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Introduction 

Let C a be d-dimensional complex space (d>  1) with norm Izl = (Iz 11 ~ + . . .  + Izdl~) 1/~ 
and unit ball B={zECd: lzl<l}. By # we shall denote the rotation-invariant, 
normalized Borel measure on S=OB and by C(S) - -  the space of continuous 
functions on S. I f  fEC(S) has a continuous extension f :  B - C ,  holomorphic 
on B, then we shall write fEA(B). We shall denote C A = S - A  for A c S  and 
by [z 1, z2] - -  any shortest path on S joining zl with z~ (zl, z2ES). Let O(zx,z~) 
be the length of a path [zl, z~], let q(zl,z~)=ll-(z~,z~)l and le t  K(z,r)= 
{~ES: q(z, ~)<r} ((Zl, z2) be the scalar product of the vectors zl and z2). We say 
that fELip ~, where 0 < ~ _ 1 ,  if fEC(S) and there exists a constant C such that 

[f(z)--f(~)[ ~_ CQ (z, 4) 
for z,~ES. 

Aleksandrov proved [2] that for every real function gE C(S) and for every 8 >0  
there exist functions fEA(B) such that Ref<-g and #({zES: Ref(z)=g(z)})~1-8.  
Sibony proved [4] that if fEA(B)nL ipa  is a nonconstant function with norm 
[[ f[[.,~_ l,  then #({zES: [ f (z) I=l})=0.  This theorem was strengthened by Hen- 
kin (see [3] sect. 11.4), who obtained the following result: I f fE A (B) n Lip ~ is a non- 
constant function such that Ref~_0 and 1 ~ >  1/2, then /z({zE S: Ref (z )=0})=0 .  
It is still an open problem, if  the assumption 1 _~  > 1/2 can be replaced by a weaker 
condition l _ ~ > b ,  where b< l /2 .  We shall show that b has to be positive: 

Theorem. For every 8>0 there exists ~ > 0  such that for every real function 
gE Lip 1 it is possible to find nonconstant functions J~ A (B) n Lip ~ such that R e f  <-g 
on S, and 

#({zES: Ref (z )  = g(z)}) -~ 1-8 .  
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Corollary 1. For every 8>0 there exists a>O such that for every function 
gELip 1, g>O there exist nonconstant functions fEA(B)nLip  o~ such that ]f(z)l_~ 
g(z) for zES, and 

p({zCS: [f(z)l  = g(z)}) _-> 1 - 8 .  

Proof. Define g=log (g) and apply the Theorem to the function g instead 
of g. We shall get some functions lEA(B). The functions e I will satisfy the asser- 
tion of Corollary 1. 

Corollary2. There exists ~>0 such thatfor every 8>0 it is possible to find 
nonconstant functions fEA (B) c~ Lip ~ such that [1 fl[= <= 1 and 

/~({zES: If(z)l  = 1}) => 1 - 8 .  

Proof. Let us apply the assertion of Corollary 1 for 8o = 1/2 and g=-1. We 
shall get functions fEA(B)nLip  ~, for some ~>0, such that If(z)]=l for zES, 
and p(E)=>l/2, where E={zES: If(z)]=1}. Let u=P[ze] be the Poisson inte- 
gral of the characteristic function of the set E. Let us fix 8>0. Then u (a )>1-8  
for some point aEB. Let ~bEAut (B) be an automorphism of the ball B such that 
r  and let F=f~r Then Z~o~=Z/~, where K={zES: IF(z)[=l}. More- 
over 

= f z,~ = f s z ,o~  dp = P[zEoff](0) = P(Z~)(r : u(a) >= 1-8.  

Also FEA(B)nLip a and ]FI_<-I on S. This ends the proof of Corollary 2. 
To prove the assertion of the Theorem, we shall need the following lemmas: 

Lemma 1 (Aleksandrov). Let a, N>0, 0 < p < l .  There exists a number r0>0 
and a=a(a,N,p,d)>O such that .for every number r<ro and K(~,r) (r 
it is possible to find a function hE A(B) satisfying the following conditions: 

(1) Re h(0) = 0 

(2) [h(z)l <= a 

~ a  

for zEK(~, r) 

r N 
for 

(3) f x(e,o [Re h- l lP  d~ + f c~ce,,) [hlP d# ~ (1-a)/~(K(~, r)). 

