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1. Introduction 

This paper deals with some questions that lie at the interface between func- 
tional analysis and complex function theory. Let H = denote the algebra of bounded 
holomorphic functions on the open unit disk. We may identify a function with its 
radial boundary values, and thus view H = as a subalgebra of the algebra L ~ of  
bounded measurable functions on the unit circle. Since H ~ is a weak-star closed 
subspace of  L =, it is easy to see that for every function f i n  L% there is a function 
g in H ~ such that ]l f-gl[=distance (f; H~) ;  i.e., g is a best approximant to f 
from H =. Sarason [10] asked whether functions in L = always have best approximants 
from the space I4= + C spanned by H = and the algebra C of continuous functions 
on the circle. 

The space H = +  C plays a special role in function theory, since Sarason [9] 
has shown that it is in fact a closed algebra and is contained in every closed sub- 
algebra of L ~ that properly contains H ~. The space H = +  C also plays a special 
role in operator theory, in the following way. Let L 2 denote the Hilbert space of 
square integrable functions on the circle, let H 2 denote the closed subspace spanned 
by the non-negative powers of the function z, and let (H2) • be the closed subspace 
spanned by the negative powers of  z (which is just the orthogonal complement 
of H2). We write Q for the orthogonal projection of  L 2 onto (H2) j-. For  each f~L  ~, 
we define a Hankel operator HI: H2~(H~) J- by H1(g)=Q(gf). I f  we use the 
usual bases for H 2 and (H~) j-, we may characterize Hankel operators as those whose 
matrices have constant cross diagonals. It  turns out that the distance (in the operator 
norm) from the Hankel operator H I to the space of  all compact operators from 
H ~ to (H~) • is the same as the distance from H s to the space of compact Hankel 
operators, and the latter coincides with the distance (in the L=-norm) from the 
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function f to the space H ~ +  C. (In particular, H s is a compact operator if  and 
only if fEH~~ Sarason's question about best approximants from H ~ + C  
therefore has a purely operator-theoretic formulation: Does every Hankel oper- 
ator have a best approximant from the space of compact Hankel operators? 

In its operator-theoretic formulation, Sarason's question was answered affir- 
matively by Axler, Berg, Jewell and Shields [2]. Subsequently, a simple function- 
theoretic proof  was found by Luecking [8]. Luecking used the F. and M. Riesz 
Theorem to show that the quotient space ( H ~ +  C)/H ~176 is an M-ideal in L ~ / H  ~176 
(The definition of  M-ideal is given at the end of this introduction.) By work of 
Alfsen and Effros [1], this implies that elements of L~176 ~ have best approximants 
from ( H ~ +  C)/H ~. Since H ~ is weak-star closed in L ~, it is simple to conclude 
that functions in L ~ have best approximants in H ~ +  C. 

In this paper, we consider Luecking's result in a more general context. Let A 
be a uniform algebra on a compact space X, with maximal ideal space M A. Fix 
~0EM A , and let a be a representing measure on X for ~o. We denote by H~176 the 
weak-star closure of A in L~(a) ,  and by [H~(a)+C(X)]  the dosed linear span of 
H~(a)  and C(X). We ask when [H~(a)+C(X)] /H~(a)  is an M-ideal in 
L ~ (a)/H ~ (a). In Section 3 we obtain information in a general setting, which is 
sufficient to answer the question completely for certain algebras which arise in rational 
approximation theory. 

Let, for instance, D be a bounded domain in the complex plane, and let A (D) 
be the algebra of continuous functions on D which are analytic on D. The results 
apply to A(D), with a a representing measure on 0D for some point pED, and 
X the closed support of  a. In this case, [H a ( a )+  C(X)]/H ~ (a) is an M-ideal in 
L ~176 (a)/H ~ (a) if  and only if the representing measures on X for p form a weakly 
compact set of measures. This latter condition is satisfied when D is the open unit 
disc and a is normalized arc-length measure on 0D, since in this case dO/2n is a 
unique representing measure on OD for the evaluation functional at 0ED. 

The results in Section 3 depend upon a careful analysis of M-ideals in quotient 
spaces of C(X). This is accomplished in Section 2 via bands of measures (cf. Theo- 
rem 2). Section 2 also contains some applications to the tight uniform algebras 
introduced by Cole and Gamelin [3]. In Section 4 we return to the theme of best 
approximants to give an elementary proof  of the Alfsen--Effros result that M-ideals 
have the best approximation property. 

We conclude this introduction by recalling some facts about L-projections, 
M-ideals and bands of measures. An L-projection on a Banach space E is a linear 
operator P: E-~E such that p 2 = p  and 

[[Pxl[ + llx-Px[I = [lxll 

for each xEE. A subspace Fo of the Banach space F is an M-ideal if  its annihilator 
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Fo x in the dual space F* is the range of an L-projection P on F*. If  in addition 
there is a subspace Fa of F such that F0 @ F I=  F and F~ is the range of  I - P ,  
we say that F0 is an M-summand. These notions were introduced by Alfsen and 
Effros [1], and we refer the reader to those papers for further information. ( A word 
of caution: Alfsen and Effros consider only real Banach spaces, while we are con- 
cerned with complex Banach spaces. However, we shall have no occasion to use 
those results of Alfsen and Effros which are particular to the case of real scalars. 
For  other applications of M-ideals to operator theory, see for example the paper 
of  Holmes, Scranton and Ward [7]. 

