Interpolation by Lipschitz holomorphic functions*

Boguslaw Tomaszewski

Introduction

Let \mathbb{C}^d be d-dimensional complex space (d>1) with norm $|z| = (|z_1|^2 + ... + |z_d|^2)^{1/2}$ and unit ball $B = \{z \in \mathbb{C}^d : |z| < 1\}$. By μ we shall denote the rotation-invariant, normalized Borel measure on $S = \partial B$ and by C(S) — the space of continuous functions on S. If $f \in C(S)$ has a continuous extension $\tilde{f} : \bar{B} \to \mathbb{C}$, holomorphic on B, then we shall write $f \in A(B)$. We shall denote CA = S - A for $A \subset S$ and by $[z_1, z_2]$ — any shortest path on S joining z_1 with z_2 $(z_1, z_2 \in S)$. Let $\varrho(z_1, z_2)$ be the length of a path $[z_1, z_2]$, let $q(z_1, z_2) = |1 - \langle z_1, z_2 \rangle|$ and let K(z, r) = $\{\xi \in S : q(z, \xi) < r\}$ ($\langle z_1, z_2 \rangle$ be the scalar product of the vectors z_1 and z_2). We say that $f \in \text{Lip } \alpha$, where $0 < \alpha \leq 1$, if $f \in C(S)$ and there exists a constant C such that

for $z, \xi \in S$.

$$|f(z)-f(\xi)| \leq C\varrho(z,\xi)$$

Aleksandrov proved [2] that for every real function $g \in C(S)$ and for every $\varepsilon > 0$ there exist functions $f \in A(B)$ such that $\operatorname{Re} f \leq g$ and $\mu(\{z \in S : \operatorname{Re} f(z) = g(z)\}) \geq 1 - \varepsilon$. Sibony proved [4] that if $f \in A(B) \cap \operatorname{Lip} \alpha$ is a nonconstant function with norm $\|f\|_{\infty} \leq 1$, then $\mu(\{z \in S : |f(z)| = 1\}) = 0$. This theorem was strengthened by Henkin (see [3] sect. 11.4), who obtained the following result: If $f \in A(B) \cap \operatorname{Lip} \alpha$ is a nonconstant function such that $\operatorname{Re} f \leq 0$ and $1 \geq \alpha > 1/2$, then $\mu(\{z \in S : \operatorname{Re} f(z) = 0\}) = 0$. It is still an open problem, if the assumption $1 \geq \alpha > 1/2$ can be replaced by a weaker condition $1 \geq \alpha > b$, where b < 1/2. We shall show that b has to be positive:

Theorem. For every $\varepsilon > 0$ there exists $\alpha > 0$ such that for every real function $g \in \text{Lip } 1$ it is possible to find nonconstant functions $f \in A(B) \cap \text{Lip } \alpha$ such that $\text{Re } f \leq g$ on S, and

$$\mu(\{z \in S: \operatorname{Re} f(z) = g(z)\}) \geq 1 - \varepsilon.$$

^{*} This research was partially supported by National Science Foundation Grant MCS 8100782.

Corollary 1. For every $\varepsilon > 0$ there exists $\alpha > 0$ such that for every function $g \in \text{Lip } 1, g > 0$ there exist nonconstant functions $f \in A(B) \cap \text{Lip } \alpha$ such that $|f(z)| \leq g(z)$ for $z \in S$, and

$$\mu(\{z\in S\colon |f(z)|=g(z)\})\geq 1-\varepsilon.$$

Proof. Define $\tilde{g} = \log(g)$ and apply the Theorem to the function \tilde{g} instead of g. We shall get some functions $\tilde{f} \in A(B)$. The functions $e^{\tilde{f}}$ will satisfy the assertion of Corollary 1.

