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1. Introduction 

The behaviour at the boundary of solutions of the Dirichlet problem in a set 
~2 c-R" is a classical problem in the theory for elliptic boundary value problems. 
In [13] and [14] Wiener considered the case of Laplace's equation. There he gave 
a geometrical condition, known as Wiener's criterion for regular boundary points, 
which guarantees that solutions attain the boundary values continuously. The con- 
dition was given in terms of a series of capacities, measuring the thickness of the 
complement of ~2, at the point considered. This was generalized to operators with 
discontinuous coefficients by Littman, Stampacchia, Weinberger [7], and to quasi- 
linear operators by Maz'ja [9] and Gariepy, Ziemer [3]. See also Hildebrandt, 
Widman [4]. 

The pointwise continuity is also of interest in the regularity theory for solutions 
of obstacle problems, that is solutions of variational inequalities where the set of 
admissible variations is given by an obstacle function ~. In [1] and [2] Frehse and 
Mosco studied solutions u in a suitable Sobolev spa~e of the variational inequality: 
u(x)>-O(x) for xEg? and faVuV(v-u)dx>-O for all v in the same Sobolev 
space with v(x)>-~ (x) for xE f2. With an irregular obstacle function ~ they looked 
at regularity properties at interior points x0E ~2, and one of their results is that 
solutions are continuous at such points provided a condition of Wiener type is true. 
Here the condition measures the thickness of certain level sets of ~ at x0, the meaning 
of which is precisely described in [1]. 

The object of this paper is to study regularity properties of solutions of a class 
of obstacle problems for vector valued (RN-valued, N -  > 1) .functions, that is when 
we, instead of one inequality, have a system of  inequalities. With a closed and con- 
vex set F i n  R N, and a closed set E, E c  •, our constraint is of the form (u-tp)(x)EF 
for xEE. Note that in the real case N----l, we can for instance choose F=[0,  c], 
e>0,  and this gives the one-dimensional constraint ~(x)<=u(x)~_~(x)+c for xEE. 
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It follows from the regularity theory for the system of differential equations 
pertaining to our inequality that solutions of our problem are locally H61der con- 
tinuous in ~?\E,  that is in that part of s where we have no constraint, see for 
instance Hildebrandt and Widman [4]. Our primary concern in this report is the 
pointwise continuity at points which belong to the set E. If  xoCE and if a Wiener 
criterion, now measuring the thickness of E at this point, is fulfilled we show that 
solutions are continuous at x0. Moreover, in terms of the capacity used in the cri- 
terion we give an estimate of the modulus of continuity. In particular if the set E 
is "sufficiently thick" at x 0 this estimate will give H61der continuity at this point. 
The study of this type of regularity was one of the topics in my doctoral thesis [6] 
presented in April 1983. There the concern was local rather than pointwise regularity 
and a result on local H61der continuity was proven. As a last result in this paper 
we give an estimate of the modulus of continuity valid locally in s which in a special 
case gives local H61der continuity. 

Finally we mention [5], where Hildebrandt and Widman have made an exten- 
sive study, concerning regularity and existence of solutions, of the problem where 
the constraint is of the form (u--lp)(x)s not only for x in E, but for all x in s 
By introducing the set E we treat a wider class of problems. For instance, the case 
when E is an ( n -  1)-dimensional manifold, the so called thin obstacle problem is 
included. 

Acknowledgements. I am ve ry  g r a t e f u l  to Dr. Bengt Winzell for his careful 
reading and for his many suggestions for improvements of the manuscript. I also 
want to thank Birgitta Arnsby for her efficient typing of the manuscript. 