This Lemma was proved by Aleksandrov [1]. The example of the function h, 

given by Aleksandrov, i s h ( z ) = g l  (z, ~ , where R" is some number 
r 

independent of r and g~(z)=ai(1 +z) -N. Hence h is a function defined on some 
neighborhood of S and it is constant in the directions wEC n such that (w, 0 = 0 .  
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It follows that 

(4) h ' ( z ) = 0  for z E S  and wEC" such that ( w , ~ ) = 0 ,  

where h~ is a directional derivative of the function f at the (complex) direction w. 
R' R' 

Since the directional derivative of the function (z, 4) at the direc- 
t r 

R '  
tion ~ is - - ~ ,  we have 

r 

h'~(z) g; R (z, ~ r r r = - -, - = ~ Nia 14 (z, 

R' R' 
But 1 -~ 

g r 
  l max(a ' --;-q(z, ~)), hence 

E 
(5) h~(z) < - - -  for zEK(~,  r) 

r 

< E r r__Z___V N - '  
= r ( q ( z , r  for z ~ S - K ( ~ , r ) ,  

where E is some constant independent of r. 

Lemma 2. Let, for  zE[zl, zs], v=v( z )  be a unit vector tangent to the path [zl, z2] 
at the point z. Then 

b~ q (zi, z,) _-> ft~l. ~,l ](v, z)[ da (z), 

where a is the "length measure", i.e. da(z)=dQ(zi ,  z), and b~ is some constant. 

Proof. Let zoCS be a vector such that (zl, z0)=0 and the (complex) linear 
space generated by z 1 and zo contains z~. Hence, there are numbers cq, a2EC such 
that ai is real, 1~12+1m~12=1 and 

z~ = cos t0z~+sin to(a~iZl+a~Zo), 

where 0<_-to<_-zc. It follows that the function 

F(t)  = (cos t+ ia l  sin t )z l+a ,  sin tzo, 

where O_-<t~_t0, is a parametrization of the path [zl, z~]. If z = F ( t )  for some 
< :  < O_t=to,  then d a ( z ) = l F ' ( t ) i d t = d t  and 

v = v(z) = F'( t )  = (-s in  t+i~lCOS t)zl+azcos tzo. 

Hence, (v, z )=- ic t l  and ftzl, z,l K v, z)l d~(z)=l~ilto.  On the other hand, q(zx,z~)= 



330 Boguslaw Tomaszewski 

11 - Q ,  r ( to)) l= 11 - c o s  to+i. ~ .  sin tol_->max (1 - c o s  to, sin to)-I~11. Hence 

ft,,.,,~ I<v, z>l d:.(~) _-> to 
max (1 --cos to, sin to) q(Zl,  g2) > ff = ~ q(z1, g2)" 

This ends the proof of Lemma 2. 
t g(z0 . ] 

For g(C(S), g>0 ,  let f l (g)=sup [---~-[~-S-z.~qtza, z2) -a j ,  where thesupremum 

g(zO 
is taken over all points z~, z2ES such that _->2. If there are not such points, 

g(z~) 
we define fl(g)= 1. 

For 4, z~ S, let 

re(z) = lim sup r/~0 

( z+,lr ] 
g t ~ J - g ( z )  

q 

We shall say that ?(g)=<R, if 
r~ (g) (z) 

g(z) 
- - < = R [ < z ,  ~>I+I/R - for all z, ~6S. 

For gC C(S) (not necessarily positive) we define 

I g(z)--g(~) I r ( g )  = s u p  - ~ - - ~  . 
z , ~ S ,  z r~  

There exists a constant C~ such that, for every r=>0, k_->l, z~S, the inequality 
p(K(z, kr))<-Cxkdp(K(z, r)) holds (see [3] sect. 5.1.4). 

gfgx) 
Lemma 3. Assume that gCC(S), g>0 ,  ?(g)<-R, s > l ,  z~, z2ES and ~s. 

g(z~) 
Is--1 ~2 

Then q(zl, z2)~=C2[--[  R -1, where C2 is some constant. 