For X a compact Hausdorff space, we let C(X) be the algebra of continuous, 
complex-valued functions on X and let ~Jl(X) be its dual space, the space of  regular 
complex Borel measures on X. A band of measures on X is a (norm) closed sub- 
space ~5 of ~0I(X) with the property that if #E~B and a is absolutely continuous 
with respect to p, then a also belongs to ~ .  The complementary band to ~B is the 
band ~B' of all measures singular with respect to every measure in ~ .  The Lebesgue 
decomposition theorem shows that 9J/(X)=~3@f13"; the associated projection P~ 
of ~0I(X) onto ~3 will be called the band projection associated with ~B. We say that 
the band ~B is reducing for a subspace A of C(X) if  P ~ ( A •  -t. The reducing 
band ~ is minimal if  it is not the zero subspace and contains no reducing bands 
other than the zero subspace and ~3 itself. Minimal reducing bands which consist 
of  multiples of  a point mass are called trivial minimal reducing bands; all others are 
non-trivial minimal reducing bands. For further information concerning bands of 
measures, we refer to [3]. 

2. L-projections, M-ideals and tight algebras 

The Lebesgue Decomposition Theorem gives rise to simple examples of L-pro- 
jections in the following way. Fix a (complex, regular Borel) measure # on the 
compact Hausdorff space X. For  each measure a on X we may then write a = a , +  
as, where a,  is absolutely continuous with respect to p and ~, is singular with respect 
to #. The operator P:  ~ I ( X ) o . ~ ( X )  given by Pa=a  a is then an L-projection 
on ~ ( X ) .  Our first result shows that if we replace the single measure # by an appro- 
priate band of measures we can obtain all L-projections on all subspaces of 9J/(X). 

Theorem 1. Let X be a compact Hausdorff space, let ~ be a (norm) closed sub- 
space of  ~ ( X )  and let P be an L-projection on ~. Let fB be the band of measures 
generated by P~ and ~" the complementary band. Then 

(i) ~=(en~)@(en~5 ' ) ;  
(ii) P is the projection of ~ onto ~c~ ~B; 

(iii) for each measure # ~ ,  there is a Borel set E c X  such that P#=Zelz. 
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Proof. Let pE~ and use the Lebesgue Decomposition Theorem and the 
Radon--Nikodym Theorem to write P / t=h#+r / ,  where hELX(p) and t/ is sin- 
gular with respect to p. We claim that r /=0 and that 0 -<h = l .  To see this, note 
that, because P is an L-projection and ~/is singular, we have 

Ilull = IIeitll + t l i t -Pit l l  = I1 h~  +~II + II(1 - h ) ~ -  ~11 

= []h~ll + It~I] +lI(1-h)#l[  + II~II => Ilitl[ +2][ttl[. 

This immediately yields t /=0. Hence 

f dl~l = f lh] dlitl+f I I - h l  d I~l. 
Since I h l + l l - h l ~ l ,  with equality only when 0-<_h-<_l, we have our claim. 

Now suppose that aE~ is absolutely continuous with respect to p, so that 
a=gl.t for some g E L i d ) ;  we want to see that Pa=gPI2. To see this, we use the 
above to write 

Pa = fa = f g p ,  

P# = hlt, 

P(~+it) = k(a+it). 

with f ,  h and k between 0 and 1. Since P is linear, fg+h=k(g+ 1) (a.e. with respect 
to p). Thus ( f - k ) g = k - h .  On the set where the imaginary part of  g is not zero, 
we must have f - k = O  and k - h = O  since f ,  h, k are all real. Thus f=h  wherever 
the imaginary part  of  g is not zero. If  we replace ~ by io = ig# then Pa = ifgl~. 
Arguing in the same way as for a, we see that f=h  wherever the real part of g is 
not zero. Thus Pa=fg#=hglt=gPa, as desired. 

Combining the two above analyses, we see that for each ItEm, there is a func- 
tion h such that P#=h# and P(h#)=h2p. Since p2=p, we conclude that h is 
the characteristic function of some Borel set E, which is (iii). 

We next wish to see that P~=~,'~ lB. Since f13 is the band generated by P~,  
the inclusion P ~ c ~ c ~ 3  is clear. To obtain the reverse inclusion, let aE~c~B. 
We can then find measures ax, as . . . .  in P ~  and functions f~,f2 . . . .  such that 
a = ~ f j a j  (norm convergent). (Note that the measures f j a j  need not belong 
to ~.) We may write O'-----gxO'l+O'"  , where a '  is singular with respect to ai; we may 
then write a'=g2a2+cr" where a" is singular with respect to ai and oz. Continuing 
in this way, we obtain a representation a = ~  1 g ja j ,  where gjaj  is singular with 
respect to ok whenever j # k .  There is a Borel set E such that Pa=Zga; if  we show 
that xggjaj=gjcrj for each j ,  we will have that Pa=a, or equivalently that aEP~, 
which is what we desire. 

To this end, we fix an index j and write fl=Zkr ~=aj and g=gj so 
that a=ga+fl, and fl is singular with respect to ~. Since Pa=xe.tr, Pa=~ and P 
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is an L-projection, computing P(a+a)  yields 

If(1 § g) a +fill = ]1 ~ q- Ze ga -F Z~. fl ]I § I[ (1 -- Z~) ( ga q-fl)l]. 

Since fl is singular with respect to ~, we may rewrite both sides of this equation 
to obtain 

I1(1 +g)all +)lflll --- II~ +zegall  + IIx~BII +)/(1 -xE)go~ll + I1(1 -X~)Bll. 

Now the terms involving fl obligingly cancel out. Writing the norms as integrals we 
then obtain 

fll+gldla[ - - - f l l + z ~ g l d t ~ ' l + f 1 ( 1 - x ~ ) g l d l a l .  

