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1. Introduction

The behaviour at the boundary of solutions of the Dirichlet problem in a set
QcR" is a classical problem in the theory for elliptic boundary value problems.
In [13] and [14] Wiener considered the case of Laplace’s equation. There he gave
a geometrical condition, known as Wiener’s criterion for regular boundary points,
which guarantees that solutions attain the boundary values continuously. The con-
dition was given in terms of a series of capacities, measuring the thickness of the
complement of @, at the point considered. This was generalized to operators with
discontinuous coefficients by Littman, Stampacchia, Weinberger [7], and to quasi- '
linear operators by Maz’ja [9] and Gariepy, Ziemer [3]. See also Hildebrandt,
Widman [4].

The pointwise continuity is also of interest in the regularity theory for solutions
of obstacle problems, that is solutions of variational inequalities where the set of
admissible variations is given by an obstacle function . In [1] and [2] Frehse and
Mosco studied solutions u in a suitable Sobolev space of the variational inequality:
u(@)=y(x) for x€Q and [, VuV(w—u)dx=0 for all v in the same Sobolev
space with o(x)=y (x) for x€Q. With an irregular obstacle function y they looked
at regularity properties at interior points x,€2, and one of their results is that
solutions are continuous at such points provided a condition of Wiener type is true.
Here the condition measures the thickness of certain level sets of Y at x,, the meaning
of which is precisely described in [1].

The object of this paper is to study regularity properties of solutions of a class
of obstacle problems for vector valued (RV-valued, N=1) functions, that is when
we, instead of one inequality, have a system of inequalities. With a closed and con-
vex set Fin R", and a closed set E, Ec , our constraint is of the form (u—y)(x)€ F
for xcE. Note that in the real case N=1, we can for instance choose F=][0, c],
¢=>0, and this gives the one-dimensional constraint ¥ (x)=u(x)=¢(x)+c for x€E.
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It follows from the regularity theory for the system of differential equations
pertaining to our inequality that solutions of our problem are locally Hélder con-
tinnous in Q\E, that is in that part of Q where we have no constraint, see for
instance Hildebrandt and Widman [4). OQur primary concern in this report is the
pointwise continuity at points which belong to the set E. If x€F and if a Wiener
criterion, now measuring the thickness of E at this point, is fulfilled we show that
solutions are continuous at x,. Moreover, in terms of the capacity used in the cri-
terion we give an estimate of the modulus of continuity. In particular if the set E
is “sufficiently thick” at x, this estimate will give Holder continuity at this point.
The study of this type of regularity was one of the topics in my doctoral thesis [6]
presented in April 1983. There the concern was local rather than pointwise regularity
and a result on local Holder continuity was proven. As a last result in this paper
we give an estimate of the modulus of continuity valid locally in Q, which in a special
case gives local Holder continuity.

Finally we mention [5], where Hildebrandt and Widman have made an exten-
sive study, concerning regularity and existence of solutions, of the problem where
the constraint is of the form (u—y)(x)€ F not only for x in E, but for all x in Q.
By introducing the set E we treat a wider class of problems. For instance, the case
when E is an (n—1)-dimensional manifold, the so called thin obstacle problem is
included.

Acknowledgements. I am very grateful to Dr. Bengt Winzell for his careful
reading and for his many suggestions for improvements of the manuscript. I also
want to thank Birgitta Arnsby for her efficient typing of the manuscript.