2. Notations 

Let ~ be a bounded and open set in the n-dimensional space R', n=>3. Put 
B,(xo)={xER": ]x-xo]<r}, T,(xo)=Br(xo)\B,/2(xo) and BM={~CR": I~l<-m}. 
Moreover, let f s  v d/~ stand for the mean value of v over S with respect to the 
positive measure/~, that is 

1 
f s  vdp = - ~ - ~ L  vd#" 

Denote by WI'p(~), p_->l, the Sobolev space of functions t/ such that 

Ilullwl,-(~) = {f~ (lul"+ IVul p) dx} lip < 0% 

and by Wol'P((2) the closure of Co((2 ) in the Wl'P(s In the notation for a 
function space we add the symbol R N to denote the corresponding space of RU-valued 
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functions. For instance, Wl'2(f2, R u) stands for the space of Rn-valued functions 
0 

with components in Wl'2(f2). We use the notations D,=ox ~ and Vu= 

( .... D,u ~, ...), where l<=e<_-n and l<-i<-N. Moreover, we use a summation con- 
vention such that 

f A~PD~ uDp (v-  u) ax >= f f (v-  u) dx 
means that 

" "lJ i vi ui = Z , =  1 f f~ (v' -- u') dx, ZL, f A D~,u Da( - ) dx >- N 

where u ~, v ~ and f~ are the components of u, v and f ,  respectively. 
To formulate the conditions on E we need a notion of capacity. For any set S 

in R rr define 

Cx,2(S)=inf{fR. n2dx:rl>=O and G I * ~ / ~ I  on S}, 

where G~ is the Bessel kernel defined as the inverse Fourier transform of r (r 
(1 + 1~12) -~/2. We will also use the notation F(r)=rZ-"Cl, z(T,(xo)nE). Recall that 
every vEW ~' 2 has a unique representative v(x) defined capacitary almost everywhere, 
that is defined pointwise except for a set of capacity zero. 

Consequently, when we write v(x)EF for xEE, where vEWX'2(f2, RN), we 
mean that this relation holds for capacitary almost every xEE. Furthermore, in 
the notation 

O)r(Xo, V) ~" sup IP(Z)--O(ZP)[ 
z, z" E B~(xo) 

the supremum is taken in the capacitary almost everywhere sense. Finally, dif- 
ferent constants appearing in the text will mostly be denoted by the same letter C. 

3. Results 

We look at solutions u to systems of variational inequalities of the form 

(1) uEK and f~  A'P(x)D~uDa(v-u)dx >= f a  f(x, u, Vu)(v-u)dx 

for all vEK. 
The set K of admissible variations is a convex set of the form 

K = {vEWl'~(f2, RN): (v-~J)(x)EF for xEE, (v-~b)(x)EBM 

for xEf2 and u-~oEWol,~(f2, RN)}, 

where tp is a prescribed R&valued function, E is a closed set, E c  12, and F is a 
closed and convex set in R N such that 0EF. The obstacle function ~ is supposed 
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to be of  class Wl"2q(t2, RN), q>n/2. Moreover, we suppose that the coefficients 
A ~p are in L ~ (f2) and satisfy the following ellipticity condition. There is a positive 
constant 2 such that 

2l~12<-A=a(x)~a for all ~ER N and xEf2. 

The right hand side f is of the form 

f (x ,  u, Vu) = -D~g,(x)+fo(x, u, Vu), 

where the functions g~ belong to L2q(o, RN), q>n/2. For the function fo=fo(x, u, Vu) 
we assume measurability in f2 if uEK, and the existence of a number a_->0 and a 
function bELq(f2), q>n/2, such that 

[fo(X, u,p)] -<_ a[p]2+b for xEf2, pER "N and uEK. 

Observe that if u is a solution of (1) it is readily seen that w = u - ~  is a solution of 
a problem of the same kind. The new obstacle function here is identically zero so 
for the rest of the paper we assume that ~ - 0 ,  which means that the constraint 
is of the form u(x)EF for xEE. Now assume that u is a solution of (1) and that 
M<2/2a. The results are formulated in three theorems. The two first deal with 
the pointwise continuity at points x0 which belong to E, and the third deals with 
the local regularity in f2. Recall that F ( r )= r 2-" C~, 2(Tr(xo)c~ E). 