I f  we break the integrals up into integrals over E and over X - E ,  we see that the 
integrals over E cancel out and we are left with 

f.-E I1 +gl dial = fx-E d l ~ l §  dial. 

Hence g=>O almost everywhere on X - E  (with respect to [al). On the other hand, 
if we replace a + a  by a - a  and perform the same calculation, we find g<=O almost 
everywhere on X - E  (with respect to lal). In other words, (1 - z E ) g a = O  so x r g a =  
ga. Since go~=gja 3 and j was arbitrary, we find that P a = x ~ = a ,  as desired, so 
that P ~  = ~ n ~ .  

To complete the proof, we need only show that the null space of  P, which is the 
range of l - P ,  coincides with ~ n ~ ' .  To see this, note first that if a E ( ~ n ~ ' )  
then PtrEf~c~=Pf~,  so P a l s  singular to or. On the other hand, Pa is always abso- 
lutely continuous with respect to a, so Pa=O and the null space of P includes 
t ~ n ~ ' .  To obtain the reverse inclusion we must show that if  zE~ and P z = 0  then 
z is singular with respect to every measure in ~ .  Since P ~  generates ~B, it suffices 
to show that z is singular with respect to every measure aEP~. We know there is a 
set E such that P(a+'c)=X~(a+" O. Since P ( a + z ) = a ,  this yields a=ZE(a+z ) 
and (1-; te) tr=; te ' r ,  which forces both (1-Ze)cr and XEz to be zero. Thus a is 
carried by E, z is carried by X - E ,  and a and z are indeed singular. This completes 
the proof. [] 

Since M-ideals are defined in terms of  L-projections in the dual space, we can 
use Theorem 1 to obtain information about M-ideals. We are interested in pairs 
A, B of closed subspaces of C(X) with A c B ;  we want to know when B/A is an 
M-ideal in C(X)/A. By the definition of  M-ideal and the usual identification of 
dual spaces, this is equivalent to the existence of an L-projection from the anni- 
hilator A • in 9JI(X)=C(X)* onto B • In view of  Theorem 1, this implies the 
decomposition A ~ = B  • @ Q, where every measure in Q is singular to every measure 
in B • and Q may be identified with the dual space (B/A)*. We can say a bit more. 
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Theorem 2. Let A, B be closed subspaces of C(X) with A c B. Let !B be the 
band generated by B • Then B/A is an M-ideal in C(X)/A if and only if  

(i) ~3 is reducing for A, and 
(ii) ~BnA• • 

Proof. If  (i) and (ii) are true, let P be the restriction to A • of the band projec- 
tion of 9J~(X)=f13| onto ~3. Since ~3 is reducing for A, the operator P maps 
A • into itself; since ~Sc~A• • P is an L-projection of A • onto B • so B/A 
is an M-ideal in C(X)/A. 

Conversely, if P:  A • ~ A  • is an L-projection onto B • then Theorem 1 assures 
us that A• • n~B)| • n!B')  and that P is just projection onto the first sum- 
mand, which coincides with B • This yields both (i) and (ii). [] 

I f  we start with a given band of measure !B, we may ask when the projection 
onto ~ is the L-projection associated with some subspace B of  A. We leave it to 
the reader to check that this will be so if and only if ~ is reducing for A and !Bc~A • 
is weak-star closed in 9J~(X). Note that in this case, ~3 need not be the band gen- 
erated by B • but  rather will be the direct sum of the band generated by B • and a 
band singular to A • 

Finally, we consider the case in which the subspace A of C(X) is actually a 
uniform algebra. For  each gEC(X), we consider the Hankel operator Sg: A ~  
C(X)/A given by So( f )=gf+A.  Following Cole and Gamelin [3], we shall say 
that A is a tight uniform algebra on X if each of the Hankel operators Sg is weakly 
compact. Tightness may be thought of as an abstract version of  the solvability of  

a certain J-problem with a gain in smoothness. Among familiar uniform algebras, 
both R(K) (the algebra of uniform limits on K of  rational functions) and A(K) 
(the algebra of functions continuous on K and holomorphic on the interior of K) 
are tight for every compact set K c  C. In higher dimensions, A (D) is tight if D is 
a strictly pseudoconvex domain in C" but is not tight if D is a polydisk (and n=2) .  
For  tight uniform algebras we can sharpen Corollary 2 and obtain a complete 
description of M-ideals in C(X)/A in terms of reducing bands for A. 

Theorem 3. Let A be a tight uniform algebra on X, and let {~,},~i be the family 
of non-trivial minimal reducing bands for A. Then there is a one-to-one correspondence 
between subspaces B of  C(X) which contain A and for which B]A is an M-ideal in 
C(X)/A, and subsets J of the index set I, determined by 

Furthermore, each such B is a subalgebra of C(X), and B/A is an M-summand of  
c(x)/A. 
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Proof. For Y a subset o f / ,  it follows from Theorem 10.3 of [3] that A• 
(O~cs ~ , )  is a weak-star closed subspace of ~I(X). It follows from Theorem 11.4 
of [3] that Ba=N,cs(H=(~,)c~C(X)) is a closed subalgebra of C(X), that Bs 
contains A, and that BsX=AXn(Q,~s f3,). Moreover, the band projection onto 
O,~s  ~3, provides an L-projection of A • onto Bs x, so that Ba/A is an M-ideal in 

c(x)/A. 
Conversely, if B/A is an M-ideal in C(X)/A, let ~3 be the band of measures 

generated by A • By Theorem 10.5 of [3], 

A • = El) (A • n ~3~). 

