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1. Introduction 

Let ~ denote a Riemann surface and let H ~* (~) denote the collection of bounded 
analytic functions on ~ .  We assume that the functions in H = ( ~ )  separate the points 
of ~ .  Let J f  = ~ (H = (~)) denote the collection of all complex homomorphisms 
on H = ( ~ ) ,  i.e. J /  is the maximal ideal space of H~*(~). Each point ~C~ corre- 
sponds in a natural way (point evaluation) to an element of Jr This paper is con- 
cerned with the corona problem for H =(~) :  Is ~ the closure (in the Gelfand to- 
pology) of ~ ?  More concretely, the problem is: 

Given f l  . . . .  , f ,  EH~(O~) and 6 > 0  such that 1->maxj I f j (01>6 for all ~E~, 
is it possible to find gl . . . .  , gnCH**(~) with 

Z ; = t  f j  gj = 1 7  

We refer to f~ . . . .  'f~ as "corona data", g~, . . . ,g ,  as "corona solutions", and 
max JI gjll o~ as a "bound on the corona solutions". We reserve n and 6 exclusively 
for the above use. This problem for q/, the unit disk in C, was conjectured by S. Kaku- 
tani in 1941, and solved by L. Carleson [12] in 1962. Not only has the theorem 
itself been of great interest in classical function theory, but also the proof intro- 
duced tools which have been of fundamental importance during the last twenty 
years. See Garnett's book [25] for an excellent discussion. 

After the disk, the next most complicated Riemann surface is an annulus. 
The simplest proof of the corona theorem in this case is due independently to 
S. Scheinberg [38] and E. L. Stout [41]. We reproduce it here as motivation for 
our approach. First one pulls back corona data {fj} on the annulus, .4, to func- 
tions on a vertical strip S by the map e z. Since a strip is simply-connected, we may 
solve 

(1.1) 1 = Z, fj(eZ)g~(z) zES, gj6H**(S) 
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1 
by Carleson's theorem. Define operators TN(g)= 2 N + l  ~-NN g(z+2nki) and 

apply them to equation (1.1) to obtain 

= Z s  (e ~) rN (g j) (z). 

Since llZN(&)ll~<=llgjl[~ and llZN(g)(z)-ZN(g)(z+2~i)l[~_<=Ilgl[~/N, we may find 
normal limits Gj of a subsequence of {TN(gj)} with the properties 

Gj(z +2ni) = Gj(z) 
and 

.~afj(eZ)Gj(z) = 2, zCS. 

Clearly Gj(z)=hj(e z) for some h~EH=(A) and 

1 = Z f j ( z ) h A z  ), zcA.  

For a more general Riemann surface G, if H = (G) contains non-constant func- 
tions, the uniformization theorem tells us tk at the unit disk q/ is  the universal cov- 
ering space of G. Moreover, there is a Fuchsian group/"  of linear fractional trans- 
formations of 0g onto og such that 

H~" -- {fEH~(q/): f o  7 = f  for all yEF} 

is naturally isomorphic to H=(G)  under the covering map ~: q / ~ G .  Solving the 
corona problem for H r176 (G) is then equivalent to finding solutions invariant under 
the group F in H=(~ when the corona data are invariant. We can retrieve the 
surface G from q / a n d  F by defining the normal fundamental domain 

G o = {zC~ Q(z, O)< Q(z, y(O)) for all 7CF",,id} 

where Q is the pseudo-hyperbolic metric on q/: 

I . 
The boundary of Go, denoted by 0Go, consists of arcs of circles orthogonal to 0~, 
plus a subset of 0q/. The map rc is one-to-one on G0 and identifies the arcs of circles 
in pairs. An explicit construction of ~ and F in the case when G = C \ E  for E c R  
is given, for example, in [37]. Although F is countable, the averaging process in 
the above proof works only for the annulus. The contribution of this paper is to 
present a "weighted" averaging process to demonstrate the corona theorem on 
some surfaces. Our averaging process is closely related to a method introduced by 
Forelli [20]. 

A number of authors have proved the corona theorem for finite bordered Rie- 
mann surfaces, e.g. [5], [6], [18], [20], [40], [41], [42]. A general Riemann surface 
can always be exhausted by a sequence of finite bordered surfaces. However, to 
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solve the corona problem on the larger surface, one needs control on the norms 
of the corona solutions, II gjll~, in the approximating surfaces in order to take nor- 
mal limits. Unfortunately, the above cited methods do not produce such solutions. 
M. Behrens [7], [8] was the first to discover a class of infinitely connected planar 
domains for which he corona theorem is true. These are so-called "roadrunner 
s e t s "  ~=o~(~JT=IZ~ j where Aj is a disk centered at cj and radius rj such that 

Z~'r]/IcjI < ~  and lej+ff@ < 2  < 1 for all j .  

The summability restriction has been improved somewhat in [16] and [17]. Behrens 
[8] also proved that if the corona theorem fails for a plane domain, then it fails for 
a domain of the form N = q / \ U ~ = I  Aj where {A j} is a sequence of disks clustering 
only at the origin. Gamelin [21] showed that the corona problem is "local" in the 
sense that it depends only on the behavior of N near each boundary point. Around 
1970, B. Cole (see [22]) constructed a Riemann surface for which the corona theorem 
fails. He constructed a sequence of finite bordered Riemann surfaces ~(k) and func- 
tions fl(k),f(2k)EH~(~?k) with maxj lfJk)(t)l~(5 o n  N(k), but where any solutions 
f(k) o(k) a- r r 1 must satisfy supk (ll g(1 k)[] ~ + [1 g~k) II ~) = co. Constructing such a O1 ~ J 2 tz,2 - -  

sequence of planar domains is equivalent to the failure of the corona problem for 
a planar domain, as shown in Gamelin [21]. 

In 1980, Carleson [15] considered planar domains whose complements were 
at the opposite extreme from those considered by Behrens. A measurable set E c R  
is homogeneous if there is an 5>0 such that 

(1.2) ](x--r, x + r ) n E [  ~= ~r 

for all r > 0  and all xEE, where IF[ denotes the Lebesgue measure of a subset F 
of R. Carleson proved the corona theorem for the surfaces N = C \ E .  His proof 

is based on the recent solution by Jones [28] of the 0 problem, various difficult esti- 
mates on the harmonic measure of subsets of E in C \ E ,  and a detailed examina- 
tion of the corresponding Fuchsian groups. The motivation for our work was to 
understand this result. At the heart of our paper is another proof of Carleson's 
theorem. The general problem for planar domains is still open, as is the problem 
in several variables for the ball and polydisk. 

It has long been known that the corona problem and interpolation problems 
are intimately related. A sequence {fi]}c~, is an interpolating sequence for H ~ ( ~ )  
provided the restriction of H=(N)  to {flj} is f=.  In other words, for every bounded 
sequence {w j}, there is an f E H  ~ (~) such that f(flj)---wj for all j. When N =  o//, 
Carleson [11] proved that {flj}cq/ is an interpolating sequence for H = (q/) if and 
only of inf jH~=l~(f l i ,  f l )>O.  The problem of characterizing interpolating 
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sequences for finite bordered Riemann surfaces is solved in [13], [40], [41], [43], 
and for certain infinitely connected planar domains in [9]. 

In Section 2, we show that it is enough to solve the corona problem at the crit- 
ical points of Green's function, i.e. at {(: VG((, (')=0}. For example, the corona 
theorem is true if the critical points lift, under the map rc -1, to an interpolating 
sequence for H=(q/), or if the critical points form an interpolating sequence for 
H~(.~). We express each of these conditions in terms of Green's function on ~.  
We also show, by example, these conditions are not the same. By comparing Green's 
function and harmonic measure we verify the interpolating condition, for example, 
in the cases Carleson considered in Section 3. 

In his corona theorem for the complement of homogeneous sets E, Carleson 
showed that harmonic measure at a point in ~ is given by dw=h(x)dx where h 
satisfies heC~176 In [14] he conjectured that hEL p for some p > l .  We 
prove this fact in Section 3. Finally in Section 4, we give another characterization, 
in terms of harmonic measure, of sequences in ~ whose lifts to q/are interpolating 
for H = (og). This is based on the work of Garnett, Gehring, and Jones [26] and 
Lavrentiev's theory of conformal mappings onto domains bounded by chord-arc 
curves [30]. It provides a simpler test of the interpolating condition in practice. 
For the reader interested in a short proof of Carleson's corona theorem for the 
complement of homogeneous sets, we suggest reading Section 2 through Theorem 
2.5, then Section 3 through Lem:na 3.2. There are several other ways to prove his 
theorem with the techniques presented herein. 

The corona problems treated in this paper can also Ice studied using 0 methods. 
This approach will be used in a forthcoming paper by the first author. 

We wish to thank the Institut Mittag-Leffer, the American--Scandinavian 
Foundation, the National Science Foundation, the University of Chicago, and the 
University of Washington for their support during the course of this work at the 
Institut Mittag-Leffler, Sweden. Some of our results were announced earlier in [29]. 

In sorrow we dedicate this paper to the memory of Irving Glicksberg, our 
mathematical grandfather. 