Theorem 1. a) I f  O<r<=R<- l/2 dist (Xo, Og2) then 

(2) o~h(Xo, u) ~ c {Z~=0 r(R,)}-~fB.(Xo ) [Vul ~ fx -  xol 2-" ax+  CW, 

where R~=-2-tR and k is such that 2-k-XR<r<=2-kR. 
b) I f  O<R<=P/2<=l/2 dist (x0, 0f2) then 

f~  -cz:=~ } (3) Rc-~o) lVul'lx-x~ <- e t ..Cxo) IVul=Ix-x~ ' 

where Pi=2-iP and l is such that 2-1-2 P<R<-2-!- tP.  The constants ? depend 
on n and q and the constants C depend on parameters of the problem. 

Theorem 2. a) I f  for some O, 0<0<=1/2 dist (x0, 0f2), 

(4) Z~=o F(O~) =~,  0,=2-'0,  
u is continuous at Xo. 

b) I f  there is a function B, B(m)foo when m~oo, such that for every Q, O< 
Q~dist (xo, 0~2), and for every integer re>O, 

(5) Zi~=o F(Oi) >-_ B(m) 



Wiener's criterion and obstacle problems for vector valued functions 319 

then 
09r (X0, U) <-- Ce-CB(cl~ + Crr 

for all r, 0<r<-P=<dist (x o, Of 2). 

Remark 1. Let B ( m ) = B l m - B 2  where B1 and B2 are positive constants. Then 
the estimate in Theorem 2b gives og,(Xo, u)<=C(rC'Bl+r~), and thus the solution 
u is HSlder continuous at x0. 

Remark 2. Using the subadditivity for the capacity it is not hard to see that, 
instead of F(~i)=~-nCI,~(TQ,(Xo)nE ), we can have q~-nc1,2(BQ,(Xo)C~E) in (4) 
and (5) above. Moreover, if we rewrite the condition (4) and (5) in terms of integrals 
they look like 

(4') �9 f 2  Ca, 2(Br(Xo) t~E)r l -ndr  = 

and 
(5") f ;, C1.2(Br(Xo)C~E)r 1-" dr >-_ B'(logo/o'), 

where 0 < ~ ' <  0 and B" is a new function of the same type as B. 

Theorem 3. Let y be an arbitrary point in O. I f  the condition in Theorem 2b 
holds for all xoE E then there is a constant Co, depending only on parameters of the 
problem, such that for all r, 0<2r-<_P=dist (y, 0f2), 

f, IVul dx <- Cr "-~ e -c~ + Cr "-2+', 
r(Y) 

where P/4r<2m<-P/2r. The constants C here depend also on the Wl'2-norm of u 
and on dist (y, 0~). 

The following corollary is a consequence of Theorem 3 and a modified version 
of the well-known Morrey's lemma, cf. Morrey [11], Theorem 3.5.2. 

~ : :  �9 p Corollary 1. Let ~" c c  f2. Then for all yE f2" and for all r, 0 <  8r= d~st (g2,0f2), 

O)r(y , U) <: C f ,  ~ e-Co~(O/~ d t+Cr  ~/~, 
aCr) 

1 P 
where a ( r ) =  log2 l~ 

Remark 3. If  B is as in Remark 1 then Corollary 1 gives 

c~ ' 27) ~Or(y, U) <= Cr/,  where 7' = min~il-~g 2 $ 

and thus the solution u is locally H61der continuous. 
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4. Auxiliary lemmata 

Lemma 1. Let u be a solution of(l).  I f  xoEE and 0 < r ~ d i s t  (x0, 0C2) then for 
capacitary almost every zE Br/4(Xo), 

]u(z)-~l 2+(2-2aM) f~.,(~0, [vul2[x-zl 2-.dx 

<- CRY-"( [Vu]2dx+Cr-" f T  " ]u--~] 2 dx+ CrY, 
�9 I T,(x0) (x0) 

where ~ is a constant vector in Fc~BM. 