By Theorem 2, ~3 is reducing for A, so the minimality of  each ~3, yields 

B ~ = @ ($~  c~ A. . )  
aEd 

for some subset J of L 
If  B is the algebra corresponding to J c I  and B" is the algebra corresponding 

to I - J ,  then Theorem 11.3 of [3] yields that B/A~3B'/A=C(X)/A; i.e., every 
M-ideal in C(X)/A is an M-summand. This completes the proof. [] 

We mention in passing that there seems to be some similarity between the 
final assertion of the theorem, that the M-ideals of C(X)/A correspond to sub- 
algebras B of C(X) containing A, and results of Smith and Ward. They show in [I l] 
that M-ideals in a Banach algebra with identity are subalgebras, and that they are 
ideals if the algebra is commutative. 

As a very simple corollary to Theorem 3, note that i fA is a tight uniform algebra 
with only one nontrivial minimal reducing band, then there are no proper M-ideals 
in C(X)/A. This applies for instance to the algebra A(D) on X=OD in the case 
that D is a bounded domain in the complex plane. It also applies to A (D) in the 
case that D is a bounded, strictly pseudoconvex domain in C ". (See [3], partic- 
ularly Theorem 12.3.) 

3. The space H=(~)+C(X) 

Now fix a uniform algebra A on a compact space At, and a representing measure 
a on X for some ~pEM a. Let Z(a) denote the spectrum of L=(a). Then 2;(a) is a 
compact space, and 

L~176 ~ C(Y,(a)). 

The measure a lifts to a measure # on Z(a). Recall that H~176 is the weak-star 
closure of A in L=(a). If  H=(a) is regarded as a closed subspace of C(X(a)), then 
is a representing measure for the weak-star continuous extension ~ of ~p to H=(a). 
We will frequently make use of  the following result. 
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Dual Version of the Hoffman--Rossi Theorem [4, Theorem IV.2.3]: The set 
of  representing measures on 27(a) for $ is the weak-star closure of the set of repre- 
senting measures for $ which are absolutely continuous with respect to ~. 

We are particularly interested in the case in which ~ is a dominant representing 
measure, that is, in which every representing measure on 27 (o) for $ is absolutely 
continuous with respect to ~. From the dual version of the Hoffman--Rossi  theo- 
rem, it follows easily (cf. [4, Corollary IV.2.4]) that ~ is dominant if and only if 
the set of  representing measures for q~ which are absolutely continuous with respect 
to o- is a weakly compact set of measures, i.e., the Radon--Nikodym derivatives 
form a uniformly integrable subset of L 1 (a). 

In this section, we are concerned with the problem of  determining when 
[H*~(a)+C(X)]/H'~(cr) is an M-ideal in L~(o)/H~(cr). By Theorem 2, this occurs 
if and only if there is a band projection from H ~ ( a )  l to [H~(a)+C(X)] l ,  where 
these are both subspaces of ~(2;(a)) .  Our main necessary condition for the existence 
of  such a band projection is the following. 

Theorem 4. Let A be a uniform algebra on a compact metrizable space X. Let a be a 
representing measure for some point qgE M,l , and suppose that [H ~ (a) + C(X)]/H ~ (a) 
is an M-ideal in L=(a)/H ~ (a). Then # is dominant; equivalently, the set of  repre- 
senting measures for ~o which are absolutely continuous with respect to a is weakly 
compact. 

Proof. Let ~ be the band of measures on Z(o-) generated by [H=(a)+C(X)] • 
By Theorem 2, ~ is a reducing band for H = (a), and 

( . )  ~ n H ~ ( a )  • = [H~(a)+C(X)] -L. 

Let ~o be the band of  measures on 2: (or) generated by the representing measures 
for ~. By [3, Lemma 20.5], ~3 o is a minimal reducing band. Since ~3 n ~0 is a reducing 
band, then either ~ = ~30, or else ~3 n ~0 = {0}. 

We may assume that a is not the point mass at (p, since the conclusions of the 
theorem are trivial in that case. Then there is a function fEA such that f(q~)=0, 
wh i l e f i s  not identically zero on the closed support of cr. Thus f a  is a nonzero meas- 
ure in A I .  Hence f#_l_H=(a), but f~  is not orthogonal to C(X). Thus 
fd~[H=(#)+C(X)] • so that from (*) above we obtain f d ( ~ .  On the o t h e r  
hand, f#E~30. We conclude that ~ 3 0 .  By our earlier remarks, ~Bn~30={0}, 
and ~D is singular to ~B 0. 

We next consider the space S of positive measures on X which represent r 
and which are absolutely continuous with respect to a. We want to see that S is 
weak-star closed. I f  this is not so, we let '1 be a measure in the weak-star closure of  
S but not in S. Since C(X) is separable and S is a subset of the unit ball of 9.~(X), 
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we can choose a sequence {fjtr} in S which converges weak-star to t/. We are going 
to extract two subsequences from {fja}. 

By assumption, r/ is not absolutely continuous with respect to a, so there is a 
compact subset E of X for which a ( E ) = 0  and t /(E)>0. Let e be a small positive 
number (to be chosen later), and choose open sets Uo, Vo in X such that E c  Uoc 
UoCV0 and t/(V0)<t/(E)+e. Let qg, T be continuous functions on C(X) such 
that 0<-~/'~1,~0=1 o n E ,  q~=0 offUo, T = I  onUo,  T = 0  offV0. Then 

f ~, a, <- n(vo) < ,(e)+e. 