Note: After this paper was first typed the first author and John Garnett suc- 
ceeded in proving the corona theorem for all Denjoy domains, i.e. domains of the 
form ~ \ E  where E c R .  The techniques are necessarily quite different from those 
used in this paper. The proof will appear in Acta Math. 
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2. Interpolation and the corona theorem 

In this section, we will consider Riemann surfaces G that are regular in the 
sense of potential theory. By this we mean that if G(~, ~') is Green's function for 
G with pole at ~', then G(~, ~') tends to zero as ~ tends to the ideal boundary of G. 
We may exhaust N by surfaces Ms= {(EN: G(~, ~')>e}. Each N, is the interior of 
a compact bordered Riemann surface whose boundary consists of finitely many 
analytic Jordan curves in G. Let {~m}= {~EG: VG(~,~')=0} be the critical points 
of Green's function. The emphasis in this section will be on solving the corona 
problem in these latter surfaces, with control on the norms of the corona solutions 
in terms of 6, n, and the critical points. Since the Green's function for N, is simply 
G(~, { ' )-e,  our results apply to G. Actually most of the results below already con- 
tain hypotheses that imply G is essentially regular. We will comment at the end 
of this section on how to remove the added hypothesis that G is regular. With the 
exception of Lemma 2.4 then, we will maintain the standing assumption that G is 
the interior of a compact bordered Riemann surface whose boundary in a larger 
Riemann surface consists of finitely many analytic curves, with the understanding 
that all of the theorems extend to regular Riemann surfaces as stated. 

Since G admits non-constant bounded analytic functions, the Blaschke product 
I~'(O)l B(z)=II~c r - - ~  y(z), defined on ~ ,  converges and clearly satisfies - log  IB(z)l= 

G(n(z), re(0)). Of course, we have adopted the usual convention of setting 
l~(0)l/y(0)=l when 7(z)--z. By assumption, the boundary of the normal funda- 
mental domain Go consists of finitely many arcs of circles orthogonal to Oq/ and 
finitely many arcs (of positive length) on 0~'. See e.g. Marden [31]. This function 
B(z) is, then, analytic in a neighborhood of the closure, ~o, of Go. 

We shall use the conditional expectation operator invented by Forelli [20], and 
later made explicit by Earle and Marden [18], [19]. By logarithmic differentiation, 

5 '  ~'(z) ~ ' (z)  = ~ , ~ r  ~ - - ~ ( z ) .  

It is easy to verify that this series converges uniformly and absolutely on ~o and 
hence on 7(~0) for all yEF. Define, for fEH~176 

7' B 
E(f) = ZrCr(fo~)  7 B ' "  

Then E(f) is a meromorphic function on 0// with E(f)o~,=E(f) for all gEF. 
The poles of E(f) occur at the zeros of B'. These correspond to the critical points 
{(,,} of G(~,rt(0)) under the map zc. Note that E(1)=I and E(fg)=fE(g) if 
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fEH 7 and gEH~(q/). This operator has been used by these authors to solve the 
corona problerri on finite bordered Riemann surfaces by finding gEH=(~//) with 
E (g )=  1 and E(gf)EH r for all fEH=(q/) .  The difficulty in extending this method 
to infinitely connected surfaces is the lack of control on II g]l ~. We will give another 
method for removing the poles at the critical points that extends more readily to 
infinitely connected surfaces. For each m, choose one point Zm, 0E Go with z (Zm, O)= 
~m and let Zm, k=?k(Zm,0) where {?k} is an enumeration of F. We call {z~,k} the 
critical points of G on q/. We will make the further assumption that G(~, ~(0)) 
has no critical points on 0N. In other words, B" has no zeros on ON0n0~. There 
is no loss of generality in this assumption since any Riemann surface of the type 
we are considering may be approximated by surfaces with this additional assump- 
tion. I f  .~ is a planar domain, then it is a simple consequence of the argument prin- 
ciple that 

(2.1) G(~, ~(0)) has N - 1  critical points (counting multiplicity), where N 
is the number of closed boundary curves. 

See e.g. [33]. More generally, the number of critical points of G is the first Betti 
number, or the number of generators of the first singular homology group, of 
[46], and hence is finite. See Walsh [44, Chapter VII] for more information con- 
cerning the location of the critical points. We shall assume also that these critical 
points are distinct. Again, by an approximation, there is no loss of generality with 
this assumption. 

Lemma 2.1. Suppose fEH=(q/ )  and f(Zm, k)=f(Zm, o) for all rn and k. Then 
E( f )EH 7 and IIg(f)ll~-<-llfll~. 

Proof. Since E ( I ) =  1, we may write 

?' B 
E(J) = f + ~ r c r ( f o T - f )  7 B'" 

Since by assumption f o T - f = 0  at the zeros of B" (which are simple), and since 
B'  is analytic in a neighborhood of ~0, E( f )  is bounded and analytic on Go. Since 
E(f)  is invariant under the group F, E( f )EH 7. We recall the pleasant inequality 

that for zE0q/, z ?'(z) >0,  and hence for each zEO~onO~ we have 
? (z) 

1 
I ~ i  r - - .  

Since almost every point on ~#/is  equivalent under the group/~ to some point on 
O~onOq/, and since E( f )  is invariant, []E(f)[]=- < [] f[[=. 

The next lemma highlights the importance of the critical points of G. It says 
that it is enough to solve the corona theorem there. 
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Lemma 2.2 Suppose 

(i) 1 ~  max If~(z)[>-6 for all zC~ 
l<=j<=n 

(ii) gjCH~(q/), I1gjll~, <= M 

(iii) g j o y ( z ) = g j ( z ) f o r  zE{zm.k}, 7EF 

(iv) Z ; = l f j ( z C ( z ) ) g j ( z ) =  1 for Z~{Zm, k}. 

Then there exists {hj}EH=(~) such that ~ f j h j = l  on ~ and maxj[[hj}]~ is 
bounded by a constant depending only on n, 6, and M. 

Proof. Let C be the Blaschke product vanishing at {Zm, k}. We may write 
~ ( f j o ~ ) g j - l = C h  for some hEH=(~). Applying the operator E we obtain 
(E(1)---= 1): 

(2.2) • (fjo ~z) E(gj)-- 1 = E(Ch). 

By Carleson's corona theorem for q[, there are HjEH=(q[) with []Hj[].~ bounded 
by a constant depending only on 6 and n such that ~ ( f j o n ) H i =  1. Multiplying 
this latter equation by Ch and applying E yields 

(2.3) Z (fjo n) E(ChHj) = E(Ch). 
By (2.2) and (2.3), 

Z = 1. 

By Lemma 2.1, E(g~-ChHj)EH r and IIE(gj--fhnj)ll~ is bounded by a con- 
stant depending only upon n, 6, and M. The proof is completed by setting hjozt= 
e ( g j -  Ch~j). 

We remark here that this method for obtaining (2.3) shows that the canonical 
function E(C)EH~ is in every ideal generated by corona data. It merits further 
study. One easy way to now solve the corona problem for finite bordered Riemann 
surfaces is to, at each ~m, choosej such that [fj(r >6, and then pick g3CH~(~I) 

1 
such that g j ( ~ m ) - - -  and gk(~)=0 for kr  Since there are only finitely L( A 
many era, this can be easily done. We need, however, better control on I] gjll~. The 
same idea proves our next corollary. The interpolation constant associated with 
an interpolating sequence {win} is 

M = sup inf{[If[]~: J~H~(~)  and f (Wm) -: U m for all m}. 

Corollary 2.3. Suppose the critical points {z~,k} form an interpolating sequence 
for H~(~)  with interpolation constant M. Then the corona theorem is true on 
with a bound on the solutions depending only on n, 6, and M. 
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For later purposes, it will be necessary to have a concrete property of  {w~} which 
is equivalent to the interpolation condition. Let rl=rl({Wm})=inf m lIk:kr O(Wk , Win)" 
A celebrated theorem of Carleson (see Garnett [25], p. 287) asserts (in its modern 
form) that 

where C is some absolute constant and M is the interpolation constant associated 
with {win}. It is also known (see [25], p. 294) that if {win} is an interpolating sequence 
for H ~ (q/) with interpolation constant M, there is a collection {fro} c H ~ (q/) with 
the following properties: fm(wk)=0 if m ~ k ,  f~(wm)= 1, and ,~lfm(z) I <-M for 
all zEq/. These functions were discovered by P. Beurling. See Jones [28] for a 
straightforward formula for them. 

If  F is any Fuchsian group of convergent type, and if (zm}= {Vm(a)}~= o for 
some a6q/, then {z~} is an interpolating sequence. This follows from the invari- 
ance of  the Blaschke product vanishing at {z~} and condition (2.4). The next lemma 
characterizes sequences in ~ that lift to interpolating sequences on q/ in terms of 
Green's function on ~ .  Since the proof is general we make no assumptions on the 
Riemann surface ~ .  