Corollary 2. There exists $\alpha > 0$ such that for every $\varepsilon > 0$ it is possible to find nonconstant functions $f \in A(B) \cap \text{Lip } \alpha$ such that $|| f ||_{\infty} \leq 1$ and

$$\mu(\{z \in S: |f(z)| = 1\}) \ge 1 - \varepsilon.$$

Proof. Let us apply the assertion of Corollary 1 for $\varepsilon_0 = 1/2$ and $g \equiv 1$. We shall get functions $f \in A(B) \cap \text{Lip } \alpha$, for some $\alpha > 0$, such that $|f(z)| \leq 1$ for $z \in S$, and $\mu(E) \geq 1/2$, where $E = \{z \in S : |f(z)| = 1\}$. Let $u = P[\chi_E]$ be the Poisson integral of the characteristic function of the set E. Let us fix $\varepsilon > 0$. Then $u(a) > 1 - \varepsilon$ for some point $a \in B$. Let $\psi \in \text{Aut}(B)$ be an automorphism of the ball B such that $\psi(0) = a$ and let $F = f \circ \psi$. Then $\chi_E \circ \psi = \chi_K$, where $K = \{z \in S : |F(z)| = 1\}$. Moreover

$$\mu(K) = \int_{S} \chi_{K} d\mu = \int_{S} \chi_{E} \circ \psi d\mu = P[\chi_{E} \circ \psi](0) = P(\chi_{E})(\psi(0)) = u(a) \ge 1 - \varepsilon.$$

Also $F \in A(B) \cap \text{Lip } \alpha$ and $|F| \leq 1$ on S. This ends the proof of Corollary 2.

To prove the assertion of the Theorem, we shall need the following lemmas:

Lemma 1 (Aleksandrov). Let $a, N>0, 0 . There exists a number <math>r_0>0$ and $\sigma = \sigma(a, N, p, d) > 0$ such that for every number $r < r_0$ and $K(\xi, r)$ ($\xi \in S$), it is possible to find a function $h \in A(B)$ satisfying the following conditions:

(1) $\operatorname{Re} h(0) = 0$

(2) $|h(z)| \leq a$ for $z \in K(\xi, r)$

$$\leq a\left(\frac{r}{q(\xi,r)}\right)^{N}$$
 for $z\in S-K(\xi,r)$.

(3)

This Lemma was proved by Aleksandrov [1]. The example of the function h, given by Aleksandrov, is $h(z)=g_1\left(\frac{R'}{r}-\frac{R'}{r}\langle z,\xi\rangle\right)$, where R' is some number independent of r and $g_1(z)=ai(1+z)^{-N}$. Hence h is a function defined on some neighborhood of S and it is constant in the directions $w\in \mathbb{C}^n$ such that $\langle w,\xi\rangle=0$.

 $\int_{K(\xi,r)} |\operatorname{Re} h - 1|^p d\mu + \int_{CK(\xi,r)} |h|^p d\mu \leq (1-\sigma)\mu(K(\xi,r)).$

It follows that

(4) $h'_w(z) = 0$ for $z \in S$ and $w \in \mathbb{C}^n$ such that $\langle w, \xi \rangle = 0$,

where h'_w is a directional derivative of the function f at the (complex) direction w. Since the directional derivative of the function $\frac{R'}{r} - \frac{R'}{r} \langle z, \xi \rangle$ at the direction

tion
$$\xi$$
 is $-\frac{R'}{r}$, we have
 $h'_{\xi}(z) = g'_{1}\left(\frac{R'}{r} - \frac{R}{r}\langle z, \xi \rangle\right) \left(-\frac{R'}{r}\right) = \frac{R'}{r} Nia \left(1 + \frac{R'}{r} - \frac{R'}{r}\langle z, \xi \rangle\right)^{-N-1}$.
But $\left|1 + \frac{R'}{r} - \frac{R'}{r}\langle z, \xi \rangle\right| \ge \max\left(1, \frac{R'}{r}q(z, \xi)\right)$, hence
(5) $h'_{\xi}(z) \le \frac{E}{r}$ for $z \in K(\xi, r)$
 $\le \frac{E}{r} \left(\frac{r}{q(z, \xi)}\right)^{-N-1}$ for $z \in S - K(\xi, r)$,

where E is some constant independent of r.

Lemma 2. Let, for $z \in [z_1, z_2]$, v = v(z) be a unit vector tangent to the path $[z_1, z_2]$ at the point z. Then

$$b_1 q(z_1, z_2) \ge \int_{[z_1, z_2]} |\langle v, z \rangle| \, da(z),$$

where a is the "length measure", i.e. $da(z) = d\varrho(z_1, z)$, and b_1 is some constant.