Proof. Let g, s, zl, z~ satisfy the assumption of Lemma 3. Let us take zE [zl, z2] 
such that g(z)=g(zl) and g(~)<=g(zl) for every ~C[z,z~]. Let v=v(4) be a unit 
vector tangent to [z 1, z2] at the point ~ [ z ,  z j .  Then 

g (z )  - g (z~) _-< ftz,,z~l ro (g) (4) d~ (4) ~ ft~l,z,~ g (4) (g I<v, 4>1 + r aa (r 

<-- [bxRq(z, zz)+ Ro(z, zz)]g(zl) ~- [b~Rq(zl, z2) + l/R-o(zl, zz)]g(zx), 

because of Lemma 2 and the inequalities q(z, z2)<=q(z~, zz), O(z, z2)<-O(z~, zz). 
Dividing by g(zx), we get 

q(zl, z2) >- 1/2 g(zx)-g(2~) ~ 1/2b~XR -1 s -1  
Rbg (zO s 
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or 

O(Zl, Z,~) ~ 1/2 g(Zl)--g(z2)  R -1]2 ~--_ 1/2 s - 1  R_I/~. 
g(zl) s 

Since there exists a constant b~ such that, for z', z"CS, O(z', z")~-b~q(z ", z"), the 
assertion of Lemma 3 follows. Let us fix some number  O < p <  1. 

Lemma 4. There exist constants C, z>O, with the following properties: I f  
gE C(S), g > 0 ,  R=~I and max (fl(g), ~(g))<-R, then there exists a function hE A(B) 
such that 

1 
(i) [hi <--f-6g on S, 

(ii) II g - R e  hi[g<=(1 -v)[I g[l~, 
(iii) max (fl ( g -  Re h), 7 ( g -  Re h)) ~ CR, and 
(iv) T(h) <- CR [I gll ~. 

Proof. Let N=d+4 ,  P=Z~=oZ~=~. 2d(k+2) d+12"+1k-u and a=(2OeC1) -~. 
Let cr=a(a, N,p, d) and r o be numbers given by Lemma 1 and let r/be a constant 
such that  0<-~/<- ro and 

- i , - -~11  j ~ m i n  + ( ~ - a ] ,  ( 1 - ~ - a ]  ] .  

From Lemma 3 it follows that if one of the inequalities 

(6) I g ( z l ) -  g (z2) l p =~ g (z~) p 1/2 a, 

( 1  - -  1/2 a) 1/2p g (z,) ~= g (zl), 

1/2g(zl) ~ g(z~) or 1/2g(z2) -~ g(zx) 

holds with g satisfying the assumptions of Lemma 4, then q(zx, z,)~=4r, where 
r=~l R-1. 

Let ~ =  {K(~,  r)}~t=~ be a maximal family of disjoint balls and let D =  u ~. 
Since (6) fails for Zl=~j  and z~K(r 4r), we have 

g' d, 2.g(ej).,(K(r 40) 

<= 2"C,4dg(r162 r)) ~= F f r, g" dr,, 

where F=2PC~4d2 p. 
Summing over all j =  1, 2, ..., M and applying the equality S =  Ul=~u K(~j, 4r) 

(because qX/2 is a metric), we get 

(7) L gp dp <= F f . gP dlz. 

Lemma 1 yields functions hj ( j =  1, 2 . . . .  , M) associated to K(~j, r) with a and 
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N defined above. We claim that the function h=~M=l g(r satisfies the con- 
clusion of Lemma 4. Let us denote Hj=g(~j) Re hj for j =  1, 2 . . . . .  M. We have 

(8) f ~(e,,,) Ig-HJIP d/z+ fc~(r IHj[~ d# 

--< f~c(r162 d/z+ g(r162 d/z+ g(r162 [hi]" d#. 

Since (b) fails for z1=r J and z~EK(~j, r), we get 

(9) f~(r [g-  g(r d# ~_ 1/2ap(K(r r))g(~i)P. 

Using the same argument, we show that 

(10) [(1--1/2a)I,'~Pg(r r)) <- f r(cj,,) 

Combining (8), (9), (3) and (lO) we obtain 

gP d/z. 

(11) fK(r Ig-I-IjlPda+fcK(ej, o I/-/J[P dm ~ (1-1/2~ r))g(~j)P 

<= (1-1/2a)l/= fK gPd# = ( 1 - z * ) f  K g'd/z, (r r) (r r) 

where z*=l-(1-1/2cr) 1/2. Let D =  M Uj=I K(~j, r). On K(~j, r) the following 
inequality 

Ig-Re h[ p <= [g-Hj f  + ~i=j ]Hi[ p 
holds, and on CD, 

]g-Reh[  v < v U : g - F Z i =  1 IHi l  ~. 
Hence 

fs [g- Re hi" d/z <= Zj~I [ f  K,,~,., [g-H,f. d/z + z .  j f K(,~,., I",1" d/z] 

+ f co gP d/z + f co Z ~ l  IH'IP d/Z" 

Each function ]H~f is integrated over CD and over all K(r r) with j ~ i ,  hence 
over CK(~ ,  r). Thus 

(12) f s Ig--Re htP d/z -< ~ M =  j = 1 f K(r [g -Hi f  d/z 

+Zj~=lfc~(r [H i [ "  cl/z+ fco g, d/z. 