2. Notations

Let @ be a bounded and open set in the n-dimensional space R”, n=3. Put
B, (xg)={x€R": |x—x,|<r}, T,(x9)=B,(x9)\B,2(x0) and By={¢eR": [{|=M}.
Moreover, let f;vdu stand for the mean value of » over S with respect to the
positive measure g, that is

1
fs vdp = mfsvdu.
Denote by WV?(Q), p=1, the Sobolev space of functions % such that
lweriar = {f,, (nle+ 191 da™® < =,

and by W;*?(Q) the closure of C;°(Q) in the Wh?(Q)-norm. In the notation for a
function space we add the symbol RY to denote the corresponding space of RV-valued
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functions. For instance, W»2(Q, RY) stands for the space of RN-valued functions-

with components in W%2(Q). We use the notations D,= and Vu=

&

(..., D, ...), where 1=a¢=n and 1=i=N. Moreover, we use a summation con-
vention such that

[ 45D, uDy(v—wydx = [ fo—w)dx
means that

iy S e [APD D0 - dx = S, [ £ —u)dx,

where u’, v* and f* are the components of u, v and f, respectively.
To formulate the conditions on E we need a notion of capacity. For any set S
in R¥ define '

CI,Q(S)sinf{fR"n"’dx:n%O and Gyxp =1 on S},

where G, is the Bessel kernel defined as the inverse Fourier transform of G,(&)=
(1+1€P) V2, We will also use the notation I'(r)=r*""Cy,o(T,(xp) N E). Recall that
every v€ W' 2 has a unique representative »(x) defined capacitary almost everywhere,
that is defined pointwise except for a set of capacity zero.

Consequently, when we write »(x)éF for x€E, where v€W2(Q,R¥), we
mean that this relation holds for capacitary almost every x€E. Furthermore, in

the notation
0, (X, v) = sup |p(2)—v(2)]
7,2 € B,(x,

the supremum is taken in the capacitary almost everywhere sense. Finally, dif-
ferent constants appearing in the text will mostly be denoted by the same letter C.

3. Results

We look at solutions u to systems of variational inequalities of the form
of - = —_
) ucK and [Q 4% (x) D,uDy(v—u) dx = [ oSG u, Vi) (o —u) dx

for all »€K.
The set K of admissible variations is a convex set of the form

K = {peWr2(Q, RY): (v—yY)(X)EF for x€E, (v—¥)(x)€EBy
for x€Q and u—@cWP(Q,RY),

where ¢ is a prescribed R¥-valued function, E is a closed set, Ec Q, and Fis a
closed and convex set in R¥ such that 06¢F. The obstacle function ¥ is supposed
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to be of class W21(Q, RY), g>n/2. Moreover, we suppose that the coefficients
A® are in L= (Q) and satisfy the following ellipticity condition. There is a positive
constant A such that

AEE = A8 (x)¢E, 8, forall E€RY and x€Q.
The right hand side f is of the form

f(x3 u, Vu) == azga(x) +f6(xa u, Vu)’

where the functions g, belong to L*(Q, RY), g>n/2. For the function f,=£,(x, u, Vu)
we assume measurability in Q if €K, and the existence of a number ¢=0 and a
function b€L(Q), g=n/2, such that

[folx, u, D)) = alp)P+b for x€Q, pcR™ and ucK.

Observe that if u is a solution of (1) it is readily seen that w=u—1 is a solution of
a problem of the same kind. The new obstacle function here is identically zero so
for the rest of the paper we assume that =0, which means that the constraint
is of the form u(x)€¢F for xc¢E. Now assume that u is a solution of (1) and that
M<2/2a. The results are formulated in three theorems. The two first deal with
the pointwise continuity at points x, which belong to E, and the third deals with
the local regularity in Q. Recall that I'(#)=r>""C,, (T, (xp)) N E).

Theorem 1. a) If O<r=R=1/2 dist (x,, 0Q) then
) O}a(o, ) = C{SE, TR} [ IVultx—xo*~" dx+ CR?,

where R,=2"'R and k is such that 2~*"'R<r=2"*R.
b) If 0<R=P[2=1/2 dist (xy, 0Q) then

aen o — ~CZiLoT®D .
3 fBR(xo) [Vulx~x,*"dx = e {pr(xo) Va2 e —x, 2 dx+CP7},
where P,=2—'P and I is such that 2~'=2 P<R=2-'"'P. The constants y depend

on n and q and the constanis C depend on parameters of the problem.