Lemma 2.4. Let ~ be a Riemann surface and let F be the corresponding Fuchsian 
group. Suppose {Zm} is a F - im'ariant sequence on ql and suppose {~i}=Ir{Zm} is 
the corresponding sequence on ~ .  Then {Zm} is an interpolating sequence for H ~ (ql) 
i f  and only i f  Green's function exists and satisfies: 

(2.5) 

and 

(2.6) 

there is a constant o~ such that for all L {~: G(~,(j.)>~} 
connected, 

there is a constant N<~o such that for al l j  

is simply 

Proof. If {zm} is interpolating, then clearly F is of  convergent type and hence 
G exists. We will estimate the quantity ~/ of condition (2.4). To this end we pick 
a point zC {Zm} and evaluate the interpolating condition there. For ease of nota- 
tion, we suppose z = 0 ;  the proof  below can be easily modified otherwise. 
Let {Zl, m}={~(0): ?EF}~{0} and let {Z2,m}={Zm}~{{Zl, m}k.){O}}. We must 
evaluate 1L:z~,olzml=llmlzl, mlll~lz2,m[. The quantity ]-[mlZ2.m[ is equal to 
exp{--~j:r162 G((j ,  n(0))} so to prove the lemma, it is only necessary to show 
that A--  - log/- /m Iz~,~l and % are comparable, where % is the infimum of the set 
of all ct such that {~: G(~, 7r(0))>cr is simply connected. As before, let B be the 
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Blaschke product with - l o g  IB(z)l= G(n(z), n(0)). Then 

I n ' ( 0 ) [  = e - a  = H~cr I~(0)[ < I~(0)l  for all zEl",xid. 
r(o)~0 

Thus the disk D =  {z: lzl<e-A/2} is contained in the normal fundamental domain. 
Moreover, by Schwarz's lemma applied to B(z)/z, IB(z)l>=e-~a/4 when lzl=e-A/2. 
(See e.g. [33], p. 167.) Since D contains no two points equivalent under F, 
re{C: G(r n(0))>2A+log 4} is simply connected. This proves c~0~2A+log 4. In 
the other direction, pick a number ~>ct 0 and let e = { ~ :  G(~, n(0))>~}. Let V 
be the component of n-x(~) which contains the origin. Since V contains no ~(0) 
with ~EF, 7~identity, and since n - l (~ )  is invariant, there is a neighborhood of 
fixed hyperbolic size about each zero of B, except 0, which does not intersect V. 
Since B(z) is always an interpolating Blaschke product, z/B(z) is bounded on V 
(although the bound might not, a priori, be controlled in terms of ~). Moreover, 
[z/B(z)[<-e ~ on q/n0V. Since [Bfz)l<-e-'<l on V, the harmonic measure of 
Oq/nOV in q/is  zero, and hence the harmonic measure of the same set in V is zero. 
By the maximum principle, Iz/B(z)l<=e ~ on V and therefore e-a=lB'(O)]>=e -' .  
This shows A -<no and completes the proof of the lemma. 

We remark that (2.5) controls the interpolation constant for each orbit, while 
(2.6) controls the interactions of the orbits. It is not immediately obvious how 
one can verify condition (2.6) in practice, but it so happens that there is a relatively 
straightforward way to do this. Section 4 is devoted to a discussion of this problem. 
It turns out, however, that condition (2.5) is relatively simple to handle. Suppose, 
for example, that N is a planar domain, ~0EN and dist (~0, 0N)= 1. (The problem 
is dilation invariant, so there is no loss of generality connected with this last assump- 
tion.) Let B(r)={~EC: I~-~0[-<r} and let cap(E) denote the logarithmic capac- 
ity of a compact set E t C .  Then standard arguments of potential theory show 
that whenever {[: G([,~o)>c~} is simply connected, there is r=r(c0 such that 

cap (B(r)nO~) >= r -1. 

Conversely, if cap (Sfr)na~)>=r-1, there is then ct=a(r) such that {~: G(~, ~o)>Ct} 
is simply connected. 

It is possible for a sequence {fij} in a Riemann surface to be interpolating for 
H ~ (~) and yet its lift to og is not interpolating for H ~ (0//). Indeed, let {fij} be an 
interpolating sequence in q/. Then {fl]} is an interpolating sequence for H ~ ( ~ )  
for all ~ c q / .  For each j delete a small disk Ajc{~Eq/: G(~,fl])>j} from q/. 
If  the radii of the A] are sufficiently small and if Gs is Green's function for the new 
surface YZ=q/ \ (Uj  A j), then {~E~: Gs(~,~j)>N} will be doubly connected for 
j>N.  By Lemma 2.4, {flj} does not lift to an interpolating sequence for H=(q/). 

As a consequence of Corollary 2.3 and Lemma 2.4 we obtain the following 
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Theorem 2.5. Suppose conditions (2.5) and (2.6) hold for the critical points of G. 
Then the corona theorem has solutions with bounds depending only on n, 6, c~ and N. 

There are two other versions of this theorem we would like to give. In his orig- 
inal proof of the corona theorem [12, p. 557] Carleson showed that if C is any Blaschke 
product and if g is bounded and analytic on the (possibly not connected) set 
{z: [C(z)[<e} then there exists glEH~(ql) such that gl=g on the zeros of C and 
I[gl[l~<=Kllgll~,~ where Ilgll~,, denotes the sup-norm o f g  on {z: ]C(z)l<~ } and 
where K depends only on e. Letting C denote the Blaschke product vanishing at 
the critical points of G in q/, we obtain the next lemma. 

Lemma 2.6. In Lemma 2.2 we may replace hypothesis (ii) by the following: 

(ii') g~EH'{z~ql: ]C(z) 1 < e} with II&ll=,, ~ M. 

We obtain the same conchtsion except that the bounds on the corona solutions will 
also depend on ~. 

Since 7z{zE~: IC(z)l<e}={~E~: Z~=I G((, ~k)>log l/e}, we deduce the fol- 
lowing version of Theorem 2.5, by applying Carleson's corona theorem for simply 
connected surfaces and Lemma 2.6 to Lemma 2.2. 

Theorem 2.7. I f  there is an N<oo such that { ( E 2 : ~ 1 G ( ( ,  (k)>N} is a 
disjoint union of simply connected regions, then the corona theorem has solutions with 
bounds depending only on n, 3, and N. 

We say in this case that C separates the sheets, since the critical points on each 
sheet are separated from the critical points on the remaining sheets. Conversely, 
it is easy to see that if distinct, but equivalent, critical points on q/belong to distinct 
components of {z: ]C(z)l<e -~} then C separates the sheets. Of course we can 
replace "simply connected regions" in this theorem by regions with connectivity 
=<m. For example, let 2 = q / \ U T = I  Aj be the Riemann surface obtained by deleting 
disks A] with centers c i from the unit disk ql. By Walsh's lemma (Lemma 3.1), 
if each cjE(0, 1), the critical points of G((, 0) lie in (0, 1), intertwined with the 
centers cj. If  c j~  1 geometrically then {c j} is an interpolating sequence for H = (~), 
and hence the set of critical points {~j} is the union of at most two interpolating 
sequences for H = (q/), and therefore for H = (2). Since Green's function for 2 is 
bounded above by Green's function for 0~, {~: z~=~ G(~,~D>N} is at most 
doubly connected for sufficiently large N. By the proof of Theorem 2.7, we obtain 
the corona theorem for 2 .  In this regard, we mention that Gamelin [21] has shown 
that if the corona theorem fails for a plane domain, it fails for a domain of the form 
q/\UT=~ Aj where Aj are disks with centers c]~ 1. Such domains are regular, by 
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Wiener's criterion. In contrast to Theorem 2.7, we c~m also obtain the same result if we 
separate the orbits of the critical points. 

Theorem 2.8. Suppose there is an N<oo such that all (CN which satisfy 
G(~, (k)>N for some k, also satisfy 

Z i : je~  a(( ,  ~j) < N. 

Then the corona theorem has solutions on ~ with bounds depending only on (n, 6, ...) 
and N. 

We remark that if the above condition holds for some No, it holds for all 
N > N  o. 

Proof. Let N = { ~ N :  ~ 1  G(( ,~j)>3N}.  By the maximum principle, each 
component of ~ must contain a critical point. If  ~EN and G((, ~k)>N for some 
N, then G(~, ~k)>2N. Thus N is the disjoint union of regions which contain exactly 
one critical point. We can easily use functions which are constant on components 
of ~-1(~)  to solve the corona problem at the critical points. The theorem now fol- 
lows from Lemma 2.6. 

We remark that the components of ~ need not be simply connected. If  the 
critical points of G on q/ are interpolating, then the hypotheses of both Theorems 
2.7 and 2.8 are satisfied. We proved Theorem 2.5 first because it is simpler. It relies 
only on, Say, T. Wolff's proof (see e.g. [23]) of the corona theorem, and not the 
deep construction of Carleson. Moreover, combined with the results in Section 4, 
the hypotheses of Theorem 2.5 are easier to verify in practice. 

The condition in Theorem 2.8 actually arises in a natural way. Suppose {Wk}C~ 
is an interpolating sequence for H = (N). We may find fk~ H= (~) such that fk (W j)= 0 
if j # k ,  fk(Wk)=l , and I l fk lL~M for all k. Thus 

{ )} < 1 -  [fk(~){ ~ Ifk(Wk)--fk(OI < 2Mexp {--G((, wk)}. 1 - M e x p  --Z~j:jek G((, wj = = 

Taking logarithms we obtain: 

(2.7) There is an N < ~  such that G(~, Wk)>N implies ~j: jek  G(~, wj)<N. 

Theorem 2.9. Suppose condition (2.7) holds for the critical points of G with con- 
stant N = N  o. Then a sequence {flj} in ~ is interpolating for H ~ (~) if and only i f  
condition (2.7) holds for {flj} with some constant N=N~. Moreover, the interpola- 
tion constant for {flj} can be taken to depend only on No and N1. 

We may thus reword Theorem 2.8 to say that if the critical points for Green's 
function form an interpolating sequence for H=(N)  then the corona theorem is 
true on ~ .  It is easy to see from this theorem that if condition (2.7) holds for the 
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critical points of G and if a sequence { f l j}c~  lifts to an interpolating sequence 
on q / f o r  H = (q/), then {flj} is an interpolating sequence for H = (~). However, the 
conditions in Lemma 2.4 and Theorem 2.9 are indeed different, for it is possible 
to select the disks Aj and points flj in the example following Lemma 2.4 so that 
the critical points of G satisfy (2.7). It is also possible for the critical points to sat- 
isfy SUpk2j:j#k G(~j,(k)~C:c~ yet condition (2.7) fails for (k. Finally, it is easy 
to give examples of of Riemann surfaces ~ and sequences {flj} satisfying condition 
(2.7) yet {flj} is not interpolating for H 0~ (~). Indeed, it is sufficient to take any two 
points in a Riemann surface which has a Green's function and for which H ~ (~t) 
consists only of constants. 