Proof. Let $z_0 \in S$ be a vector such that $\langle z_1, z_0 \rangle = 0$ and the (complex) linear space generated by z_1 and z_0 contains z_2 . Hence, there are numbers $\alpha_1, \alpha_2 \in \mathbb{C}$ such that α_1 is real, $|\alpha_1|^2 + |\alpha_2|^2 = 1$ and

$$z_2 = \cos t_0 z_1 + \sin t_0 (\alpha_1 i z_1 + \alpha_2 z_0),$$

where $0 \le t_0 \le \pi$. It follows that the function

$$\Gamma(t) = (\cos t + i\alpha_1 \sin t) z_1 + \alpha_2 \sin t z_0,$$

where $0 \le t \le t_0$, is a parametrization of the path $[z_1, z_2]$. If $z = \Gamma(t)$ for some $0 \le t \le t_0$, then $da(z) = |\Gamma'(t)| dt = dt$ and

$$v = v(z) = \Gamma'(t) = (-\sin t + i\alpha_1 \cos t) z_1 + \alpha_2 \cos t z_0.$$

Hence, $\langle v, z \rangle = -i\alpha_1$ and $\int_{[z_1, z_2]} |\langle v, z \rangle| d\lambda(z) = |\alpha_1| t_0$. On the other hand, $q(z_1, z_2) =$

$$|1 - \langle z, \Gamma(t_0) \rangle| = |1 - \cos t_0 + i \cdot \alpha_1 \cdot \sin t_0| \ge \max (1 - \cos t_0, \sin t_0) \cdot |\alpha_1|. \text{ Hence}$$
$$\int_{[z_1, z_2]} |\langle v, z \rangle| \, d\lambda(z) \ge \frac{t_0}{\max (1 - \cos t_0, \sin t_0)} \, q(z_1, z_2) \ge \frac{\pi}{2} \, q(z_1, z_2).$$

This ends the proof of Lemma 2.

For $g \in C(S)$, g > 0, let $\beta(g) = \sup \left(\frac{g(z_1)}{g(z_2)}q(z_1, z_2)^{-1}\right)$, where the supremum is taken over all points $z_1, z_2 \in S$ such that $\frac{g(z_1)}{g(z_2)} \ge 2$. If there are not such points, we define $\beta(g) = 1$.

For $\xi, z \in S$, let

$$\gamma_{\xi}(z) = \limsup_{\eta \to 0} \left| \frac{g\left(\frac{z+\eta\xi}{|z+\eta\xi|}\right) - g(z)}{\eta} \right|.$$

We shall say that $\gamma(g) \leq R$, if $\frac{\gamma_{\xi}(g)(z)}{g(z)} \leq R |\langle z, \xi \rangle| + \sqrt{R}$ for all $z, \xi \in S$.

For $g \in C(S)$ (not necessarily positive) we define

$$T(g) = \sup_{z,\xi \in S, z \neq \xi} \left| \frac{g(z) - g(\xi)}{z - \xi} \right|.$$

There exists a constant C_1 such that, for every $r \ge 0$, $k \ge 1$, $z \in S$, the inequality $\mu(K(z, kr)) \le C_1 k^d \mu(K(z, r))$ holds (see [3] sect. 5.1.4).

Lemma 3. Assume that $g \in C(S)$, g > 0, $\gamma(g) \leq R$, s > 1, $z_1, z_2 \in S$ and $\frac{g(z_1)}{g(z_2)} \geq s$. Then $q(z_1, z_2) \geq C_2 \left(\frac{s-1}{s}\right)^2 R^{-1}$, where C_2 is some constant.

Proof. Let g, s, z_1, z_2 satisfy the assumption of Lemma 3. Let us take $z \in [z_1, z_2]$ such that $g(z)=g(z_1)$ and $g(\zeta) \leq g(z_1)$ for every $\zeta \in [z, z_2]$. Let $v=v(\zeta)$ be a unit vector tangent to $[z_1, z_2]$ at the point $\zeta \in [z, z_2]$. Then

$$g(z) - g(z_2) \leq \int_{[z_1, z_2]} \gamma_{\nu}(g)(\xi) \, d\lambda(\xi) \leq \int_{[z_1, z_2]} g(\xi) \left(R | \langle \nu, \xi \rangle | + \sqrt{R} \right) \, da(\xi)$$

$$\leq [b_1 R q(z, z_2) + R \varrho(z, z_2)] g(z_1) \leq [b_1 R q(z_1, z_2) + \sqrt{R} \varrho(z_1, z_2)] g(z_1),$$

because of Lemma 2 and the inequalities $q(z, z_2) \leq q(z_1, z_2)$, $\varrho(z, z_2) \leq \varrho(z_1, z_2)$. Dividing by $g(z_1)$, we get

$$q(z_1, z_2) \ge 1/2 \, \frac{g(z_1) - g(z_2)}{Rbg(z_1)} \ge 1/2 \, b_1^{-1} R^{-1} \frac{s-1}{s}$$

or

$$\varrho(z_1, z_2) \ge 1/2 \, \frac{g(z_1) - g(z_2)}{g(z_1)} \, R^{-1/2} \ge 1/2 \, \frac{s-1}{s} \, R^{-1/2}.$$