Theorem 2. a) If for some ¢, 0<g=1/2 dist (x,, 0Q),

@ o (@) ==, 0;=27"g,
u is continuous at x,.

b) If there is a function B, B(m)te when m—oo, such that for every g, 0<
o=dist (x,, 0Q), and for every integer m=0,

) im0 T'(0) = B(m)
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then
@, (%, u) = Ce=cBlosPIN 4 Cpy

for all r, O0<r=P=dist (x,, Q).

Remark 1. Let B(m)=B;m—B, where B, and B, are positive constants. Then
the estimate in Theorem 2b gives ,(xy, #)=C(*®14r"), and thus the solution
u is Holder continuous at x,.

Remark 2. Using the subadditivity for the capacity it is not hard to see that,
instead of I'(¢)=0}""Cy,s(T, (x)) nE), we can have ¢}™" CI,Z(BQi (x))NE) in (4)
and (5) above. Moreover, if we rewrite the condition (4) and (5) in terms of integrals
they look like

’ 0 n —
@) A J2 Coa(B, () E)r=m dr =
and
) J© CLa(B. () N E)r " dr = B/ (g o),

where O0<g’<p and B’ is a new function of the same type as B.

Theorem 3. Let y be an arbitrary point in Q. If the condition in Theorem 2b
holds for all x,CE then there is a constant ¢y, depending only on parameters of the
problem, such that for all r, 0<2r=P=dist (y, 09Q),

f Vul2dx = Crr2e=coBm o Cpn—2+7,
B.(v)

where P[4r<2"=P/2r. The constants C here depend also on the W' 2-norm of u
and on dist (y, 0Q).

The following corollary is a consequence of Theorem 3 and a modified version
of the well-known Morrey’s lemma, ¢f. Morrey [11], Theorem 3.5.2.

Corollary 1. Ler Q' cc Q. Then for all yc Q' and for all r, 0<8r=dist (', 0Q),

o, )=Cf o €O 4 Cr,

P
log—-.

where o(r)= Tog2 o

Remark 3. If B is as in Remark 1 then Corollary 1 gives

= CrY ' CoBy _')’_)
o,(y, u) = Cr¥, where ¥y mm(ZlogZ 5 )

and thus the solution u is locally Holder continuous.
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4. Auxiliary lemmata

Lemma 1. Let u be a solution of (1). If xo€E and O<r=dist (xy, 0Q) then for
capacitary almost every z€B,,4(xo),

— g2 (= 2|y p[2—n
lu(z)—a]2+(A 2aM)fBr/2(xo) [Vul?lx—z]P~"dx
- 2—n 2 —n —l2 ¥
=Cr fT,(xo) |Vul2dx+Cr fTr(xo) |u—al?dx+ Cr?,

where U is a constant vector in FNBy,.

Remark 4. The proof of Lemma 1 also gives that [ (. [Vul*lx—x,|*"dx is
bounded for all r, O<r=dist (xy, Q).

Proof of Lemma 1. Let ncCy°(B,(x,)) satisfy n(x)=1 for |x—x,|=5r/8,
n(x)=0 for |x—x,|=7r/8, Vql=C/r and 0=n=1. Moreover, with O0<p<r/4
let G%x, z), z€ B, 4(x,), be the mollification of the Green function G for the elliptic
operator L= —D;(4*D,), thatis G%(x, z)= fBQ(Z) G(x, y) dy. Here A* are extended
to L=-functions defined in an open ball B, @c B, such that the ellipticity condition
still holds. As a test function introduce

v = u—en?Ge(-, z)(u~i), where &=>0.

It is not hard to see that » is an admissible test vector if ¢ is sufficiently small. If
we insert this function in the variational inequality (1) and exploit the technique
used by Hildebrandt and Widman in [4], pp. 79 and 80, we obtain the estimate in
Lemma 1.