Remark 4. The proof  of  Lemma 1 also gives that fn,(~0) ]Vu[2] x-xo]2-"dx is 
bounded for all r, 0 < r ~ d i s t  (x0, ~C2). 

ProofofLemmal.  Let qECo(Br(xo) ) satisfy ~/(x)=l for ]x-xo]<-5r/8, 
~/(x)=0 for [X-Xo[>-7r/8, ]VqI<-C/r and 0 ~ q ~ l .  Moreover, with O<o<r/4 
let GQ(x, z), zEB,/4(xo), be the mollification of the Green function G for the elliptic 
operator L = - Dp (A'PD,), that is G~ Z)----fB,(z) G (x, y) dy. Here A "p are extended 
to L=-functions defined in an open ball B, ~ c B, such that the ellipticity condition 
still holds. As a test function introduce 

v = u--e~7~GQ(., z)(u--~), where ~ > 0. 

It  is not hard to see that v is an admissible test vector if e is sufficiently small. If 
we insert this function in the variational inequality (1) and exploit the technique 
used by Hildebrandt and Widman in [4], pp. 79 and 80, we obtain the estimate in 

Lemma 1. 
We also need a modified version of  a Poincar6 inequality of Maz'ja [8]. For  a 

proof  we refer to Meyers [10]. As a matter of fact, Corollary 1, p. 117, in [10] together 
with a homothetic transformation yields: 

Lemma 2. Let E be a closed set in R" and T~(xo) be such that T,(xo)c~E~O. 
Then there is a positive measure v with support in T,(xo)c~E such that if ~=- 
f v dr then 

f . xo) dx <- Cr"{C~,2(T,(xo)r~E)} - l  f ~.~o) IVol d  
for all vEWl'2(V,(xo), RN). 

Moreover, one is free to choose the support of v up to sets of sufficiently small 
capacity. 

Remark. I f  ~=fT.(~o) V dx we have the usual Poincar6 inequality 

f Io- dx ~_ Cr IWl 
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5. Proofs of  the results 

Proof of Theorem 1. a) Put ~= f u ,iv, where v is chosen according to Lemma 2 
such that a6Fc~B~. Since z is arbitrary in B,/4(xo), the estimates in Lemma 1 
and Lemma 2 give 

~o~,/~(Xo, u) <= cr(r)-l  f tVul~lX-Xot2-"dx +Cr ' Tr(Xo) 

For any R, 0<R_-__dist (x~, OD) and with _R~=2-iR this yields 

f [Vu[21X-Xol2-"dx+CF(Ri) R~ r (R~)~j~(xo, u) <= C rR,(x0) 

for all i, O<=i<=k, where k and r are such that 2 -k-* t~<r<--2-kR. Observe that 
this last inequality is trivial for those i where F (R3=0 .  Summing over i we get 

(6) c9~/4(xo, u) <= C {.~=o F(Ri)} -1 f {Vu[~lx-x~ +CR' 

which is the statement in Theorem la. 
b) With ~ as above, Lemma 1 and Lemma 2 also give 

f lvul lx-x~ ax ~ Cr(r)-  f T/xo, tVut lx-x~ dx + Cr " 

Apply the hole-filling device of Widman [12], that is add CF(r) -~ fB,/~o,o)]Vut~l x -  

Xo{2-~dx to both sides and divide by I+CF(r) - i  to find 

C 
l(r/2) <= C+F(r~ I(r)+Cr~, 

where l(r)= fB,(,o) IVul 2 Ix-x0[ ~-~ dx. Again observe that we have a trivial inequality 
if  F ( r )= 0 .  