Proof of Theorem 2.9. We have already shown the necessity of condition (2.7) 
for {flj} to be interpolating. To prove sufficiency, it is enough to interpolate all 
sequences of O's and l's, with a uniform bound. Let ~ he a subset of {flj} and let 
D1 and D~ be the Blaschke products with IDl(z)] =exp {-~,a~e~ G(n(z), fix)} and 
]D2(z)]=exp {--~,pjr G(n(z), flj)}. If  V is the set of all ( such that G(~, flj)<N1, 
for all j ,  then on the boundary of V, ~ = 1  G((,fl.i)~2N~, by condition (2.7). 
By the maximum principle IDl(z)D~(z)] >=e -~1vl for zcV. By condition (2.7) again, 
we obtain max (]D~(z)], ID2(z)])~=e-2N~ for all z~q/. If  C is the Blaschke product 
vanishing at the equivalents of  the critical points of G, write C =  C~ C~ where the 
zeros of the Blaschke product C2 consist of all zeros of C where ]D~(z)]~=e -2N~'. 
We claim {DICx, D2C2} form corona data on q/. Fix N>No to be determined 
later. Suppose first that z satisfies G(rc(z), (k)>N for some k. Note that for p =  1, 2, 
Schwarz's lemma yields 

[Dp(z)l =~ IDp(zc-~(~k))I-IDp(z)-Dp(rc-~(~k))I >= iDp(zt--~((k))I--2e--N. 

If  [D,(n-l(~k))[=>e - 'N', then by condition (2.7) and this latter inequality, 
ID,(z)C,(z)l>=(e-'~Vl-2e-N)e -No. If  [D,(n- ' ( r  - 'N '  then again we conclude 
]D~(z)C~(z)l>=(e-*Nx--2e-N)e -No. Finally, if z satisfies G(~(z),r for all k, 
then by condition (2.7) and the maximum principle, [Cj(z)l>=]C(z)]>=e -zNo for 
j =  1, 2. That proves the claim if N is chosen sufficiently large. By Carleson's theo- 
rem, we may find g~, g2CH~(ql) such that 

D1Clgl+D2Cg. g 2 = 1 

with Ilgj]l~ bounded by a constant depending only on N o and N~. Applying the 
expectation operator we obtain E(DzClg~)+E(D~C~g~)=I. Since DyCjgi is 
invariant on the orbits of the critical points, E(DiCjgj)~H r by Lemma 2.1, and 
IIE(DyC.igj)II~<=I] g/I ~. Since the series for E converges absolutely, and since JDjl 
is F-invariant for j = l ,  2, E(DiCjgi ) vanishes at the zeros of Dj.  Thus 
E(D~C~g~)orc -~ is the desired interpolating function. 
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where a~, j (z) = 

for fE H =  (q/) 

We remark here that this method of proof can be used to establish Theorem 
2.8 without the use of Carleson's construction. If  maxl_~j~_, [fj(0[=>6 for all 
~E~, define sets ~1 . . . . .  ~ ,  as follows. For each (9, let k be the first integer such 
that Ifk(~p)l~6. Then let ~pEcbj for all j # k  and ~pr Let Cj be the Blaschke 
product with - l o g  ICAz) I =Z~,c.~ a(~(z), L). Then as above {Cj~} form corona 
data. The proof is completed as in the above proof. This was actually the first proof  
we discovered, 

We mention one more method of solving the corona problem. The previous 
methods have the drawback that Green's function does not ignore subsets of 0 ~  
which have zero analytic capacity and positive logarithmic capacity. To avoid this 
we can use Ahlfors' function, A, instead. Ahlfors' function for a point ~0E~ is 
defined by 

A~0(~0) = sup {Ref ' ( (o) :  fEH=(~) ,  l]flI~* <= 1}. 

For plane domains with compact complement, one usually studies the Ahtfors' 
function for 0% where f ' ( ~ )  is defined to be lim~_.= z ( f ( z ) - f ( ~ ) ) .  Then A ~ ( ~ )  
is called the analytic capacity of the complement of ~ .  For example, if E is a com- 
pact subset of R and ~ =  C \ E  then 

e x p ( l f e  dt ] 1 
t_--Z-~) - 

A = ( ~ )  = 

exp [ ~ - f =  td_~tz) + I 

See for example [24, p. 30]. Ahlfors [1], [2] has shown that for our "nice" Riemann 
surfaces 

e x  n--1 IAr --- P { - Z ~ = 0 g ( ( ,  (j)} 

for some points ~1, "" ,  ~n--l~ ~ .  Thus if n(0)=~0 and ,-1 {zj, o}j=o are equivalents of 
{~j}j=o on ~o,  we may write 

A~o(Zr(z)) = IIjn-2 1-[rr t~ (0)1 ay j (z) 
a m ( 0 )  ' 

7-1(zL~ . If 7, zEF, then (~r~.joz)z" _ a~o,,y. So we define, 
1--7-](Zj, o)Z a~,,jo'C (7~,or 

n--1 ? , j  E l ( f )  = ~ r ~ = 0  (f~ 
(A~0ozt)' 

We_let {wj, o}~(_"~ -1) be equivalents of the critical points of A~0 (i.e. where A~0=0) 
on ~o and let Wj, k=Tk(Wj, o) , where {7k} is an enumeration of F. Then all of the 
results of this section hold for the critical points of Ahlfors' function {Wj, k} as well 
as for the critical points of G. One can easily construct Riemann surfaces where 



294 Peter W. Jones and Donald E. Marshall 

~_,k G(~k, ~')=~ SO that the methods using the critical points of G will not work, 
yet this method using Ahlfors' function gives solutions to the corona problem. If  
N = C \ E  where E=U~=I  [al, bi], ai<=bS=ai+l, then the zeros {Wk}~" of A~(z) 
occur exactly when 

1 1 
Z I L 1  a------; z -  = 0. 

See Walsh [44, p. 139] for one method of locating these zeros. To apply Theorem 2.7, 
for example, it suffices to show 

~2"= 1 G (x, Wk) <= m < oo 

when x E R \ E ,  to obtain corona solutions with a bound depending only on M. 
See Widom [45] for a construction of Green's function for these surfaces and see 
Rubel and Ryff [37] for an explicit construction of their Fuchsian groups. 

We remark that we chose the Ahlfors function here because of its natural 
association with H=(.~) ,  but we could have chosen any function F~H~~ with 

- l o g  IV(z)l = Z~=lG(n(z ) ,  c~j), ocjE~. 

Carleson proved the corona theorem for domains N = C \ E  where E is homo- 
geneous (see Section 3 for a definition), by producing projection operators 

P: H=(~ such that P ( 1 ) = I ,  P(fg)=fP(g)  if fCH r ,  and []P(f)H== < 
CIIfl]=. We prove in Section 3 that such surfaces satisfy the hypotheses of Theo- 
rem 2.5. The next theorem constructs these projection operators in the more general 
context of  Theorem 2.7. 

Theorem 2.10. Suppose that the hypotheses of Theorem 2.7 hold. Then there exists 
a (linear) projection P of H ~ (~) onto H r such that 

(i) P ( 1 ) =  1 

(ii) P ( f g ) = f P ( g )  i f  fEHF 

(iii) 1]P(J')]Ioo ~= Kllf[l= 

where K depends only on the constant N appearing in the hypotheses of Theorem 2.7. 

Proof As before, let C be the Blaschke product vanishing at the critical points 
on q/. By hypothesis, we may find a subset W= {Win,0} of {Z,,,j} such that wp, o 
and Wq, o are not F-equivalent if pCq, and such that all z,,j in the same component 
of {z: [C(z)l<e -u} as some Wm, oCW also belong to W. So W consists of all the 
critical points on one sheet of N. Let Win, k----Yk (W~, 0) where {Yk} is an enumeration 
of F. Let A={f6H~(qg):  f(w,,,k)=f(Wl, k) for all k} be the algebra of  functions 
which are constant on the critical points of  each sheet. By Carleson's theorem [12, 
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p. 557] {Wx,k} is an interpolating sequence for A with interpolating constant K, 
depending only on N. By a theorem of Varopolous (see Garnett [25, p, 294]), there are 
functions FkCA such that Fk(Wm, j)=O if jCk ,  Fk(Wm, k)=l, and ~ = 1  [Fk(z)l <= 
K 2 for all zEq/. For fEH~(~ define 

T( f )  = f +  Z , k  cr (fo ]~;1 _ f )  Fk. 

Then T satisfies (i), (ii), and (iii) (with a different constant K) and is invariant on 
the orbits of the critical points. By Lemma 2.1, P - - E T  does the job. 

We conclude this section with some remarks on the applicability of our results. 
As mentioned at the beginning of this section, it is easy to replace the hypothesis 
that N is bounded by finitely many analytic curves with the hypothesis that ~ is 
regular. All of the hypotheses of the theorems imply that 2k~__1G((k, ~')<oo. 
Unfortunately, this sum is not very stable. Removing countably many points from 

does not affect the corona theorem, nor Green's function. However, if these 
points happen to be at the critical points, there would be no critical points left in 
the new surface! For regular Riemann surfaces it is shown in [46] that 

(2.8) ~ = 1  G({k, ~') = f ~  fl(Ode 

where fl(e) is the first Betti number of ~ ,={~CN:  G(~,~')>e}. For an arbitrary 
Riemann surface, the right-hand side of (2.8) is more tractable. In fact, if {~,}~-.o 
is any exhaustion of a~, the corresponding integrals are continuous as e 40.  Surfaces 
for which f o / 3 ( 0  d e < ~  have been extensively treated, e.g. by Widom [45], [46], 
[47] and Pommerenke [34], [35] and are called of "Widom-type". It is shown in [32] 
that Cole's example of a surface where the corona theorem fails can be modified 
to be of Widom-type, and it is possible to show that if the corona theorem fails for 
a plane domain, it must fail for a plane domain of Widom-type by modifying the 
construction in Gamelin [21]. One can replace all our sums of the form ~ G ( {  k, 0 
by integrals of the form f o  fl~(e) de. Indeed, it is possible to show using results 
in [46] and [35] that if a projection operator of the form constructed in Theorem 
2.10 exists for a Riemann surface then the surface must be of Widom-type. This 
approach, however, becomes transparent after observing the following lemma. 