We also need a modified version of a Poincaré inequality of Maz’ja [8]. For a
proof we refer to Meyers [10]. As a matter of fact, Corollary 1, p. 117, in [10] together
with a homothetic transformation yields:

Lemma 2. Let E be a closed set in R* and T,(x,) be such that T,(xg)nE=#0.

Then there is a positive measure v with support in T,(x))nE such that if 7=
fvdv then
iz - n -1 2
/ L [p—3|dx = Cr*{Cy,o(T,(x) N E)} f . [Vo[2dx

for all veW*(T,(x,), R").

Moreover, one is free to choose the support of v up to sets of sufficiently small
capacity.

Remark. If o= f T+ ¥ 4% we have the usual Poincaré inequality

52 2 2
-/Tr(xo) lp-—-92dx = Cr fTr(xc) [Vu[2dx.
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5. Proofs of the results

Proof of Theorem 1. a) Put ii= f u dv, where v is chosen according to Lemma 2
such that #€FNBy. Since z is arbitrary in B,,(x,), the estimates in Lemma 1
and Lemma 2 give

Wi (%o, ) = CC ()™ f IVu [Xx=xoF"dx+Cr.

For any R, O<R=dist (x,,0Q) and w1th R;=2"'R this yields
FRY0Ys(ro, ) = C [ [VuPlx—xof"dx+CT (R)RY
TRi(xo)

for all i, 0=i=k, where k and r are such that 2~%*' R<r=2"*R. Observe that
this last inequality is trivial for those i where I'(R)=0. Summing over i we get

(6) w3y (xe, ) = C{ S5, T (R} f a0 (V2 |x —x,2~"dx+CRY

which is the statement in Theorem la.
b) With # as above, Lemma 1 and Lemma 2 also give

2 . 2—n - -1 2 — 2—n Yy
fBr/z(xo) IVult|x—xo " dx = CI(r) fmo) (Vul? [x —xo =" dx + Cr.
Apply the hole-filling device of Widman [12], that is add CI'(r)* [ B, gy VUl x—
xo2?dx to both sides and divide by 1+CI'(r)™* to find

I(rj2) = IN+Cr,

_¢
C+I(r)

where I(r)=f By [Vu|? |x~xo*~" dx. Again observe that we have a trivial inequality
if I'(r)=0.
Since I () is bounded from above we infer
I(r/2) = (L=, T () I(r)+ Cpr.
To eliminate the term Cor? let Cya=Co/(1—277—¢,I'(r)) and put J(r)=I(r)+Csr".
Note that it is possible to choose ¢; such that C;>0. In terms of J(r) we have
J(r[2) = L=, T (D)) ().

Now fix P, 0<P=dist (x5, 0Q), put P;=2""P and iterate J(P/2)=(1—c, I (P))J(P)
to obtain

T gpy.

H
TPy = [, (1—c, T (RY)J(P) = e~ 1510
For any R, 0<R=P/2, this gives

I(R) = e %= (1(PY + CPY),
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where / is such that P2~'"2<R=P2-'-', and this completes the proof of Theo-
rem 1b.

Proof of Theorem 2. a) The assumption (4) yields that for any R, 0<R=
1/2 dist (x,, Q) there is an r>0 such that {3  I'(R)}~* becomes arbitrary
small. Recall that R;=2"'R and that k satisfies 27*"'R<r=2-*R. Since
f Bty [Vul?|x—x,/>~" dx is bounded the continuity follows from the estimate (2)
in Theorem la.

b) From the assumption (5) it follows that for every R and P, 0<8R=P=
dist (xo, 0Q), 3} , [(P)=B(l), where I is such that P/4R<2'=P/2R. More-
over, if 27**R<r=2-*R we can choose L such that if R=Lr then