Summing (11) over j =  1, 2 . . . . .  M and applying to (12), we get 
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and because of (7) 
T* 

(13) L Ig-Re  hI' d# <= L g" dp---if- L g'  d# = ( l - z ) L  gp d#, 

for z = ~ .  This proves (ii). 
F 

Next, we prove (i). Let us fix a point zE S. Define 

A n = A,(z) = {r 2"g(z) ~ g(r < 2"+lg(z)} 

for n = l , 2  . . . . .  Ao=Ao(z)={~j: g(~j)<2g(z)}. Let us assume that ~j~A, for 

> g(~J) q(z, ~j)-l>=2"q(z, ~j)-l, hence some n>0. Then R > = f i ( g ) = ~  
g(z) 

q(z, ~j) ~ 2"R -1 >= 2"r. 

Hence, if Ak,={r kr~q(z, ~j)<(k+l)r}, then A~=0 for k = l , 2  . . . . .  2"-1.  
Since K(~j , r )cK(z ,  2(k+2)r) for r (this inclusion follows from the fact 
that q~/2 is a metric on S), we have 

IA~I~(K (~ j, r)) ~ ~(K(z, 2(k+2)r)) =< C~ 2d(k + 2)d #(K (z, r)) 

and since p(K(r it follows that IA~I~C12d(k+2) a. Because of 
(2) and the definitions of Ak. and a, we have 

_< M (14) Ih(z)l =-- ~i=1 IhJ(Z)lg(~J) <= Zff=0Z~=o Z,jeA~( k-~ a)2"+1 g(z) 

1 
<= ZT=0 Zff=2. C22a(k +2)d2"+Xk-N ag(z) <= -~g(z) ,  

which proves (i). 

We turn to (iv). Let ~,zES. For ~j~Ak,(z), we have 

1(r ej>] <-- 1(r z>l+l(~, e j - -Z>[  

](~, 2>I'-~-I~j--Z! ~ I(~, Z>l'3C-r Z) 1/2 ~ I<~, Z)l-~-f2"[(k3v1)~'] 1/2" 

Now, applying (4) and (5), we obtain 

s [g(~j)(hj)r (z) <= E a k-N-lg(~j )1(~ ,  ~j>] 
F 

~_ E a-- k-N-12"+1 g(z)(K~, z>l + r + 1) r]1'2). 
r 
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Summing over j =  1, 2 . . . .  , M and applying the same argument as before, we get 

<z M �9 (15) Ihk(z)[ = Zj=~ Ig(~j)(hj)e(z)l ~ Ear-lC~2eg(z) 

�9 ~ n ~ = o ~ = ~ .  (k+2)dk-N-12n+l([(r Z)[-k ]/2"[(/c nt- 1) r] 1/2) 

< Csg( )([(r ) [R+ I /R  -) = Z , Z  

where Cs is some constant. This inequality shows that 

(16) r(h) ~= 2CsR 1[ gll**. 

Proof of (iii): Because of (15) and (14), we have 

7 r  h)(z) <= [7r +]h~ll(z) _-< (1 +Ca)(l(~, z)ln+r 

This proves that 

(17) 

Let us assume that 

9 
If  - -  s_->2, 

11 

hence 

O 1  
<-- "" (1 + Ca) (] (r z)[ R + I/R -) ( g .  Re h) (z). 
- 9 

t l 0  1 C'~2 7 ( g - R e  h) <=/--9- ( + *)) R. 

(g-Reh)(za) =s=>2. Because of (14), we have 
(g -- Re h) (z~) 

then (because ~(g)<-R) 

{~---[ s)q(zl, z~)-a <= R, 

( g -  Re h) (z1) q (Zl, z~)-i .< 1 1  R. 
( g -  Re h) (z2) = 9 

9 
If --s<_--2, then applying Lemma 3 and the inequality 

11 
, .~ ( s o - l ~  49 

h a v e  q(zl'z')>----t~21~l~ s O ] R - I ~ C 2  324 R - l '  hence 

g(zO 9 
~ S .  