Lemma 2.11. if" ~ is a Riemann surface of Widom-type, then there is a Riemann 
surface 5eDN such that 5 P \ N  is countable and 5" is regular. 

Proof. Let N , = { ~ N :  G((, ( ')>e}. Since ~ is Widom-type, fl(e)<~. In 
other words, N~ is of finite topological type. By a theorem of Stout [41], N, is con- 
formally equivalent to a finite bordered Riemann surface ~ with finitely many 
isolated points removed. We may take the boundary of S:~ to consist of finitely many 
analytic curves in the double of ~ (see [4], p. 27 for a definition). It is easy to see 
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then that by adding countably many points to ~ we obtain a Riemann surface 5 ~ 
with the same Green's function G such that {~: G(ff,~')>e} is conformally equi- 
valent to a finite bordered Riemann surface for each e>0. If  there exists a sequence 
z, tending to the ideal boundary of 6 a such that G(z,, ~')>e0>0, then for el<e0, 
z, belongs to the regular Riemann surface {if: G(~, if')>el} and tends to its bound- 
ary. This is a contradiction. 

It would, of course, be most natural to replace the assumption that ~ is regular 
by the assumption that N is maximal in the sense that it is not contained in a large 
Riemann surface ~9 ~ with H ' ( ~ ) =  {f]~: fEH'(Se)} .  Unfortunately, one can build 
such a surface N such that ~ is infinitely connected, H=(~..)r and yet 
there is a point ff0E.~ such that grad G(ff, ~o) is nonzero for all [EN. To build 
such a surface, let N1 be the annulus {if: 1/3< I~]<1} and suppose by induction 
that surfaces ~2 . . . . .  ~, ,  have been constructed, r162 m, and that ~m 
is N minus a finite number of closed disks. Let Gm be Green's function for Nz and 
let A~' . . . . .  A~v be small closed disks which cover {~ENm: grad Gm(~, 1/2)=0}. Now 

ix, tn set Nm+~=YSm\t,_)~=~ Ay and take N to be the interior of .21, m Nm. Then if the 
disks {A~'} are chosen small enough at each stage, ~ will be connected and 
infinitely connected, N will be maximal in the required sense, and grad G(~, 1/2) 
will never vanish on N. (This surface ~ necessarily has the property that it is n o t  

regular in the sense of potential theory.) One could combine the above argument 
with the argument in [32] to produce such a Riemann surface which has the 
additional property that the corona theorem fails there. We leave the proofs of 
these assertions as exercises for the reader. 

3. H a r m o n i c  measure  o a  h o m o g e n e o u s  sets  

Recall that a set E c R  is homogeneous if there is an e>0  such that 

(3.1) [(x-r, x+r)nEI >= er for all r > 0 and all xEE. 

The emphasis in this section will be on Riemann surfaces R of the form C',,.E where 
E is homogeneous. We shall first give a proof of Carleson's corona theorem for 
these surfaces. Without loss of generality, we assume 0E~ and that the universal 
covering map n satisfies n(0)=0.  For technical ease we assume that 0&.=E con- 
sists of a finite number of closed intervals (some of which will be half-lines). This 
restriction can be easily removed by a normal families argument. Let {L~} denote 
the open intervals in ~ n R  and let 0EL0. Denote a general complex number 

by (=~+i~/ ,  ~,~/ER. Then by symmetry, - ~ - G ( ( , 0 ) = 0  whenever 0 ~ ( E R n R .  

Since G((, 0)-*0 as (---0R, G((, 0) has a local maximum (with respect to the 
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variable ~) in each interval Lj, j r  Thus, G((, 0) has at least one critical point 
in each L j, j#O. Combining this observation with (2.1) we obtain 

Lemma 3.1. The function G((, O) has exactly one critical point in each Lj,  
j#O, and these are all the eritical points. 

(This result is due to Walsh, 1933. See his book [44], Corollary 3, p. 249.) 
Carleson's theorem will therefore follow from Theorem 2.5 as soon as we 

verify 

Lemma 3.2. Suppose we arbitrarily pick exactly one point (j from each slit Lj.  
Then there are constants ~ and N which depend only on the value of ~ in (3. I) such 
that (2.5) and (2.6) hold. 

PrJof of  (2.5). This is recorded in Carleson's paper [15] in his estimates (14) 
and (15), p. 355. We recall the proof in a sketched form. Denote by dj the quantity 
dist (~j, O~) (Euclidean distance), and denote by Nj the disk {(: I ( - ( j [N I/2 dj}c~. 
Then since the logarithmic capacity of 0 N n  {xER: Ix-~jI<=2dj} is comparable to 
the capacity of a Euclidean disk of radius dj (this follows immediately from condi- 
tion (3.1)), G((,(j)<-e=e(e) whenever (E2Nj. Condition (2.5) now follows 
because @ j : ~  and @j is obviously simply connected. (See also the discussion in 
the paragraph which follows the proof of Lemma 2.4.) 

Proof of(2.6).  For a set Borel E~ON, let w((,E) denote the (positive) 
bounded harmonic function on N with boundary values 1 a.e. dx on E and 0 a.e. 
dx on O ~ \ E .  (In other words, w(~, E) is the harmonic measure of E at ~.) Sup- 
pose we can find sets E j : O ~  such that 

(3.2) Ej c Ij =- {xCR: Ix-~jl  ~- 2dj} 
and 

IEjl >- ~/2 dj, 
and 

(3.3) IIZJ x J , :  --< 

Letf j (O be the function defined on the upper half-plane {~=~+iq: r/>0} which 
is bounded and harmonic there and has nontangential boundary values on R equal 
to XE~(X). In other words, using the classical formula for the Poisson kernel, we have 

(3.4) ~ ( ( )  = 1 f-~oo --~ _ ( x _ O ~  +,l ~ z ,~(x )dx .  

Then by the above formula and the assumption (3.2) we see that fj(~j+id~)>= 
(5zrdj)-aIEj[>=(lOrr)-~e. By the maximum principle, w(~j+id~, Ej)>-fj(fj+idj), so 
by Harnack's inequality on the strip {z=x+iy:  Ix-~j[<dj}, w(~, Ej)>-Ae for all 
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(C~j ,  where A is a universal constant independent of N. Recall from the last para- 
graph that G((,(j)<=c~(e) for (C0~j.  By the maximum principle, G( ( , ( j )=  < 
~(e)(A~)-~w((, Ej) for all ( r  Fix now one point (j and let d%(x) denote the 
element of harmonic measure with respect to (j .  Then by our last inequality and 
assumption (3.3), 

.~k G((k, (j) = ~,k G((j,  (k) <~ (~(~)(A~) -1  Z k  W ( ( j ,  Ek) 
k ~ j  k~ j  k # j  

= fz  (x) dwAx) <= c'( )IIZ zdIL- - <  
k#j 

because dwj is a probability measure. The first inequality above is valid because 
( i ~ k  when k# j .  

To finish the proof of the lemma we need now only produce the sets Ej which 
satisfy (3.2) and (3.3). Let /~j--=-Ijn0~. Then by the hypothesis (3.1) on ~ ,  
[~j[>-edj. Let bj(x)= Z k  X~k(x)xis(x). Since the intervals Jk={XCR: 

dk~d J 
are pairwise disjoint, we have 

f bj (x) dx = 2 k  []~k r~ Ij] <- 2 k  {[Ek]: [(k-- (j[ =< 4dj, d k <<- dj} 
dk~d j 

<-- 2 ~ k  {IJg[ : ](k--(~[ <= 4dj, d k <- dj} <- 21(x: [x - ( j [  <= 5dj}[ <= 20dj. 

>40~ 
Let K j =  x: bj(x)=--~- / . By Tchebychev's inequality, IKjl<-_e/2dj, so that if we 

define E j = E j \ K j ,  Ej=Ij  and IEjI=IE~I-IKjI>-~dj-~/2dj, i.e. condition (3.2) 
40 

holds. To see that condition (3.3) holds, suppose that ~Zrj(x)>-N>= - .  By 

relabeling we may assume that xCE~ .. . .  , Eu where d~<=d2<=...<=dN. Then by the 
definition of the function bu it must be that bN(x)>=N. This is a contradiction, for 
then x would be in K s and hence x would not be in E N. This completes the proof 
of (3.3), and thus the proof of Lemma 3.2 and Carleson's theorem. 

We remark here that our proof did not require that there was only one (j in 
each Lj.  For example, if ( jCR~E and the intervals {xER: [x-(j[ <=(~ dist ((j, E)} 
are disjoint for some ~>0,  then the same proof applies. This gives the corona 
theorem for some surfaces C \ E  where E is not homogeneous. As in the example 
following Theorem 2.7, if E is homogeneous, we may remove from N = C \ E  
intervals centered in such a sequence (j. The resulting critical points form a union 
of at most two interpolating sequences, and hence the corona theorem holds for 
such surfaces. By making the removed intervals sufficiently small we obtain a surface 
whose complement is not homogeneous. 
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We now turn to a closer study of  harmonic measure in domains ~ satisfying the 
hypothesis (3.1) and answer a question raised by Lennart Carleson. Suppose 0 E ~  
and suppose also that ( -  1, 1) is the largest interval which is both symmetric about 
0 and does not intersect O~t. Let wo(E) denote the harmonic measure of a set Ec0~ t ,  
evaluated at 0. Carleson proved in [15], Lemma 4 that there is an L~(dx) function 
h on ~ such that w0(a)---f, h dx for all measurable a, and such that 

h (x) exp {cl (log + h (x)) 1/~} dx <= C(e). 