ShoT(R)=B(k) = C, > 0.
Insert this in the estimates in Theorem 1 to find
2 - —1 _ 2—n
; @f4 (%o, u) = CC§ fBR(xo) IVul? |x —xo*~" dx+ CL?r?
an

fBR(xo) (Vuul2 [x—xo[2~" dx = Ce— Bt M) {fB (Vul? |~ xo 2" dx—l—CPY}

o (%o)
for all sufficiently small r, whereupon
,4(xy, u) = Ce=cBC1osPIN) 4 Cp¥
and this completes the proof of Theorem 2.
Proof of Theorem 3. Let x,cE. With R=r and P=dist (x,,02) Theorem
1b gives

jBr("o) IVulzlx_xolz"‘ dx = e_cB(m) {fB

whence
() fB( ) Vul*dx = Cr"=2e=B™ forall r, 0 <2r=P.

V2 |x—x0|2-"dx+cz>v},

p(%o)

Here P/4r<2"=P/2r. Next we consider the case when y€Q\E and r is such
that B,(y)c Q\E. As in the proof of Lemma 1 we get

21y 1|2—~n 2—n o —_n 2 y
J 5,0 VP yFTdx = Cr S IVl dx+Cr Jr o, =l dx+Cr,

where now #=f , udx. If we use Poincaré’s inequality to estimate the term
[0 lu—i*dx we find

2 — p|2—n = %—n 2
fn,(» VulP|x-—-yP~"dx = Cr fT,.(y) [Vul2dx+Cr?

= 2 _ pl2—n
=cf,, WuPl—yprdx+cr.
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As in the proof of Theorem 1b, fill the hole and iterate to arrive at
2040 |21 - V3 214 __ ps|2—n Y3
/Br/m [Vul2|x—y~"dx = C(r/R) fs,m IVul2|x—y[P—"dx + Cr
for all r, O<r=R=min (dist (y, dQ), dist (y, E)). It is possible to have the expo-

nent y; here, since we are allowed to take a smaller y, in (7) if necessary. Taking
these two last inequalities together we obtain

2 = n—2+ 2 n—2+
®) f 5. |Vl dx = C(r/Ry =2+ [ g VUl dxFCrritn,
Now the estimate (8), dealing with balls B,(y)c @\ FE, is combined with the esti-
mate (7), dealing with balls B,(x,)< 2 where x,€E, whereupon

2 - n-2 ,—coB(m) n—2+ys

) fB,.(y) [Vul2dx = Cr*=2e=coB(™ 4 Cy
for all yeQ and all r, 0<2r=dist (y, Q). Here m is as in (7). As a matter of fact,
the only crucial point is when y€ @\ E is near the set E in the sense that dist (y, E)=
1/4 dist (v, 0€2). We are left with the following cases: Either O0<r=dist(y, E) or
dist (y, E)=r=1/4dist (y, 0Q). Let x, be one of the points in E which is nearest

to y. Now, if O<r=dist(y, E)=r, then 3ry=dist (x,,02) and (8) together with
(7) implies that

2 - n—2+7y 2 —~2+73
fw IVul2dx = C(rfryy—2+n stro(xo) |Vul2dx+Cr

= Cyt—2+ns r{)—rae—CB(')+Cr"~2+Vs,
where P/4.3ry<2'=P/2.3r,. From this we get
(10 f [Vulp dx = Cri—2+me=cB)+inslog? — Cpn—2+rs g—c(B)—Clyslog?)
B.(»
where P/dry<2'*%=P/2r,. According to the definition of I there is a constant K

such that
11) B(m—1)=B(m)—-K forall m=1.

Due to the possibility of changing the constants involved we can assume that
1sClog 2=K, and (11) yields

B()—1Ily;Clog2 = B(I+1)—(+1)y;Clog 2.