Since f~a---r/ weak-star, we can find an index Jo such that 

~(E)-~ < f e  d(jS. ~) 

f ~" d(fjoO < ~(E)+e. 

Combining these two inequalities yields 

n(E)-e  <jS0a(00) < n(E)+~. 

We can now repeat this process, and continue inductively to obtain a sequence 
{Uk} of open sets and a subsequence {f/ka} of the sequence {fja} such that: 

(i) E C Uk+ 1 C U / +  1 C Uk, 

(ii) Jk+t > Jk, 

(iii) J~k a (U)  < t/(E) + e, 

(iv) J')ko'(O,) > r/(E) - e .  

Since each of  the measures .f/a is absolutely continuous with respect to a, and 
a (E)=0 ,  we can also arrange that: 

(v) A.~(~7~+1) < 8. 

Henceforth, we will write g~ for f&. Set 

w = 0 ( a ~ -  a~+t); 
k=O 

W is a Borel set, and we write Zw for its characteristic function. Then 

fxwg~k da = g~a(W) 
-> g~a(0~k)-g~,a(0~§ ~ ,1(E)-2~. 

On the other hand, 

f xwg~,+~ &r = g~,+la(W) 

<- g~,+vr(Uo-U2k+~)+g~k+vr(U2k+2) ~_ ( r / (E)-I-O-(r / (E)-O+~.  
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Since the measures gka are absolutely continuous with respect to a and represent 
q~ on the algebra A, they have lifts to 27(g), which we denote by ~k#, which are abso- 
lutely continuous with respect to # and represent ~ on the algebra H = (a). Let 2o 
be any weak-star cluster point of  {~2k#} and let 2x be any weak-star cluster point of  
{~,~k+l#}. I f  we regard Xw as a continuous function on 27(a), the estimates obtained 

above imply that 

f z., d2o >= ~/(E)-2e,  

f z < 38. wd21 = 

In particular, 2o#~ if  e<~/(E)/5. 
On the other hand, the measure 2o-21 belongs to the band ~3o generated by 

the representing measures for ~ and is orthogonal to H ~176 (a), since 21 and 20 both 
represent ~. Moreover, if h~C(OO) then f h d(~k6)=f h d(gkcr) since ~k# is the 
lift of  gk~. Since g k a ~  weak-star we conclude that f h d2o=f h d21 for each 
hE C(X); i.e., 2o-21 is or thogonal to  H~176 In particular, 20-21 belongs 
to the band ~ as well as to the band ~0. Since ~3 and ~3o are singular, we conclude 
that 20-21=0 .  This contradiction shows that the space S is indeed weak-star 
closed, as desired. 

We can now show that ~ is a dominant representing measure. Let v be any 
representing measure for q3 on 27&). By the dual version of  the Hoffman--Rossi  
Theorem there is a net {vp} of representing measures absolutely continuous with 
respect to # which converges weak-star to v. Since the measures vp are absolutely 
continuous with respect to #, each of  them is the lift to 27 (~) of  a measure f~ ~r on 
X which is absolutely continuous with respect to a and represents ~p for the algebra A. 
Choose any weak-star cluster point of the net {faa}; since the space S is closed, 
this cluster point is a representing measure for ~p of  the 
to obtain the measure f#,  we see as before that v - f #  
to H=(a) J-, since it is the difference of representing 

form fo-. I f  we lift fo- to 27(o') 
belongs to the band ~B o and 
measures. Since vp and fpa 

agree on C(X), while fa and f#  also agree on C(X), it follows from weak-star con- 
vergence that v - f #  is also orthogonal to C(X), and thus belongs to the band ~B. 
Since ~0 and ~3 are singular, we conclude that v=f#; i.e., # is a dominant repre- 
senting measure. This completes the proof. [] 

The hypothesis that X be metrizable, in Theorem 4, is necessary. A counter- 
example to the conclusions can be obtained by taking A to be itself an algebra of  
the form H = (p), for p the harmonic measure on the boundary OD of an appropriate 
domain D in the complex domain, a "road runner" domain. One can choose D so 
that H~(p) separates the points of 2;(a), and so that/~ is not dominant. Then set 

�9 A=H=(.p), X=27~u) and o-=/~. Since A is already weak-star closed, we obtain 
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H=(a)-~A,  and consequently ~(a)~_X, L~176 and #= /L  Since # is not 
dominant ,  neither is #. On the other hand, [H=(cr)+C(X)]• so that 
the zero operator is a band projection of H = ( a ) "  onto [HO~ ", and 
[H ~ (or) + C(X)]/H ~176 (a) is an M-ideal in L = (cr)/H ~ (a). 

Now we wish to obtain some sufficient conditions for [HO~ 
to be an M-ideal. We do not know whether this occurs just as soon as cr is dominant. 
However, under some rather severe hypotheses, modelled on the algebra A(D), 
we can obtain a converse to Theorem 4. 

Theorem 5. Let A be a uniform algebra on a compact space X, let r and 
let a be a representing measure on X for q~. Assume that ~ is a dominant representing 
measure for ~ on H~(a). Assume furthermore that there is a function gEA such 
that gA coincides with the ideal of functions in A vanishing at q~, and such that the 
linear span of A and the functions l/g',  m>-l, is dense in C(X). Let P be the band 
projection of g~(Z (a)) onto the band of measures singular to ~. Then P maps H ~ (a) • 
onto [n=(cr)+C(X)]s In particular, [H=(a)+C(X)]/H*~(a) is an M-ideal in 
L~(a)/H~(a). 

Proof. Since ~ is dominant, the F. and M. Riesz theorem shows that the meas- 
ures singular to # form a reducing band. Consequently P maps H ~ (a) • into H ~ (a) -t. 