Carleson asked in [14] if this could be improved to show that hELP(dx) for some 
p > 1. The answer is given by 

Theorem 3.3. There are p = p ( e ) > l  and C=C(e )<oo  such that IlhllLp~a~)~_C. 
For a positive number 2 and an interval I c R ,  denote by 2I  the interval with 

the same center as I and length 1211 =2111. 

Lemma 3.4. There is a constw~t C(e) < ~o such that for every interval I of the 
form [xo- f ,  Xo+6], where XoEO~ and 0r there exists a positive function 
h(x)=h1(x) with the properties 

(i) ~ = h  on I n  O~ 

(ii) fz\oa dx C(e) fxn ahdx 

(iii) For all finite intervals J c R ,  

1 
f j  ~ dt ~_ C(e)~(x) IJI 

for a.e. xE J. 

Once we have established Lemma 3.4, Theorem 3.3 will follow. Indeed, con- 
dition (iii) says that ~ belongs to the Muckenhoupt class dx and hence (see e.g. [25]) 
satisfies a reverse H61der inequality: 

j;l+, dx) - tli f ,   dx, 

where f l=f l (e )>0  and C=C(e) .  By conditions (i) and (ii) we conclude 

(Lnaahl+,~dxltl(t+'~)<-Clll-Pl,X+P)Lnoahdx. 

It is an easy exercise to cover ~ by a collection of intervals {Ij} such that each Ij 
satisfies the hypotheses of Lemma 3.4, [Ij]->_2/3 for all A and Z;~j~_2. Then by 
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our last inequality, 

( f  ~ hl+~ dx)ll~ <= z j  ( f  l, no hl+e dx)l'(l+P' 

<~ C(2/3) -a/O+a) z j  f ,~no ~ h dx <= 2C(2/3) -al(*+e) f h dx = 2C(2/3) -al(*+a). 

It should be noted here that when condition (3.1) holds it is never the case that 
h itself is the restriction to a ~  of an At weight. This follows from the fact that no 
A1 weight lies in L 1 (dx). Thus h can be the restriction of an A1 weight only in a local 
sense. It is an exercise to show that for general domains of the form ~ = C \ E ,  
E c R ,  one can have dwo=hdx, hCLl(dx), ( -1 ,  1 ) c~ ,  ICE and hlEntl,~j is not 
the restriction of any Ao~ weight (see [25] for a definition) to E n  [1, 2]. The reader 
should consult the recent paper of Wolff [48] for related extension problems with 
Ap weights. We remark that the following proof is easily modified to give an R" 
version of Lemma 3.4 and hence of Theorem 3.3. 

Our first step is to prove a lemma for general domains ~ c C  of the form 
O~cR,  where we assume nothing further about the structure of O~ except that 
the logarithmic capacity of 09  is positive. Assume that 0 ~ .  Then since the log- 
arithmic capacity of 09  is positive, there is for each [C~ a Borel probability meas- 
ure, dw~, supported on ~ such that when one solves the Dirichlet problem Au=O 
on ~,  u = f  on O~ (except on a set of null logarithmic capacity), f continuous on 
0~, one has u(O=fa~fdw~. For a Borel set Ec~9~ one then defines the har- 
monic measure of E at ~ by 

w(C, :z = fEawr 

It is well-known that, for fixed E, w(~, E, ~)  is harmonic in ~. The main idea for 
the proof of Lemma 3.4 is contained in 

Lemma3.$, Suppose xoER, 5>0 and suppose l=[xo-a ,  Xo+a] satisfies 0~2I 
for some 2>1. Then if F c l n a ~  is a Borel set, 

w(0, F, ~) _-> C ( 2 ) ~  w(0, I n O ~ ,  ~) 

where C(2) is a constant which depends only on 2 and not on Xo, 5, or ~ .  

Proof. We give the proof for the case where 2 = 3; the general case is virtually 
identical. To avoid superfluous technical problems we will also assume that every 
point o f a ~  is regular for the Dirichlet problem. This restriction can easily be removed 
by the experienced reader. Let x~=xo-26, x~=Xo+25, and let 

Aj = {if= {+in:  { = xj, 1,71 <-- a}, j = 1, 2. 
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We claim 

(3.5) 
I / I  

w(~, I n 0 9 ,  9) <- C ~-~ w(~, F, 9) 

~EAi, j = 1,2. 

We will prove this only for j = l ;  the proof for j = 2  is identical. We first note 
that by the Poisson integral formula (3.4) and the argument immediately following 
it (after an application of Harnack's inequality), 

(3.6) 

o n  

Let FI=OQln {~: [r/l=~5}, 

w (~, F, 9 )  ->_ C IFI 
III 

{~: [~-x0[ --< 36, I,I -- ~}. 

let F2=OO~n{~: I~-xll--~}, and define W~(z)= 
w(z, Fj, Qln  9),  j =  1, 2. We will have need of the following inequality: 

(3.7) W~({) _~ 2tV2(~), ~EA~. 

When ~=xl this last estimate is Lemma 7 in Benedicks [I0]. (Benedicks assumes 
in the statement of his result that Q l n N  has a regular boundary; this can, how- 
ever, be easily seen to be superfluous.) We note that the proof Benedicks gives is 
valid without any changes for the general case of ~EA1. By the comparison test- 
(3.6), and (3.7), 

w(~,InON, 9) <- 3W2(~) <-- C w([,F,N) 

for all ~EA 1. Let Q3={~: }~-xo1~26, I,./1_<-6}. Then by the last inequality plus 
(3,6), 

w(f,  z n 0 9 , 9 )  . .  Izl =<  Tp]- w((, F, 9 )  

for all ~EOQ~. The lemma now follows from the maximum principle applied on 
the domain 9 \ Q ~ ,  which by hypothesis contains the point 0. 

Lemma 3.5 will be used several times in the proof of Lemma 3.4. For the sake 
of completeness we first note the following 

Corollary 3.6. I f  E satisfies 

1~ t -1 IEn(x- t ,  x+t)] > 0 
t ~ O  

for all xEE, then dwo:h dx, hEL ~ (dx). 
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Proof. Suppose not. Then there is a compact set K~=E such that IKII=0 
and w0(K1)>0. By taking /(1 a little smaller we may assume there is 5>0 such 
that for all xEK1 and for all 6>0  there is t=t(x, 6) such that t<6 and 
]Ec~(x-t,x+t)l>et. Now write Wo=Wx+W2 where Wl=W0]K1 and w2=w0lE\rl 
are the restrictions of wo to/(1 (resp. E\Kx). Let ~>0  be a number to be fixed 
later, and pick a compact set K~cE\K1 such that w2(K~)_->(1-u)w2(E). (So far 
there is nothing to preclude the possibility that w2-0.) Let 6=dist(Kx, K~)>0 
and for each x~K1 pick t=t(x)>O such that t<6 and [En(x-t,x+t)]~et.  
Now the Besicovitch covering lemma (see e.g. [39], p. 54) asserts exactly that in 
such a situation there are a finite number of points, say Xx . . . .  , xN, lying in K~ 
such that K1CU;=I(Xj--tj, Xj+tj)=_~;=IIj, where tj=t(xj), and such that 
z~=xZij<-2. Note that by construction, IjnK2=O for all j. From Lemma 3.5 

we obtain w2(ls) = w(lj\Kx) >- C [Isl-1 ii j c~ E Iw (Ij) >--2 eWl(Ij). Now since z~j X5 <- 2 

1 N C C 
we also have w2(Uf l j )>--~[ w2(Ij)>=--~e~ Wl(Ij)>=--~ew~(K~), the penulti- 

mate inequality following from our previous estimate. On the other hand, lj c~ Ks = 0 
for all j and consequently w~(Uf Ij)<--w2(R\K2)<=ew2(R)<-c~. This implies cr > 
C8 

w1(K~). Taking cr small enough gives a contradiction, and therefore Cor- 
4 

ollary 3.6 holds. 

Now let I be an interval in R with 0~3/, let K=IntgN, and let {~j} denote 
the Whitney decomposition of K c (considered as a subset of R) into intervals. Then 
(see Garnett [25], p. 266) dist (Sj, K)=  I~jl. Let {Sj} denote the collection of all 
Whitney intervals Sj such that 0~24~j. We will have need of the following tech- 
nical lemma. 

Lemma 3.7. There are sets Ej=4Sjc~K such that 

8 
IEjl -> ISjl and IIZ  XEjIIL" 

Proof. By condition (3.1) and the form of the Whitney decomposition, 
14SjnKI>-~IS~I. The proof now follows mutatis mutandis the argument for the 
proof of (3.2) and (3.3). 

We are now ready to produce an extension of h from K to all of R. Define 

~(x)=h(x) for xEK, ~(x)=l~-~..ifejhdt for x~Sj, and ~(x)=l-~ f rhd t  for 
v-- .dl  I " 1  

 r &). 
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Proof of Lemma 3.4. Property (i) follows by definition. To see that property 
(ii) holds, let F = R \ ( K u ( U j  Sj)) and note that 

Z 1 :,., :. 

by condition (3.1) and Lemma 3.7. 
The proof of Lemma 3.4 (iii) will be split into three cases. 

Case 1. J intersects at most two members of the collection {Sj}w {F}. If  J 
is contained in one member of this collection, the inequality is trivial, so suppose 
J meets two members. We show that the values of h on these two members are 
comparable. If  J c  Sj u Sk with Sj and Sk adjacent then 

1 2 4 
IEjl elSjl s,o Khdt < - ~  hdt. 