Insert an iteration of this in (10) to obtain
f [Vu2dx = Cr"—2e=cBim 4 Cpn =2+,
B.(y)
where P/4r<2"=P[2r. Moreover, if dist(y, E)=r=1/4dist (y,02) then 3r=
dist (x4, Q) and (7) gives
f Vul2dx = f [Vu2dx = Cr"—2e=B0,
B,0) By, (xo)
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where P/4.3r<2'=P/2.3r. Again using (11) we find
f [Vu|2dx = Cr*—2e =B,
B,(»
where P/4r<2"=P/2r. Thus (9) is established and this completes the proof of
Theorem 3.

Proof of Corollary 1. We sketch the proof which is a copy of Morrey’s proof
in |11]. Without loss of generality we can assume that #€C. Fix y€®Q’ and let
z,2’€B,(y), 8r=dist (', 09Q). Put d=|z—z’| and B={x€R": |x—1/2(z+2")|<d}.
First we estimate the integral [ (u(&)—u(x)) dx, where £ is either z or z’. Simple
arguments give

|, @@-u@)dx| = 3af ([} [Vu(e+1(e—)|ai} dx.

If we interchange the order of integration, put n=¢ +#(x —¢&), use Holder’s inequality
and the estimate in Theorem 3 we get

lfB (@ —u(x)) dx[ = cd"+Y/2+Cd"f: e

where P/4td<2"=P/2td.
Now,

t

f; e“—B(m) dt _fl _—B(]og2 4td] cit

and by a change of variables we see that this last integral equals

o

oo —~-—B(1)

cf? e
log~—

log2 4

Summarizing and using the fact that

u(2)—u(2)| = cd™"

(u(@)—u(2)) dx;
we obtain, via the triangle inequality, that

_fo B

w,(y, u) = CrY/2+Cf:(°) e 2 i

P
log—. The proof is complete.

here =
where a(r)={->-log—



Wiener’s criterion and obstacle problems for vector valued functions 325

References

. Frensg, J. and Mosco, U., Sur la continuité ponctuelle des solutions locales faibles du probléme

d’obstacle, C.R. Acad. Sci. Paris 295 (10) (1982), 571—574.

. Frense, J. and Mosco, U., Wiener obstacles, Collége de France, Seminar V, Pitman 1984,
. GaRIery, R. and ZiEMER, W. P., A regularity condition at the boundary for solutions of quasi-

linear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), 25—39.

. HiLDEBRANDT, S. and WipMmaN, K.-O., Some regularity results for quasilinear elliptic systems

of second order, Math. Z. 142 (1975), 67—86.

. HiLDEBRANDT, S. and WipMAN, K.-O., Variational inequalities for vectorvalued functions, J.

Reine Angew. Math. 309 (1979), 191-—220.

. KarwssoN, T., Regularity results for solutions of some obstacle problems, Dissertation No.

92-1983, Dept. Math., Linkdping University.

. LirtmaN, W., StaMpaccHIA, G. and WEINBERGER, H., Regular points for elliptic equations

with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 43—77.

. Maz’ja, V. G., The Dirichlet problem for elliptic equations of arbitrary order in unbounded

regions, Dokl. Akad. Nauk. SSSR 150 (1963), 1221—1224.

. Maz’1a, V. G., On the continuity at a boundary point of solutions of quasilinear elliptic equa-

tions, Vestnik Leningrad. Univ. 25 (1970), 42—S55.

10. MEvERs, N. G., Integral inequalities of Poincaré and Wirtinger type, Arch. Rational Mech.
Anal. 68 (1978), 113—120.

11. Morrey, C. B., Multiple Integrals in the Calculus of Variations, Berlin—Heidelberg—New York
(1966).

12. WmmMman, K.-O., Holder continuity of solutions of elliptic systems, Manuscripta Math. 5 (1971),
299—308.

13. WiENER, N., Certain notions in potential theory, J. Math. and Phys. 3 (1924), 24—51.

14. WIENER, N., The Dirichlet problem, J. Math. and Phys. 3 (1924), 127—146.

Received April 25, 1984 Thomas Karlsson

Department of Mathematics
University of Linkdping
S-581 83 Linkdping
Sweden