Denote the kernel of ~ on H ~ (a) by H o (a). Since gA coincides with the kernel 
of q~, we see upon passing to weak-star closures that gH~(a)=Ho(a).  Thus if 

1 
v_l_ H" '  (a), then --  v A_ Ho(a). 

g 
1 

Suppose vCH~O(a) 1 is singular to #. Then --vEH~(a) • is also singular to #. 
g 

1 
By a corollary to the F. and M. Riesz Theorem [4, Corollary II.7.9], - - v  _1_ H ~  (a). 

g 
Proceeding by induction, we obtain 

~ / H  (a), m _ ~ l .  

In particular, v is orthogonal to the powers 1/g m for m_->l. Since these together 
with A span a dense subset of  C(X), v • [H = ( a )+  C(X)]. Thus 

p(H- (a )  • c= [ H ' ( a )  + C(X)] • 

To prove the reverse inclusion, suppose that v _1_ H 0~ (a) + C(X). Write v =h #  + 
P(v). By the F. and M. Riesz theorem, P(v)_l_H=(a). According to what we have 
proved already, P(v)A_H=(cr)+C(X). Hence h#=v-P(v)_kC(X) .  It  follows 
that h = 0  a.e. (d#), and v=P(v) lies in the range of P. This completes the proof. [] 
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Before turning to the algebra A (D), we wish to consider the problem of cap- 
turing a version of  the F. and M. Riesz theorem when ~ is dominant. When is every 
measure in A • absolutely continuous with respect t~ a? The type of problem we 
might run into is illustrated by the following example (which however does not 
satisfy the hypotheses of Theorem 5). 

Let A = {Iz[ < 1 } be the open unit disc in the complex plane. Let E be a compact 
perfect subset of the unit circle OA of  zero length, let B ~e some nontrivial uniform 
algebra on E, and let xEE be a peak point for B. Let A consist of all functions 
fEA (A) such that f lee B, and f (x )  =f( l /2 ) .  Let q~ be the evaluation homomorphism 
at OEA, and let a be normalized arc-length measure on OA. By considering the 
difference of  the point mass at x and the Poisson measure, one sees that there is no 
hope of  obtaining an F. and M. Riesz theorem for measures in B • with respect to 
o'. Yet since H~(a)nC(OA) is the usual disc algebra A(A), we do have an F. and 
M. Riesz theorem for measures orthogonal to H~(a)nC(OA).  

In the case at hand, we prove the following F. and M. Riesz theorem for the 
"localized" version H = ( a )n  C(X) of  the algebra A. 

Theorem 6. Suppose that the hypotheses of  Theorem 5 are met, and that further- 
more H ~ (a)+ C(X) is a closed subspace of  L *~ (a). Then every measure on X ortho- 
gonal to H*~(a)n C(X) is absolutely continuous with respect to a. Consequently, 
every representing measure on X for ~ with respect to the algebra H = ( a ) n C ( X )  is 
absolutely continuous with respect to ~. 

Proof. Suppose v_l. H = (~) n C(X). Then there is a well-defined functional L 
on H ~ (a) + C(X), such that 

L ( f + h )  = f h dr, fEH~(t r ) ,  hEC(X).  

Now the natural projection 

I-t ~(~) + C(X)  -* C(X)/tI-Z~(~)n C(X)] 

is a closed operator, hence continuous. Since the functional g + ( H = & ) n C ( X ) ) ~  
S g dv is evidently well-defined and continuous on C(X)/ (H=(a)n C(X)), and since 
L is obtained by composing this functional with the projection above, L is continuous. 
Hence there is a measure �9 on /;(~) such that 

L(F)  = f Fd~, FEH=(cr)+C(X). 

Since L annihilates H~176 ~ is orthogonal to H=(~r). Let e=u~+/~# be the Lebes- 
gue decomposition of e with respect to #, where hELX(a). By Theorem 5, cr is 
orthogonal to H = ( a )+  C(X). Hence the measure i~# also represents L. I f  GE C(X) 
we then have 

f a d~, = L(G) = f Gh d~ = f Gh aa. 
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It follows that v=htr, and in particular v is absolutely continuous with respect 
to o'. [] 

Now we specialize our results to algebras of  analytic functions. 

Tl:e~rem 7. Let D be a bounded domain in the complex plane, and let # be har- 
monic measure on 3D for some point pED. Suppose that the closed support of It 
coincides with OD. Then the following are equivalent: 

(i) [H = ~ )  + C(OD)I/H ~ Oz) is an M-ideal in L ~~ (p)/H ~ (1~), 

(ii) there is a band projection mapping H=(I~) • onto [H*~)  + C(OD)] J-, 

(iii) /~ is a dominant representing measure for the evahtation homomorphism at p of 
the algebra H ~ (~), 

(iv) the set of representing measures on OD for p is a weakly compact set of meas- 
ures. 

Proof. The equivalence of  (i) and (ii) follows from Theorem 2. That (i) implies 
(iii) follows immediately from Theorem 4. 

Suppose that (iii) is true. It is a very useful fact from rational approximation 
theory that the linear span of A(D) and the powers 1/(z-p) m, m>-'l, is dense in 
COD). (To see this, observe first from Runge's theorem that this linear span is 
dense in R(3D). Since each point of 3D lies in the closure of a single component 
of  the complement of OD, each point is a peak point for R(OD), and hence by Bishop's 
theorem, R(3D)=C(OD).) Furthermore, (z -p)A(D)  coincides with the ideal of 
functions in A (D) which vanish at p. Hence the hypotheses of Theorem 5 are verified, 
with g( z )=z -p .  We conclude from Theorem 5 that (i) and (ii) are true. 