Iakl lsknx 

Since 0r  by Lemma 3.5 applied to F=Ek we obtain 

1 1 
]E~[ f e, h dt <- C(e) - -~  f e k h dt. 

Thus max {h(x): x~SjWSk}<--C(e)min {~(x): xCSjwSk}. If  J c S j w F  then by 
Lemma 3.5, since 0r 

1 f._ hd, <= C__ff___f hdt. 
I11 ~ IEjI ~ 

Moreover, since Sj abuts F, ISj[_->ClII and so 

1 c ( e )  c ( e )  
IE, lfe, hdt<- 41S, I f~chdt~- tll f~chat. 

Again we conclude 

max {/i(x): xC Sj u F} ~_ C(e) min {]i(x): x~ Sjw F}. 

Case 2. J intersects F and contains some Sj. Then IJI>-CIII and so 

1 1 

[Jc~F I 1 1 h d t + 2 , f , ,   dt) - IJl 111 f r  hdt+--C-~(fr 

~ C f h c l t + ~  1511/" hdt~C(e) l" halt, 
- I / [ a r  lgjI a ~ .  - I11 a ~  
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where the last inequality follows from Lemma 3.7. If  xCF then the above inequal- 
1 

ities show l J[ fs~dt<-C(8)h(x)" If  xCSj, then since 0r 

c r 1 ~dt <- h dt <- hd t=  C'(~)[i(x) 
IJI Ill a r  [gjl ,IEj 

by Lemma 3.5. Finally, if xCK let L be an interval of the form ( x -6 ,  x+6) with 
0r By Lemma 3.5 and condition (3.1), 

ij I 111 hdt <= iZnO~t I no~ ILl na~ 

By Lebesgue's differentiation theorem, as 3-~0 the right-hand side approaches 
C'(e)h(x) for a.e. x~OYlc~K. For such x, ~(x)=h(x). 

Case 3. J does not intersect F and J contains some Sj. In this case 

~_ f j n rhd t+CZj : s j c~  J ISjl f hdt<= fsnrhdt+C(,)2j:e j=ss  fe,  hdt. [Ej[ J E, 

By Lemma 3.7 we obtain 

L e,<c()L he, 
= ~ Jno,~ 

If  0C3(8J) then apply case 2 to 8J. I f  0r and if x~S jcJ ,  then E~cSJ so 
by Lemma 3.5 

1 c(~) f c'(5) f 
f s  ~dt<= 18JI a~, hdt <- IEjI aE, hdt = C'(e)[z(x). Idl 

If  0r and xCKc~J, as in case 2 apply Lemma 3.5 to intervals L = ( x - 6 ,  x+6) 
and let 6 ~0.  This completes the proof of Lemma 3.4 (iii) and hence of Theorem 3.3. 

4. Harmonic measure and interpolating sequences 

In this section we show how estimates on harmonic measure can be used to 
determine whether a sequence {~j} of points in ~ has pullback to the unit disk, 
{n-l(~j)}, which is an interpolating sequence. The main result of this section is 
Theorem 4.1, which provides a necessary and sufficient condition for the interpo- 
lating conditions (2.5) and (2.6) to hold. The most important conclusion of Theo- 
rem 4.1 (the implication (4.2)=.(4.3)) is not new. It is merely a rewording of Theo- 
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rems 2 and 4.1 of [26] in the setting of Riemann surfaces. Since many words do 
have to be changed, we have included a detailed proof. The converse implication 
((4.4)=,(4.5)) is, as far as we know, not recorded in the literature. Our second result, 
Theorem 4.5, is a minor variant of Theorem 4.1. The only point here is that the 
hypotheses of Theorem 4.5 are slightly easier to verify in practice. The section 
ends by showing how Theorem 4.5 can be used to give another short proof of Car- 
leson's theorem. 

Theorem 4.1. Suppose {~j} is a sequence of points in ~ and suppose there is 
No >0 such that 

(4.1) the sets {~: G(~,(j)>No} are simply connected and disjoint from each 
other. 

Let NI > N o, let 

and let 
~j  = {~: G(~, ~j) > N1}, 

= 

k 
k # j  

/f 
(4.2) inf w(~j, 0~, S~j) = a > O, 

J 

then 

(4.3) sup Z k j  G((k, ~j) <- C(a, No, N1) < oo. 

Conversely, if (4.1) holds and for some index j o, 

( 4 . 4 )  •k G (~k, [J0) = A < 0% 
k#Jo 

then 

0.5) w(~jo, 0 ~ , ~ 0  ) --> C(A, N 0, N1) > 0. 

Proof. We first concentrate on the implication (4.2)=>(4.3). By the maximum 
principle, hypothesis (4.2) remains true if  {(j} is replaced by a finite subsequence, 
so it is enough to prove (4.3) for a finite sequence {~j}. For such a finite sequence 
{~j} we now claim that it is sufficient to treat the case where N is a finite bordered 
surface all of whose boundary components are analytic curves in the double of N. 
To see this, let {~,} be a sequence of such surfaces which exhaust N, and denote 
by G, Green's function for A n. Then if ~, ~'EN are fixed, 

and for each ~j, 

lim G.(ff, ~') = G(~, ~') 
n 

lim w (~j, 0 ~ . ,  ~ )  = w (if j ,  ON, ~) .  
n 
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Fix M > 0  to be determined later, set 

a~ = g:  6(~, ~j) > N~+M},  

and consider the harmonic measure 

Z,(0 = w(~, o~, ~ \  U A). 
k 

k# j  

Since {~i} has been assumed to be finite, and since the boundary of each A/is an 
analytic compact curve, Green's theorem applies to ~ \ U k  A k to yield 

k # j  

(4.6) fj((j) --1._}._ f OG([, [j) ds(O = ere a~ fJ(O On 

1 ,., ~ (0  
- Z~,~j ~ f,.,~ c (q, ~j) -b-h--. as (0, 

where the normal derivatives are taken in the interior direction on ~\Uk Ak. 
k # j  

We note that the first integral above is equal to 1; this is because f j ( 0 - 1  on 9~. 
We also note that if we map {~: G(~,~k)>N0} conformally onto the unit disk 

{z~C: [z[<l}, then gk maps onto {z: log l-[;->N1-Nol={z: [z[<=exp{(No-NO}} 
Izl J 

Since by assumption G(~,~j) is harmonic on Nk when kc j ,  and since A k c N  k, 
Harnack's inequality shows there is C=  C(N1-No) such that 

a(~, ~j) < 
(4.7) C-I ~- G({k, {j)" = C, for all ~'EAk, k # j. 

Combining (4.6) and (4.7) we obtain 

f~ afj ,is <_- cO-fA~9) <- c, 2'L, jc(~'~'J) ,,,on 2,~ 

because fj(~j)_~0 and 0 f J ~ 0  on 0A k, k#j.  The implication (4.2)=~(4.3) of the 
0 n -  

lemma will therefore be proved as soon as we establish the flux inequality 

(4.8) f o Ofi ds > C(a' N~ NO > O' k c j. 

To prove (4.8) we introduce the functions 

uk, j(O = w(~, 0a ,  ~ \  U A,) 
r 

{.#k, j 



Critical points of Green's function, harmonic measure, and the corona problem 307 

and 
Vk(~) -----. W(~, OAk, ~l~Ak) ---- (N1.-I-M)-LG(~, ~k). 

By the maximum principle, 

fAO ~= u~,AO-v~(O, ~ U A,, 
l 

whenever kr By (4.2) and the maximum principle, Uk, s(~k)~=a, SO by Harnack's 
inequality (see the argument preceding (4.7)), 

uk, j(~) ~- A, r 

where A=A(a, No, Na). On the other hand, if M=M(a, No, N1) is large enough, 
inspection of the definition of vk shows that 

Hence we have 

(4.9) f~(~) ~ A/Z, ~EU O~, 
k 

if M is large enough. 
Now (4.9) implies (4.8). To see this, let f2 k 

{{: NI<G({,{,,)<NI+M} and let 
be the "annulus" ~ k ~ / I k  ~-~ 

1 
Wk(z) = "~(NI + M-G(~, (k)) = W((, O~k, Ok). 

By (4.9), 

A 
fj (0 -~ T wk(0, (cok, k ~ j. 

Fix kr Then f~(0=wk(()=0,  if (60Ak, and consequently Oofsn ~_ Ai2 Owk 
On 

on OAk. An application of Green's formula yields 

Therefore (4.2) implies (4.3). 
We now turn to the proof of the implication (4.4)=~(4.5). It is possible to give 

a proof of this which generalizes to higher dimensional settings. However, we know 
of no such proof which is of reasonable length for a paper such as this. We have 
therefore opted for giving a much shorter proof based on the theory of conformal 
mappings. It should be pointed out that if A/No< 1 the proof is very easy. Indeed, 
in that case we have 

w(r U 0~k ,~ )~  1 - ~  --~-Z~e~G(~'{k) fora11 ~E~ 
k 

k # j  
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because 

ciple 

and consequently, 

w ((j, 0R, S~j) = 1 - w (~i, U 0~k, 5~i) --> 1 -- A/No. 
k 

k#] 

Unfortunately, this proof does not seem to work when A / N  o >= 1. 

Let {Zm}= {n-l((k)} be the pullback to q/, under the covering map n, of the 
sequence {~k}. Let robe such that 

=  Jo. 

Our next lemma will be later used to show that it is sufficient to treat the case where 
~ = q / .  