Since there exists a constant b_2 such that, for $z', z'' \in S$, $\varrho(z', z'')^2 \leq b_2 q(z', z'')$, the assertion of Lemma 3 follows. Let us fix some number 0 .

Lemma 4. There exist constants $C, \tau > 0$, with the following properties: If $g \in C(S)$, g > 0, $R \ge 1$ and $\max(\beta(g), \gamma(g)) \le R$, then there exists a function $h \in A(B)$ such that

(i) $|h| \leq \frac{1}{10}g$ on S, (ii) $||g - \operatorname{Re} h||_{p}^{p} \leq (1 - \tau) ||g||_{p}^{p}$, (iii) $\max \left(\beta(g - \operatorname{Re} h), \gamma(g - \operatorname{Re} h)\right) \leq CR$, and (iv) $T(h) \leq CR ||g||_{\infty}$.

Proof. Let N=d+4, $P=\sum_{n=0}^{\infty}\sum_{k=2^n}^{\infty}2^d(k+2)^{d+1}2^{n+1}k^{-N}$ and $a=(20PC_1)^{-1}$. Let $\sigma=\sigma(a, N, p, d)$ and r_0 be numbers given by Lemma 1 and let η be a constant such that $0 \le \eta \le r_0$ and

$$\left(1 - \left(4\frac{\eta}{C_1}\right)^{1/2}\right)^{-1} \leq \min\left[2, 1 + \left(\frac{1}{2}\sigma\right)^{1/p}, \left(1 - \frac{1}{2}\sigma\right)^{-1/2p}\right]$$

From Lemma 3 it follows that if one of the inequalities

(6)

$$|g(z_1) - g(z_2)|^p \ge g(z_2)^p \frac{1}{2}\sigma,$$

$$(1 - \frac{1}{2}\sigma)^{1/2p}g(z_2) \ge g(z_1),$$

$$1/2g(z_1) \ge g(z_2) \text{ or } 1/2g(z_2) \ge g(z_1)$$

holds with g satisfying the assumptions of Lemma 4, then $q(z_1, z_2) \ge 4r$, where $r = \eta R^{-1}$.

Let $\mathfrak{F} = \{K(\xi_j, r)\}_{j=1}^M$ be a maximal family of disjoint balls and let $D = \bigcup \mathfrak{F}$. Since (6) fails for $z_1 = \xi_j$ and $z_2 \in K(\xi_j, 4r)$, we have

$$\int_{K(\xi_j, 4r)} g^p d\mu \leq 2^p g(\xi_j)^p \mu \big(K(\xi_j, 4r) \big)$$
$$\leq 2^p C_1 4^d g(\xi_j)^p \mu \big(K(\xi_j, r) \big) \leq F \int_{K(\xi_j, r)} g^p d\mu,$$

where $F = 2^{p} C_{1} 4^{d} 2^{p}$.

Summing over all j=1, 2, ..., M and applying the equality $S = \bigcup_{j=1}^{M} K(\xi_j, 4r)$ (because $q^{1/2}$ is a metric), we get

(7)
$$\int_{S} g^{p} d\mu \leq F \int_{D} g^{p} d\mu$$

Lemma 1 yields functions h_j (j=1, 2, ..., M) associated to $K(\xi_j, r)$ with a and

N defined above. We claim that the function $h = \sum_{j=1}^{M} g(\xi_j) h_j$ satisfies the conclusion of Lemma 4. Let us denote $H_j = g(\xi_j) \operatorname{Re} h_j$ for j = 1, 2, ..., M. We have