If  (iv) is true, then in particular the representing measures which are absolutely 
continuous with respect to /x form a weakly compact set. By the dual version of  
the Hoffman--Rossi  theorem, (iii) is valid. To complete the proof, it suffices then 
to show that the equivalent conditions (i), (ii), and (iii) imply (iv). This can be done 
in several ways. 

One method, following [5], is to invoke a theorem of Gamelin and Garnett 
[6, Corollary 7.4 and Theorem 8.1], to the effect that the representing measures 
for p which are absolutely continuous with respect to/~ are weak-star dense in the 
set of all representing measures for p which are carried by the closed support of  
/z. Suppose (iii) is true. By the dual version of the Hoffman--Rossi  theorem, the 
representing measures absolutely continuous with respect to/~ form a weakly compact 
set, hence a weak-star closed set. By the theorem just cited, all representing 
measures for p are absolutely continuous with respect to /~. Hence the set of all 
representing measures for p is weakly compact, and (iv) is true. 
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Another way to show that (iii) implies (iv) is to appeal to Theorem 6 and the 
distance estimate 

distance (h, A (D)) = distance (h, H ~176 (p)), hE C(OD), 

[6, Theorems 6.3 and 8.1]. This distance estimate shows that C(SD) c~ H ~ (p) coin- 
cides with the restriction of A (D) to ~gD. It also shows that H ~ (p) + C(8D) is closed. 
Thus, assuming (iii), the hypotheses of Theorem 6 are met, and we obtain that 
every representing measure for p on ~gD is absolutely continuous with respect to p. 
This fact, combined with the Hoffman--Rossi theorem, establishes (iv). [] 

One consequence of our analysis is that, under the equivalent hypotheses of 
Theorem 7, all representing measures for p are absolutely continuous with respect 
to harmonic measure p. It is proved in [5] that if the representing measures for p 
form a weakly compact set, then all representing measures for p are mutually abso- 
lutely continuous. 

We refer the reader also to [5] for a discussion of which domains D have weakly 
compact sets of representing measures. The situation for road runner domains is 
easiest to describe. These are domains obtained from the punctured unit disc A\{0} 
by excising a sequence of closed, pairwise-disjoint subdiscs which cluster only at 0. 
In this case the set of representing measures on cgD for pED is weakly compact if 
and only if 0 is a peak point for A (D). The situation for champagne bubble domains 
is much more complicated. See [5] for various constructions. 

4. Best approximation 

Having obtained necessary and sufficient conditions that ( H "  (p) + C(~gD))/H" (It) 
be an M-ideal in L~(p) /H~(p) ,  we want to close this circle of ideas by obtaining 
best approximation results. The fact that best approximation is possible from M- 
ideals was proved by Alfsen and Effros [1, Corollary 5.6]; since the proof they give 
is rather complicated (it is embedded in a much larger and more powerful argument), 
it seems worthwhile to give an independent, elementary proof. (In fact, we get the 
full strength of their Corollary 5.6.) 

Recall that Alfsen and Effros define a subspace F to have the n-baH property 
in a Banach space E if whenever n open balls, each of which meets F, have a non- 
empty intersection, then that intersection meets F. The paper [1] is devoted to proving 
that for each n~3 ,  the n-ball property characterizes M-ideals in E. We aim to 
show that a weak form of the two-ball property already guarantees the existence of 
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best approximants. Then we will show by a short direct proof that M-ideals have 
the property, hence they have best approximants. 

We say that a subspace F of a Banach space E has the weak two-ball property 
in E if there is a positive, continuous, increasing function ~o(~), 0>0 ,  for which 

f01 ~o (~) - - - -  do < ~, 

and such that for each 0 < 0 < 1  and each xCE satisfying 

]]x][ < 1+0,  distance(x, F)  < 1, 

there is a yE F satisfying 

IlylI < ~o(0), I Ix-yl l  < 1 +Q/2. 

The purpose of the integrability condition on q~ is to assure that 

for any 0 < ~ < 1  and 0 < c < l .  
The two-ball property trivially implies the weak two-ball property, with cp (~)= 

~/2. Indeed, suppose xCE satisfies []x]l < 1 + ~ and distance (x, F ) <  1. Then the 
open balls B(0; ~/2) and B(x; 1 +~/2) meet each other, and each of them meets F. 
By the two-ball property, there exists yCF• B(0; ~/2) • B(x; 1 + ~/2), and this y 
does the trick, with ~p (~)= ~/2. 

It is fairly straightforward to check that any closed subspace of a Hilbert space 

has the weak two-ball property, with q~(o~)=2 ]/-Q. Furthermore, no larger power 
of Q will serve for Hilbert space. 

An iteration argument, using the two-ball property, allows us to obtain in 
short order the existence of best approximants. 

Theorem 8. I f  F has the weak two-baH property in E, then every element of  E 
has a best approximant in F. 

Proof. Let zEE, and fix 0 < Q < I .  We may assume without loss of generality 
that distance (z, F)=I,  and furthermore that [Iz[l<l +~. By the two-ball prop- 
erty, applied to x=(l+~/2)z/( l+3~/4),  there exists yEF with I lyl l<~(~) and 
l lx-yll  < 1 + a/2. Then wl=(1 +3~/4)y/(1 + e/2) satisfies 

Ilwll[ <- 2l]yl[ < 29(Q), 

l ie-wil l  < 1 +3e /4 .  
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Repeating this procedure, with 0 replaced by 30/4 and z replaced by 
obtain w~EF such that 

II w~ll < 2~ (3~/4), 

2 - - W l ~  we 

Proceeding in this fashion, we obtain a sequence {w~} in F such that 

3 m--1 

(T I l z - w ~ - . . . - w ~ l l  < 1§ ~ ~. 