1 
Lemma 4.2. Z ~  log < C(A,  No). 

z m # O  - ~  = 

Proof. Since {(: G((, ~jo)>No} is simply connected, Lemma 2.4 when applied 
to the singleton {(j0 } yields 

~ {1ogT~ml : ZmE U ,(0)} <-- C(No). 
TEE 
~#id 

(Here F is the usual Fuchsian group.) Now let S={zm: zmeUr~rT(O)}. Then 

1 1 
Z, , ,~s  og-T~- = Z~.jo. G((k, ~]o) = A, 

and the lemma follows. 
Let {Din} be an enumeration of the simply connected components of Uj  n -~ (~j), 

i.e. {Din} is the pullback to q / o f  all the "disks" ~j .  We label the D m so that 0ED0 
and zmED m. Consequently, z, ,~Dm, if m x # m  2. We need only show that 

(4.10) w(0, T, q / \ U  Dm) >- C(A, No, NI) > 0 
m 

m#0 

w(~io, 0R, @o ) = 1 - w(~jo, Uk 0Nk, 5] o) and by the maximum prin- 
k # J  o 

U 0~@k, ~Ju) = W(0, kA {ODin: z m # ~](0), ~ r } ,  ~ \ u  {Din: Zm ~ 7(0), ~Er}) 
k 

k # J  o 

~--- W(0, U ODin, ~ U Dm)" 
m m 

m#O m#O 

W)= Z--  W Recall that the pseudo-hyperbolic metric is defined on og by 0(z, 1 - z ~  " 

Lemma 4.3. There is a constant C=C(No ,  N1)<I such that 

(4.11) D m c {z: 0(z, z~) -< C}. 
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Proof. The lemma follows from standard reasoning and the assumptions which 
were made: The regions {~: G(~,~k)>N0} are simply connected and 9 k =  
{~: G(~, ~k)>N1}. A detailed proof is left to the reader. 

Our strategy is now to construct a chord-arc curve F such that all sets D,,, 
m r  are in the unbounded component o f f  c, and such that FreT has large Lebesgue 
measure. Recall that a closed Jordan curve F is said to satisfy the chord-arc condi- 
tion of Lavrentiev if F is rectifiable and there is a constant K such that 

< -  KIw -w l 

for all wl, w~EF. Here wl, w'-""~ is the shortest subarc of F containing wl and wz 
as endpoints, and ~(7) denotes the arclength of a curve 7. The infimum of the values 
of K for which the above inequality holds is called the chord arc constant of F. We 
denote by V the bounded component of F c. 

Lemma 4.4. There is a chord arc curve F cull such that the following condi- 
tions hold: 

(4.12) {z: Izl < ~} c V where ~ = a(No, N1). 

(4.13) D , , n V =  0, m ~ 0. 

(4.14) I r n T I  --> ~. 

(4.15) The chord arc constant of  F is <=K=K(A, No, N1). 

Let us accept the lemma for a moment and see how it can be used to complete 
the proof of the theorem. Let f :  q/-~V be univalent and satisfy f (0)=0.  The 
properties of f were first studied by Lavrentiev [30]. His work has been extended 
by others (see e.g. Section 4 of [36] or the introduction to [27]) to show that f "  is 
an outer function and ]f 'IEA~ on T with A~ bounds depending only on the chord 
arc constant K. More specifically, the results of the above cited papers contain the 
following theorem: 

Suppose F is a chord arc curve with chord arc constant K and length •(F)=L. 
Suppose further that V is the bounded component o f / - c ,  0EV, and infzc r Izl=r. 
I f  F is univalent on og, F(q/)=V, and F(0)=0,  then for all sets E c F ,  

where the constants C and q depend only on K and L/r. 
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Applying the above result and Lemma 4.4 to the set E = F n T  and the con- 
formal mapping f ,  we see there are constants C=C(K) and t l=tl(K) such that 

W (0, T, ':~'~ U Din) ~ W (0 , /"  ~ T, V) 
m 

r a # 0  

which proves (4.10). 

Proof of Lemma 4.4. Let {~m}={rc-l({(: G(~, (k)>N0})}k with the labeling 
defined so that DmcJ~ m. Then by assumption, .Dm n~m=O whenever ml#m2. 
Using estimate (4.11) it is an easy exercise to construct for each fl > 0  a bi-Lipschitz 
mapping Fm: JDm~JDm such that 

(4.16) Fro(Din) c {z: IZ--,7,ml "~ flg(1--lZm])} , 

(4,17) Fm(z ) = z, zEoqJDm, 

(4.18) C -1 "< I Fm (Z)" F,n (w) l 
= IZ_W I ~ C, z, wEDm, 

where C is a constant depending only on fl, No, Nx, and the constant in (4.11). Let 
f l< 1 be a small constant to be fixed later, construct mappings Fm as above and 
define 

Fm(z), z~.Om, m ~r& 0 

F(z) = z, z E ~ \  ~m J~m" 
m#O 

(4.19) 
and by (4.16) 
( 4 . 2 0 )  

Now let V o = q / \ U m  

F(Dm) ~ Tin. 

T m and let Fo=OV o. Then Vo is a Lipschitz domain and 
m # 0  

hence Fo is a chord arc curve with chord arc constant ~K(fl). By the definition 
of Tin, ITmnT[~3fl(1-[zl) as soon as fl is small enough, and consequently, 

(4.21) [ r o n T l  _-> 2rC--Zm ITmnT[ ~ 2rc- -3 f lZ  m ( 1 -  [Zm] ) => rC 
m # 0  m # 0  

as soon as fl is small enough, the last inequality above following from Lemma 4.2. 
Set V=F-I(Vo) and F=F-I(Fo). Since bi-Lipschitz mappings take chord arc 

For m # 0  let Tm be the closed tent (inverted cone) 

Tm= {zEq/: [arg ( z - ~ m ) - a r g  (Zm)l -<- fl}u {Zm} 

where ~.m=Zm--fl(1 --[Zm[)Zm. Then if fl is small enough, Lemma 4.2 shows 

T,,n {z: Izl = 
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curves to chord arc curves, condition (4:18) shows F is a chord arc curve with 
chord arc constant bounded by K(A, No, Nx). Thus condition (4.15) holds. Since 
F(z)=z, zET, condition (4.14)follows from (4.21). Since F(z)=z, zEDo, condition 
(4.12) follows from (4.19). Finally, condition (4.13) follows from (4.20). This con- 
cludes the proof of Lemma 4.4, and hence the proof of Theorem 4.1 is completed. 

In the proof of Theorem 4.1 it was not really necessary that the ~ were 
topological disks. In practice it is easier to work with continua than with disks. We 
formulate this result as a theorem. 

Theorem 4.5. Suppose {~j} satisfy (4.1) and that ~j is as in the statement of 
Theorem 4.1. Suppose further that for each j there is a continuum ~j c ~j such that 
~j~(~j and c~lc~O~j~. If  

(4.22) infw((j, 0~, ~ t \  U Cgk) = a > 0 
s k 

k~j 
then 
(4.23) su.p Zk  G ((k, (j) <- C(a, No, N~). 

J k ~ j  

Proof. Let N,>=N1 be a finite number to be fixed later, let g j =  {(: G((, ~j) >N2}, 
and let d ) j=N\Uk  Nj. By Theorem 4.1 it is sufficient to show that if N2 is large 

kCj 
enough, then 
(4.24) inf w (~j, 0~, Oj) >= a/2. 

J 

To this end we first map Nj conformally onto the unit disk q / c  C so that ~ maps 
to the origin. With only slight abuse of notation we can then identify Nj with q/. 
We then have for ff~Nj, 

1 
G(~, ~j) = N x + l o g '  I~1 " 

l - a  
Let fl=l-a/-----~" By Beurling's solution of the generalized Carleman--Milloux 

problem (see e.g. Ahlfors [3], Theorem 3.6) there is r=r ( f l )>0  such that 

(4.25) w((, cgj, ~j\cg~) _> fl 

1 
whenever I~l<-r. Now let N2=Nx+log - - .  Then by (4.25) and by the maximum 

r 
principle, 

k k k 
k~y kCj  k ~ j  

=/~- l (1 -w( f~ ,  O~, ~ \ U  cgk)) <=/~-~(1-a) = l -a /2 .  
k 

k~j 
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The proof  of the theorem is concluded by noticing that (4.24) follows immediately 
f rom the inequality above. 

Theorems 4.1 and 4.5 can be used to solve corona problems. We illustrate this 
by considering planar domains R =  C \ E  of the type discussed in Section 3. For 
such a domain, ~ n R  can be written as a disjoint union of intervals L/.  For each 
j pick an arbitrary point (2~Lj. The only difficulty in Section 3 was to show that 

su.p ~ 'k  G(fk, ~i) ~- C < 0% 
J k~j 

i.e. that (4.23) holds. Let c~j=Lj.  I t  was shown just after Lemma 3.2 that there is 
N0>0  such that (4.1) holds. Thus by Theorem 4.5 it is sufficient to show that (4.22) 
holds. To this end, f i x j and  define I2 i by ( Q j ) C = R \ L j .  By mapping I2j conformally 
onto the unit disk (there is a formula  for the conformal mapping) and invoking the 
hypothesis (3.1) on O~ it is easy to see that 

w ( ( j ,  0 ~ ,  ~ j )  -> a > 0, 

i.e. (4.22) holds. Another way to see that this last inequality holds is to use 
the Poisson integral formula for the upper  half  plane (3.4) to show that  
w(~a+ida, O~,  f2j)=>a'>0, where d j=d i s t (~y ,0~ ) .  The desired result then fol- 
lows f rom Harnack 's  inequality. 

Remark .  We thank Ted Gam~lin for pointing out to us that Lemma 2.11 is 
a result due to M. Hasumi in his paper "Invariant  subspaces on open Riemann 
surfaces, I I" ,  Ann. Inst. Four. (Grenoble) 26 (2) (1976), 273--299. 
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