= 0}. 

Lemma (3.2.2). For g = ( g , h ) E ~  and PoE0f2, define A(P)=feeo.gdx+hdy. 
where the path of integration is counterclockwise along the boundary. Let A=(A, g, h). 

Then AE&p and I[Allp, x~c(llgll,+l[hllp) where I[AII,.I=IIAI[p+ ~ .  

Definition (3.2.3). The modified multiple layer potential Um=Um(~; X) with 
density ~E~p is defined for X~Of2 by 

(3.2.4) Urn(g; X) = f ~o g(a)L(X, o) r  ds(a) 

where L(X, Q)=2Laff(X-Q), a particular branch of the argument is chosen to 
define ff and the integration begins at the point PoE0~2. 
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Lemma (3.2.5). For A=(A, g, h) where 0=(g,  h)E~,p and A=f~  ~ g dx+h dy, 
let u=u(A; X) be the multiple layer potential with density A. Then 

(3.2.6) non-tangential lira ~(A; x)  = {(i+:~)A(P), X612 
x-Pco~ (- i+:~)A(P),  XE~ c. 

and 
(3.2.7) I[~AllLfxLpxzp -< c(]]g[lp+rlh]ip). 

Proof. The limits and estimates are a consequence of applying lemma (3.2.2) 
to theorem (1.2.4). 

For f6N, let IIf be the projection of f  onto the last two components (IIf= (g, h)). 
Define .,~f=IIo~(rf and if=IIf. Clearly, H: N _~c@. For ~Ccgp, A=f~, gdx+ 
h dy and A=(A, g, h), define ~e-)=:UA=ns?A. We will also use i to denote 
the identity on <gp. 

Proposition (3.2.8). For A, A and Y defined as above 

(i) s c g p ~  is bounded in the L'(OO)• norm and compact from <gp 
to c~p, 

(ii) non-tangential lira fi(A; X) 
x ~ P  c oi2 

= non-tangential lim f ~(Q)y(X, Q)ds(Q) = {(i+Sf)(g)(P), XEf2 
x~P~o~ o~ ( - i + ~ ) ( g ) ( P ) , X C ~  c, 

(iii) i + ~ is invertible on cgp. 

Proof. The boundedness of s comes from theorem (1.2.4). Compactness fol- 
lows from the compactness of ~ on Np. 

To show (ii), let A=(A, g, h) and let u(A; X) be the multiple layer potential 
with density _4. From theorem (1.2.4), if g=(ux, uy) 

(3.2.9) non-tangential lim ~ (X) = ~[g (P) +~/~A (P), XC f2 
x-~ t -~(P)+~d(P) ,  x~O ~. 

On the other hand, from (3.1.8), g(x)=foe~(Q)d(X, Q)ds(Q). Thus, using the 
definition of .o9? and (3.2.9) we get (ii). 

(iii) Let gCcgp. Define ~[ as before. From theorem (1.4.3) i + ~  is invertible. 
Let ~=( i+g( t ) -xA.  Then .~=(.4, ~, ]~)E~p and so (~, ~)Ec@. Next let u=u(.~; X) 

be the multiple layer potential with density .~. The interior non-tangential 
limx+ e f i ( x ) = ( i + ~ ) ~ = A = ( A , g ,  h). Furthermore, the interior non-tangential 

limx_.e(Ux, Ur)=II(i+:/d)~l~=(g,h)=g. We also have //(/+ccd)A~=(i+-~a)(~) 
where ~=(ff,/~). Hence (i+s This implies that i + s  T maps cgp onto 
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Cgp. Since ~ is compact, we know from the Fredholm theory that i +  Za is one 
to one and thus invertible. 

We have shown the following: 

Theorem (3.2.10). Let t2 be a simply connected bounded C 1 domain in R ~ with 
boundary Of 2. Let ~ g ~ .  Then there exists a function u such that 

A~u = O h~ s'2 

non-tangential lira (u~, u~) = (g, h) a.e.. 
X--P~ O~ 

X ~ D  

Furthermore we can write u as the modified multiple layer potential u=u,,(~; X) 
where u m is defined in (3.2.5) and ~=(i+_~)-~(~) .  