g (z~) 11 

def 9 18 
S O ~--- ~ S ~ - - ,  w e  

11 11 

( g - R e  h) (Z1) 324 792 
q ( Z l '  Zz ) - I  <:-- S~-'5-A"-A--~R'~ut~ <= c249 ~ R '  ( g - R e  h)(z~) 

22 [ 1 1 7 9 2 )  9 9  because s<=--'9 This shows that /3 (g - Re h) <= max = ' 4-C2 R and together 

with (17) concludes the proof of (iii). 
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LemmaS. To every ~k>0 corresponds a number W=W(~k)>0 with the fol- 
lowing property: I f  gEC(S), g > 0 ,  max (fl(g), T(g))-<R, then there is an hEA(B), 
with Re h (0) = 0, so that 

(i) lth[l~o <= WIIgll~, 
(ii) R e h < g  on S, 

(iii) []g-Rehil~--<r 
(iv) n~ax ( f l ( g - R e  h), 7 ( g - R e  h)) ~_ WR, 

(v) T(h) <= ~:R[Igl[., 

Proof. Let us take a function g satisfying the assumptions of Lemma 5 and a 

[ log~b ] + 1  
number n = [ l o g ( l _ ~ ) j  . We shall construct two sequences of functions: 

{go,g1 . . . . .  g.} and {hi, h~ . . . . .  h,}. Let us put go=g. Now let us assume that 
for O<=i<n we constructed a sequence {g~, g2 . . . .  , gi} of positive and continuous 
functions on S such that 

(a) max (fl(gi), ~'(gi)) <=CiR, 

where C is a constant as in Lemma 4. Of  course, this condition is satisfied for i = 0. 
Lemma 4, applied to gi and CIR in place of g and R, yields a function hi+lEA(B), 
hi+~(O)=O, satisfying the following conditions: 

(b) Ih~+x(Z)l <= --~ gi(z) for zES, 

(c) l lg , -Re hi+~llg -<- ( 1 - x )  [I gi[lg, 

(d) max (f l(gi-Re hi+l), 7 ( g i - R e  hi+l)) ~- Ci+IR, 

(e) T(hi+l) <= Ci+XRllg~[l~. 

Let us define gi+l=gi-Re hi+l. From (b) it follows that gi+l->0. The condi- 
tion (d) is the condition (a) for i - 1 .  

We shall prove that the function h - - -~=l  hi satisfies the conditions (i)--(v) 
of  Lemma 4 with W=(2~)  n+l, where C = m a x ( 1 ,  C). We claim that ]lgill.~_ 
2illg011~ for i=0,  1 . . . .  , n. The equality holds for i=0 .  Let us assume that this 
is true for some O<-i<n. Then 

I[g,-Re h~+xll** <-- ][g, ll..+[lh,+x]l~. ~ Ilgill-+~0 ]lgill- [lgi+lllo. 

~- (1+-~0)  2' Ilgo[l~. <- 2'+1 [[ go[I**, 
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because of (b) and our assumption. Hence, 

1 - ~ i=1 2'-l[[gol]~ ~ 2n Hgl[~, I[h[]= <- Z,"_-I ][h,H= <-- 10 Z,"--x ]]gi-1]] < " 

because of (b) and the definition of go. This proves (i), since 2"=<W. 
We have O < g n = g o - ( R e h ~ + R e h 2 + . . . + R e h , ) = g - R e h  and (ii) follows. 
We shall show that ][g~l[~<-(1-z)i[lg[]~. The equality holds for i=0.  If  it 

p - = :  is true for some O<=i<n, then Hgi+a]lp=(1-z)l[gill~<-(1-z)i+l]]gll= , ,because of 
(c) and the definition of gi+l. It follows that Hg-Re  hH~=l[g, ll~<-(1-~)" [Igllg -< 

1[ g][g, because of our choice of n. This proves (iii). 
The condition (iv) follows from (d) for i = n - 1 ,  since g , _ ~ - R e  h , = g - R e  h. 
Finally, because of (e) and the inequality ][ gill = <= 2i][ g][=, we have 

T ( h ) < ~  T ( h ) - < ~ "  CiRH ll "<~i' CiZi-~RHg][ 
= =i i = i=i gi-1 = = =i • ,  

which proves (v). 

Lemma 6. Let us assume that hiEC(S), [Ihi[[=<=wi 2-i, T(h~)<=w2W i, where 
wi, w~, W are some constants, W>=2, i= 1, 2 . . . . .  Then h = ~  i hiELi p a for 

1 log 2 

2 log W 

Proof. Let us take any number 0 < x  <- 1 and an integer n such that W-(~"+2)___ 
n T < :  n x<=W-2L Define f~=~,i=~ hi, f ~ = ~ , + l  hi. Then (f~)=~,~=t T(h~)<=w2W "+1. 