Since F(r) is bounded from above we infer 

I(r/2) <= (1 -- c iF (r)) I(r) + C.2 rL 

To eliminate the term Car ~ let C3=CJ(1-2-~-c iF(r ) )  and put d(r)=l(r)+C3f.  
Note that it is possible to choose c, such that Ca>O. In terms of d(r) we have 

J(r/2) < (1 - -  ci F (r)) J(r) = . 

Now fix P, O<P<=dist (Xo, OD), put P~=2-~P and iterate J(P]2)~_(1 - q F ( P ) ) J ( P )  
to obtain 

J(P, + i) ~ ]-f:= o (1 -- c 1 F (Pi)) J(P) <= e-  c~Z,'=, r(/,,) j(p). 

For any R, O<R<=P/2, this gives 

l 

I(R) <= e-~,z,.om',)(I(P) + CP~), 
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where l is such that P2-t-~<R<-P2 -z-l, and this completes the proof  of Theo- 

rem lb. 

Proof of  Theorem 2. a) The assumption (4) yields that for any R, 0 < R  -< _ 
1/2 dist (Xo, ~f2) there is an r > 0  such that {~k=o F(R~)} -1 becomes arbitrary 
small. Recall that Ri=2-iR and that k satisfies 2-*-IR<r<=2-kR. Since 
fBRexo) IVuI2IX--Xol ~-~ is bounded the continuity follows from the estimate (2) 
in Theorem la. 

b) From the assumption (5) it follows that for every R and P, 0<8R=<P<- - 
dist (x0, ~f2), ~ = 1  F(Pi)>=B(I), where l is such that P/4R<2t~P/2R. More- 
over, if 2-*-lR<r<-2-kR we can choose L such that if R=Lr then 

Z~=0 r(R~) ~ a ( k )  >- C, > O. 

Insert this in the estimates in Theorem 1 to find 

co~/,(xo, u) <- CCi-l fB [Vul 2 Ix -x0? - "  dx+ CLrr ~ 
R(Xo) 

and 

IVWlx-xol~-"dx ~ Ce -~"(~'~ I f  IVul~lX-Xol~-"dx+CP '} 
R(Xo) t J  Bp(Xo) 

for all sufficiently small r, whereupon 

O)r/4(Xo, U) ~ Ce -cB(cl~ Crv 

and this completes the proof  of  Theorem 2. 

Proof of Theorem3. Let xoE E. With R=r and P=dist (xo, ~12) Theorem 
lb gives 

L,(xo) [Wu] z Ix-- Xo[ z-n dx ~ e -cB`m, {Lp(xo ) [Wu[ z I x -  Xo[ z-n dx q- CPr}, 

whence 
fn IVulZ dx ~ Crn-Ze -cB(m) for all r, 0 < 2r _-< P. (7) .(~o) 

Here P/4r<2m<~P/2r. Next we consider the case when yEI2\E and r is such 
that B, (y )c t2 \E .  As in the proof  of Lemma 1 we get 

f IVuI21x-Yl2-'dx ~- Cr~-" f ~r,(,~ IVu?dx+Cr-" f r.v) lu-ul2 dx +Crr' 

where now ~=fT,(r) U dx. If  we use PoincarO's inequality to estimate the term 

f r.~ lu-al ~ dx we find 

f [Vul2lx-Yl~-" dx <- Cr~-" f., r.cy) IVul~dx +CrV 

<- c f r.(y IVul z Ix - y l  2-n dx + Crr. 
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As in the proof  of Theorem lb, fill the hole and iterate to arrive at 

fB  lVul~lx-yl2-"dx~= C(r/RY"fB IVul=lx-yl=-"dx+Cr~' 
,-/dY) r(y) 

for all r, 0<r-<_R~min (dist (y, 0~2), dist (y, E)). It is possible to have the expo- 
nent 7a here, since we are allowed to take a smaller Ta in (7) if necessary. Taking 
these two last inequalities together we obtain 