3.3. The exterior adjoint problem 

As in w 2 we now consider the adjoint problem for the modified multiple layer 
potential. We want to find a function v such that A~v=O in ~c and the exterior 
lirnx_p~0 ~ (LlV, L~v)=(q~, r where ~o and ~ are functions defined on 01L 

To be more precise we start by considering the dual space cg~=Lq(tgs215 
Lq(OI2)/cg~ where c~={(q~, @): ~o~Lq(0f2), r and f~ogq~+htp ds=O V~= 
(g,h)~Cgp}. From the definition of cgp it is clear that (x,y~) is a basis for r 

We must also define a notion of convergence in c~ for pairs of functions defined 
in a neighborhood of 0f2. Let {qj}~ and {(j}~=a be as in w 1.4. For a pair ~=(~o, r 
defined for all X with dist(X, 0f2)=60 and 0<t<60/8, we define t~+(P)= 
~,~u=~ (/e)~(e-ts where ~ j  is the unit inner normal to 012 at Pj. We say that 
limt_. 0 - + - -  * if 

(3.3.1) lim~'Nt-0 '= : fa Oa (+(Q)g'(Q)FP(Q-tN+)rds(Q) = fo~ ~(Q)~(Q)rds(Q) 

for all ~Ccgp. 
In other words, if (~, Fpt+}=fo~gFpds denotes the dual pairing of cgp and 

c~,, then 
lira (~,, ~t + ) = (g,, ~) 
t ~ 0  

for all gCcgp. 

Definition (3.3.2). The modified lower order potential Vm---Vm(~;X) with 
density ~ = (~o, r is defined by: 

(3.3.3) Vm((~; X) = 2fo,~ ~ Oexff(P-X)~o(P)+O~ff(P-X)~p(P) ds(P) 

where ~E Lq(Of2) • the integration begins and ends at PoEOs and a particular 
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branch of the argument is chosen to define i f (P-X) .  (The branch may be chosen as 
in the development of (3.1.7)). 

Remarks. The modified lower order potential is defined for densities ~ELq(Of2) • 
Lq(Of2). If ~ECg * and ~=(~p,~k) and ~l=(Cpl,~pl) are representatives of the 
coset ~p, then ~ - ~ 1 = 2 ( x , ,  y~). Letting ~=(x~, y,), a simple computation shows 
that Vm(T;X)=I/2IPo--XI 2. Applying the operator ~ -  x x Lp--(x~(P)O~x+Y~(P)Oxy, 

2 
xs(P)OxX+y~(P)O, x) we see that f,,Vm(~; X)-E,V~((91; X)=~(x~(P),y~(P))E~r 

This calculation shows that although different representatives of (g; give rise to 
different lower order potentials, the function EpVm(~; X) agrees on representatives 
of the coset t~ and so is well defined on the coset space cg;. 

From the definition of the modified lower order potential it can be seen that 
for XE f2, V~ is single-valued. However for XE~ c, V~ may be multiple-valued. 

simple computation shows (fix, fly)=-~-((x arg (x+iy)-y),  y arg (x+iy)) A which 

is multiple-valued. It is interesting to note that since the argument changes by 2~ 
with a complete circuit around the origin, it follows from the definition of V~ that 
it is single-valued if the density ((p, 0) satisfies the moment condition fo~ (x + ~)q~ + 
(y+fl)~ ds=O for ct, tiER. 

Finally, a direct calculation shows that even if V~ is multiple-valued, second 
order derivatives of Vm are single-valued. For an important application in elasticity, 
the computation of the stress tensor, only second order derivatives of the lower order 
potential are needed. 

Theorem (3.3.4). I f  s is a simply connected, bounded C 1 domain in R 2 and 
~Ecg *, then there exists a function v, possibly multiple-valued, such that 

A 2 v = O  in ~ ,  

for all ~,E~p. 