Hence, if  e(zi, z2)=x, then Ifl(zi)-fl(z2)l<=w2W"+ix<-wzW -"+i. For V= 
1 log 2 

2 max (w~W 2, 4wi) and ~<-2"log W '  we have 

Ih ( z 0 -  h (z~)[ -< IA (z3 - A  (z~)l + IA ( z 0 - A  (z~)l 

w 2 W - " + I + Z ~ , + I  ([h,(zO[ + [hi(z2)[) <= w2w--n+I +2w~2 -" 

----< 2 max (w2W ~, 4w02 -("+a) ~ Vx" = VQ(Zl, z~). 

This ends the proof of Lemma 6. 
To prove the assertion of the Theorem, let us assume at first that g~ Lip 1 and 

g>0 .  Let 1/2=>s>0, ~k=1/48 and let W=W(~9) be a corresponding number 
from Lemma 5. It follows that max(fl(g), ?(g))<-R for some number R ~ I .  We 
shall construct two sequences of functions: {gi}~=0= and {h~}i= ~*~ such that giCC(S), 
gi>O and 

(*)  max (fl (gi), ? (gi)) ~- RW i 
for i = 0 , 1  . . . . .  

Let go=g and let us assume that, for some i=>O, we constructed giCC(S), 
g~>O, satisfying the condition ( . ) .  Lemma 5, applied to g~ and R W  i in place 
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of g and R, yields a function hi+~EA(B ), h~+l(0)=0, satisfying the following con- 
ditions: 

(i)' IIh,+lll~ ~ Wllg,[l~, 

(ii)" Re hi+ l < gi on S, 

(iii)' [Igi-Rehi+xIlp p _<- ~llg~[I, 

(iv)' max ( f l (g i -Re  hi+~), r ( g , - R e  h,+l)) <- R W  t+1. 

(v)' T(h,+l)-<-W'+XRllgil[~. 

We define 

(vi)' g,+l = rain ( g i - R e  hi+l, 2 -~-llIgll~). 

The definition (vi)' and the condition (iv)' show that ~ (gi+ 1) <= RW* + 1. Let z~, zzE S 
g/+l (Zt) 

be points such that - -  _->2. Then 
gi + l (Z~) 

and 
gi+l(z~) = ( g i - R e  hi+a)(z ~ 

gi§ (zl) (g~-Re  hi+l) (zl) = RWi+I, 
gi+l (zz) 0(zl, z~) -1 ~ ( g i - R e  hi+l)(z2) Q(zl, z2) -x "< 

(gi -- Re h~+ O(Zl) 
because of (iv)' and the inequality =>2. Hence, f l (g i+l)~RW i+1 

( g i -  Re hi+l)(Zz) 
and this ends the proof of (* )  for i+1  instead of i. 

Moreover, from (vi)" it follows that IFg~ll~<-2-~llgll~,. Hence, because of (i)', 

(a)' I[hi+l][~ --<W2-ii]g[[~. 

Since O<g~+a~_gi-Rehi+l, from (iii)' and by easy induction, it follows that 

(b)' IIg, ll~--< r 

The condition (v)', applied for i - 1  instead of i, together with the inequality 
]]gi_zll~<=2-i+lljg]]~<=]lgll~, gives us 

(c)' T(hi) ~-- wiR[lgl[~. 

Because of  Lemma 6, (a)' and (c)', it follows that f = ~ 1  hiELip c~, for ~_~ 
1 log 2 

- - .  Moreover Ref<=g. Let 
2 log W 

Ai = { g i - R e  h,+x ~ 2-'-111gll~} = { g , - R e  h,+x = gi+l}. 
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Then, because of  (iii)' and (b)', 

[lg,-Reh,+,[lg < 0,+12i+1 
~ ( s - a 3  <= [2_,_al[gl l~]  p _ 

Hence, /'~(('~7=1Ai)= 1 - -P(U~a (S--A,) )  >= 1 -Z~=l  t t ( S - A i )  >= 1 - 2 2 1  (20) '-->1 - e .  
For  zCO~=l Ai, we have Ref ( z )=g(z ) .  This ends the proof  of  the assertion 

of the Theorem in the case g > 0 .  The general case follows by replacing g by g+c,  
if  necessary, where c is some positive constant. 
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