(8) fBr ,  Iv"l dx 

Now the estimate (8), dealing with balls B , ( y ) c  f~ \E ,  is combined with the esti- 
mate (7), dealing with balls B,(xo)c  ~2 where xoCE, whereupon 

(9) f ..,., [Vu] 2 dx ~- Cr"-2e -c~ + Cr "-2+r' 

for all yEf2 and all r, 0<2r_-<dist (y, Off). Here m is as in (7). As a matter of  fact, 
the only crucial point is when yE ~ ? \ E  is near the set E in the sense that dist (y, E) 
1/4 dist (y, 0~2). We are left with the following cases: Either 0 < r ~ d i s t  (y, E) or 
dist (y, E ) ~ r ~ l / 4  dist (y, Off). Let x0 be one of the points in E which is nearest 
to y. Now, if 0<r_~dist  (y, E)=r0  then 3r0<=dist (x0, Off) and (8) together with 
(7) implies that 

IVul 
3ro(Xo) 

--< Cr "-2+ ~ r~ ~ e -cBO) -t- Cr "- 2 + rs 

where P/4.3ro<21<-P/2.3r o. From this we get 

(10) fB lVul 2 dx ~ Cr"-2+~se -cB(O+zy31~ = Cr"-2+~3e -~(B(O-ct~l~ 
r(Y) 

where P/4ro<2Z+2~P/2ro. According to the definition of  F there is a constant K 
such that 

(11) B ( m - 1 ) _ - > B ( m ) - K  for all m ~ 1. 

Due to the possibility of  changing the constants involved we can assume that 
7 a C l o g 2 = K ,  and (11) yields 

B(1)- l~3Clog 2 >= B(I+ I ) - ( I +  I)?3C log 2. 

Insert an iteration of this in (10) to obtain 

f~.(O [Vu[2 dx ~ Crn-2e -cB(m) + Cr "-2+ ~3, 

where P/4r<2m~p/2r.  Moreover, if dist (y, E)<-r ~- 1/4 dist (y, 0s then 3 r _  
dist (x0, 0~2) and (7) gives 

f.,c,) IVul dx -f,..Cxo, IVul'& <-- 
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where P/4.3r<2Z<=P/2.3r. Again using (11) we find 

f B,(y) ]Vu[~ dx <= Cr"-~e -~R(m), 

where P/4r<2m~P/2r. Thus (9) is established and this completes the proof of 
Theorem 3. 

Proof of Corollary 1. We sketch the proof which is a copy of Morrey's proof 
in Ill]. Without loss of generality we can assume that uEC 1. Fix yEf2' and let 
z,z'EBr(y ), 8r~dist(12",0~2). Put d=iz-z '[  and B={xER": Ix-1/2(z+z')l<a }. 
First we estimate the integral f~ (u(O-u(x)) dx, where r is either z or z'. Simple 
arguments give 

f ,  ( , (O-, (x))dx <= } d f ~ {fo~ [V,(~ +t(x--r at} ax. 

i f  we interchange the order of integration, put r/= { + t ( x -  ~), use H61der's inequality 
and the estimate in Theorem 3 we get 

r 

If,( (x))d ] ix --~,(m) at u(~)--u x ~ cd"+rlZ+Cd" e " --i- 

where P/4td<2m<-P]2td. 
NOW, 

f~o e-~n,-)._i_.~ f e - ~ ,  (lo--~togS) ---[-dt 

and by a change of variables we see that this last integral equals 

r 

e- q- nco dt. 
- -  l o g  log2 4d 

Summarizing and using the fact that 

l . (z)- .(z')l  = cd-. f .  (u(z)-  u(z')) dx i 

we obtain, via the triangle inequality, that 

~0 

f~r) --TB(tl-- %(y, u) <--_ Cr~/2 +C e at, 

1 P 
where ~ (r)= ,--TT-z- log--z--. The proof is complete. 

logz 
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