Proof. Since l+.La is invertible by (3.2.8) part (iii), we know from the Fred- 
holm theory that ( i + ~ ) *  is also invertible. For ~ECg; we choose ~ such that 
t~=(i+La)*t~. Then let Vm=Vm(q~; X) be the modified lower order potential with 
density ~. We have for ~Eqfp 

(3.3.5) lim (g, (f__~Vm)t +) = lim ~N. . f ~j(Q)~,(Q)~gm(p, Q_tNj)r  ds(Q) 
t ~ O  t ~ O  . / = a j  0~ 

= lim2"S i f  fo. (j(Q)~(Q):(P+tNj, Q)ds(Q)~(P)rds(e) 
l~O J= J r 

= f o .  (i+c*~)g(P)~)(e)rds(P)= (g' (iq-c*~)*~)) = (~'' ~)" 
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3.4. The exterior Dirichlet and interior adjoint problems 

(3;4.3) 

and 

The solvability of the exterior Dirichlet and interior adjoint problems follow 
from the results for the similar problems in w 2. If we let V+ = Ker ( i - . f )  and 
W+ = Ker ( i -  ~)*  we have the following: 

Proposit ion (3.4.1). (i) c~ r = V+ @ Range  ( i -  Aa), 
(ii) * - -  r~• - -  ~r = 141+ @ V_~ = W+ @ Range ( i -  .f)*. 

Proof. (i) If  gEcg,, let A ( P ) = f ~ o g d x + h d y  and let A = ( A , g , h ) .  Then 
AENp so by theorem (2.2.2) A=AI+A~ where iilEKer ( i - # ) ,  .zi2ERange(l-o~). 
But .A=(Al, g~,h~)E&p and A2=(A2, g2, h2)~p. So gl=(gl,h0=//A1 and 
(i-ff)g~=lT(i-~)A~=O which implies that glEF+. Since A~ERange( / -~ ' ) ,  

there exists -~2 such that As = (1 - ~ )  ~ .  Hence g2 = rlA  = 17 (1 = ( i -  (L), 
where gz = / /~z .  Finally, V+ c~ Range (1 -  ~ )  = {0} because V+ c~ Range (1 - ~ )  = {~}. 

For (ii) use an argument similar to the proof of theorem (2.2.2) part (ii). 
We now have the solvability of the exterior Dirichlet problem and interior 

adjoint problems. 

Theorem (3.4.2). For s a bounded simply connected C 1 domain in R 2 with ~ECgt, 

and ~C(Ker (i--Lf)) • there exist functions u and w such that 

A2u = O in ~ ,  

non-tangential lira V u ( X ) =  ~,(P) a.e. 
X - - P (  Ol~ 

X E ~  

A~w = O in f2, 

(3.4.4) lim (~, (Lw),) = (~, 3)  
t ~ 0  

for all g E • .  

Proof. For (3.4.3) we write #=g l+g~  where g l E K e r ( i - - ~ )  and gz= 
(-i+._~~ Then set u=u,,(~.,; JO+b(JO where b E J  and Vb=gl on 0(2. 

For (3.4.4) we assume ~ERange ( l -  ~--). Therefore there exists a ~ such that 
0 = ( - / + . ~ ) * ( ~ )  and we set W=Vm(~; X). 

4. Concluding remarks 

In this section we make some additional remarks about the problems studied 
in this paper. We point out their connection with the theory of plane elasticity and 
mention some questions which remain to be done. 
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4.1. Application to plane elasticity 

In a thin elastic plate the x and y components of stress per unit length (X,, Y~) 
o a small line segment ds through a point is given by the matrix product 

[X x Xy][nl]=[X,] where the 2 •  matrix is the stress tensor and ~ = n l i + n 2 j  
Y.~ ~ n~ 

is a unit vector perpendicular to ds. The stress function v is a biharmonic function 
such that v~ = Xy, vxy= -iVy = -Y~, vyy = X~. Under conditions of elastic equilibrium 
the stress function can be determined from the external stresses at the boundary 
by solving the boundary value problem 

(4,1.1) A~v = 0 in f2, 

vxxxs+vxyy~=-Y, on 312, 

vxyxs + vyyy~ = X, on 012 

where X n and ~ are the x and y components of normal stress at the boundary 00.  
(See Muskhelishvili [9], pages 105 and 113 for more details.) 