The estimate for Ilwm[I shows that the series Zw~ converges to wEF, and evidently 
IIz-wll = 1 =distance (z, F). [] 

We remark that the above proof  shows that there is continuity of  best approxi- 
mants, in the sense that if zEE satisfies distance (z, F ) =  1 and Ilzll < 1 + Q, there 
exists wEE such that IIz-wll=l and IlwlI<~e(o), where ~(Q)-~0 as Q-~0. 
In fact, we may take 

= 8 f ~  dt. 
t 

Using the separation theorem for convex sets, we may now show that M-ideals 
have the weak two-ball property and hence the best approximation property. 

Proposition 9. I f  F is an M-ideal in E then it has the weak two-ball property, 
and hence every element of  E has a best approximant in F. 

Proof. We are going to verify the weak two-ball property with the function 
~P(0)-----O. Let  xEE, with I lxll<l+~<2, x~F, and distance (x, F ) < l .  Let B 
be the open unit ball of E. We claim that there is an element z in the intersection 
of  the two convex sets x + o ( B n F )  and ( l+o /2 )B .  I f  this is so, we may set 
y = x - z ,  so tha t  yEF and Ilyll<0 (because z is in x + o ( B n F ) )  while Ilx-yll = 
Ilz[I < 1 +0/2  (because z is in (1 +Q/2)B), which is what we desire. 

It remains to prove the claim. I f  it were not so, the separation theorem would 
enable us to find a nonzero continuous linear functional ~u in E*, the dual space of  
E, such that 

sup Re ~(u)  -< inf Re ~(x+Qv) 
uE(I +QI~)B vE BNF 
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thus 
(1+~/2)11~I1 ~ I ~ ( x ) l - ~  sup Re 71(o) 

vEBfqF 

= I ~ ( x ) l - ~ l l ~ l l F , .  

Since F is an M-ideal in E, there is an L-projection P of E* onto F • From the 
Hahn--Banach theorem and the defining property of L-projections, we have 

II~ll~,  = i n f  { l f ~ - 0 l l  : OEF -L} 

= inf {lle~-0l[ + H ~ - P ~ I I :  O~F • = II~-P~II.  

Thus using P7 s I F below, we obtain 

(1 +0/2)11~'I1 ~ IV(x) l -o l l~ -P~] l  

<-- IV(x ) - e~ '  (x)l + l e e  (x) l -  e II ~ ' - e ~ l l  

[1 y - e v i l  l!xll + lle~fl distance (x, F ) -  Q H 7t-PVll  

I l v - e ~ l l  (1 + Q ) + [ I e V l [ - ~ l l ~ - e ~ l l  = I1~11. 

This contradiction establishes the proposition. 
As another application of the weak two-ball property, we mention the following, 

which is related to the Hilbert space example mentioned earlier. 

Proposition 10. Suppose H is a closed self-adjoint subalgebra of C(X), 
where X is compact Hausdorff. Then H has the weak two-ball property, with 
~p(Q)=2l/-O, and hence every element of C(X) has a best approximant in H. 

Sketch of proof. Fix 0 < 0 < 1 ,  and suppose fEC(X) satisfies ] l f l l<l+Q,  and 
] l f -g l [< l  for some g~H. Define 

h(x) = 
g(x), 

~g(x)/lg(x)l, 

Ig(x)l < 3V3-~, 

lg(x)l > 3 ~ .  

Then hEH satisfies [Ih[l<~o(0). Some elementary geometry in the plane shows 
that if la[<_-l+0 and if [b[=>]/~, I b - a l < l ,  then the radial projection of b onto 
the circle {1~1 = 1/3-0} lies inside the circle {l~-a[< 1}. Applying this fact to a=f(x) 
and b=g(x), we obtain Ih(x)- f (x) l<l ,  which is a stronger estimate than that 
required for the weak two-ball property. [] 

Finally, we combine the above results with weak-star compactness to obtain 
best approximation from H ~ (p) + C(OD). 
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Corollary 11, Let D be a bounded domain in the complex plane, and let It be 
harmonic measure on ~D for a point p~ D. Suppose that the closed support of  It 
coincides with OD, and that ~ is a dominant representing measure. Then every func- 
tion in L~*~) has a best approximant in H ~ (It)+ C(~D). 

Proof. By Theorem 7, (H~(#)§ is an M-ideal in L~(#) /H~O O. 
Thus, given f E L ~ )  we can find (by Theorem 8 and Proposi t ion 9) a function 

gE H ~ (#) + C(OD) such that  distance ( f - g ,  H ~ (#)) = distance ( f ,  H ~ (p) + C(OD)). 
Since norm-closed balls in H ~ @ )  are weak-star  compact ,  there is an h ~ H ~ )  
such that  

t l f  - g - h l l  = distance ( f - g ,  H ~ ) )  

= distance ( f  H**~) + C(OD)); 

i.e., g+h is a best approximant  t o f f r o m  H~(p)+C(gD) .  [] 

In  closing we remark that  the question o f  best approximat ion f rom other sub- 

algebras o f  L ~ )  is not  well-understood, a l though Sundberg [12] has shown that  
there are subalgebras between H ~ and L ~ which do not  have the best approxima-  
t ion property.  
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