The adjoint problem studied in w 3 is then the problem of determining the stress 
function from the boundary stresses. For the interior problem we know we can 
solve (4.1.1) provided the data OEV+ z. From the discussion in w V+ consists 
of the restriction to 0f2 of the gradient of functions in J(f2) .  That is, V+ is the sub- 
space of cg v spanned by the pairs of functions {(x, y), (1, 0), (0, 1)}. I f  V is bihar- 
monic and L2v=-Y~, Llv=X, at the boundary we have as a necessary condition 
that (-Y~,Xn)CVZ+. This means that (Xn, Y~) satisfies the moment conditions 

(4.1.2) L u  Xnds = L u  Y, ds = 0 
and 

(4.1.3) ~ f oa y X , - x Y ,  ds = 0 

which means that the resultant of external stresses is zero and the moment about 
the origin is also zero. 

4.2. Uniqueness 

In this paper and in [3], existence results have been established for a variety of 
boundary value problems" involving biharmonic functions on C 1 domains in R ~. 
The question of uniqueness has not been addressed and it would be very useful to 
establish conditions on the data and solutions which will guarantee it. In particular, 
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one would like to know if there is a growth condition at ~o that will guarantee 
uniqueness for the exterior Dirichlet problems. The growth properties of the lower 
order potential suggest that the condition lu(X)l=o(IXl log ]XI) as ]X[~oo might 
be a necessary condition. 

4.3. Pointwise estimates 

The solution of either form of the adjoint problem is a weak solution in the 
sense that the convergence of (Klv, K~v, Kay) or (L~v,,, L2vm) takes place in the 
appropriate dual space. Furthermore, the limits are cosets of functions rather than 
functions. On the other hand the lower order potentials are functions. So one would 
like to know whether the potentials/~v or Lyre have pointwise limits. 

The singularities in/~v are too large to expect pointwise limits but the singulari- 
ties in s suggest that it should have non-tangential limits almost everywhere char- 
acterized by singular integrals. In the second paper [4] we show that Calder6n's 
theorem on the Cauchy integral [2] can be utilized to establish pointwise limits for 
the interior adjoint potential I"qdm of the form (-I+L,e)*~.  This, together with the 

invertibility of the operator ( - i  + ~ )*  on a subspace of the coset space ~*, enables 
us to solve the elasticity problem in a pointwise sense. In that paper we give a more 
detailed explanation of the connection with elasticity. 

4.4. H 1 theory 

The solutions of the adjoint problem suggest a Hardy space theory for bihar- 
monic equations. The "size" of the biharmonic functions here is measured by a kind 
of integrability of adjoint potentials along local parallel translates of the boundary. 
What differentiates Hardy space theory from Sobelev theory is that the integrability 
of the potentials is on spaces of dimension equal to that of the boundary rather 
than integrability in the domain itself. 

Following the paper of Fabes and Kenig [7] one would like to know if there 
is an H 1 theory for adjoint potentials. More specifically, can we construct an atomic 
h I theory which extends the solvability of the adjoint problems to appropriate sub- 
spaces of L 1. Is there an analog of the space BMO which is preserved by the oper- 
ator ~ ' .  Finally, what is the connection between the solutions of the complex equa- 

tion 02f=0 and the space of biharmonic functions. 
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4.5. Lipschitz domains 

The question arises as to whether the results in this paper  extend to  Lipschitz 

domains.  The main  problem of  extension is that  for  Lipschitz domains  the oper-  

a tor  ~ ceases to be compact .  Fo r  L ~ type data  it might  be possible to  show tha t  

( I + ~ ) *  or  ( 1 + , ~ ) *  has closed range. Verchota [10] has done  this for  related 

problems involving Laplace's  equation. I f  one could find analogs o f  his methods  
for  the potentials o f  this paper, the results for bo th  the Dirichlet and adjoint  problems 

could be extended to Lipschitz domains. I t  is not  clear, however,  that  Verchota 's  

methods  can be applied to the potentials in this paper.  
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