(8)
$$\int_{K(\xi_{j},r)} |g-H_{j}|^{p} d\mu + \int_{CK(\xi_{j},r)} |H_{j}|^{p} d\mu$$
$$\leq \int_{K(\xi_{j},r)} |g-g(\xi_{j})|^{p} d\mu + g(\xi_{j})^{p} \int_{K(\xi_{j},r)} |1-h_{j}|^{p} d\mu + g(\xi_{j})^{p} \int_{CK(\xi_{j},r)} |h_{j}|^{p} d\mu.$$

Since (b) fails for $z_1 = \xi_j$ and $z_2 \in K(\xi_j, r)$, we get

(9)
$$\int_{K(\xi_j,r)} |g-g(\xi_j)|^p d\mu \leq 1/2 \sigma \mu \big(K(\xi_j,r) \big) g(\xi_j)^p.$$

Using the same argument, we show that

(10)
$$[(1-1/2\sigma)^{1/2p}g(\xi_j)]^p \mu(K(\xi_j, r)) \leq \int_{K(\xi_j, r)} g^p d\mu.$$

Combining (8), (9), (3) and (10) we obtain

(11)
$$\int_{K(\xi_{j},r)} |g-H_{j}|^{p} d\mu + \int_{CK(\xi_{j},r)} |H_{j}|^{p} d\mu \leq (1-1/2\sigma)\mu (K(\xi_{j},r))g(\xi_{j})^{p}$$
$$\leq (1-1/2\sigma)^{1/2} \int_{K(\xi_{j},r)} g^{p} d\mu = (1-\tau^{*}) \int_{K(\xi_{j},r)} g^{p} d\mu,$$

where $\tau^* = 1 - (1 - 1/2\sigma)^{1/2}$. Let $D = \bigcup_{j=1}^M K(\xi_j, r)$. On $K(\xi_j, r)$ the following inequality

$$|g-\operatorname{Re} h|^p \leq |g-H_j|^p + \sum_{i=j} |H_i|^p$$

holds, and on CD,

$$|g-\operatorname{Re} h|^p \leq g^p + \sum_{i=1}^M |H_i|^p$$

Hence

$$\int_{S} |g - \operatorname{Re} h|^{p} d\mu \leq \sum_{j=1}^{M} \left[\int_{K(\xi_{j}, r)} |g - H_{j}|^{p} d\mu + \sum_{i \neq j} \int_{K(\xi_{j}, r)} |H_{i}|^{p} d\mu \right] + \int_{CD} g^{p} d\mu + \int_{CD} \sum_{i=1}^{M} |H_{i}|^{p} d\mu.$$

Each function $|H_i|^p$ is integrated over *CD* and over all $K(\xi_j, r)$ with $j \neq i$, hence over $CK(\xi_i, r)$. Thus

(12)
$$\int_{S} |g - \operatorname{Re} h|^{p} d\mu \leq \sum_{j=1}^{M} \int_{K(\xi_{j}, r)} |g - H_{j}|^{p} d\mu + \sum_{j=1}^{M} \int_{CK(\xi_{j}, r)} |H_{j}|^{p} d\mu + \int_{CD} g^{p} d\mu.$$

Summing (11) over j=1, 2, ..., M and applying to (12), we get

$$\int_{S} |g - \operatorname{Re} h|^{p} d\mu \leq (1 - \tau^{*}) \int_{D} g^{p} d\mu + \int_{CD} g^{p} d\mu = \int_{S} g^{p} d\mu - \tau^{*} \int_{D} g^{p} d\mu,$$

and because of (7)

(13)
$$\int_{S} |g - \operatorname{Re} h|^{p} d\mu \leq \int_{S} g^{p} d\mu - \frac{\tau^{*}}{F} \int_{S} g^{p} d\mu = (1 - \tau) \int_{S} g^{p} d\mu,$$

for $\tau = \frac{\tau^*}{F}$. This proves (ii).

Next, we prove (i). Let us fix a point $z \in S$. Define

$$A_n = A_n(z) = \{\xi_j \colon 2^n g(z) \le g(\xi_j) < 2^{n+1} g(z)\}$$

for $n=1, 2, ..., A_0 = A_0(z) = \{\xi_j : g(\xi_j) < 2g(z)\}$. Let us assume that $\xi_j \in A_n$ for some n > 0. Then $R \ge \beta(g) \ge \frac{g(\xi_j)}{g(z)} q(z, \xi_j)^{-1} \ge 2^n q(z, \xi_j)^{-1}$, hence

$$q(z,\,\xi_j) \geqq 2^n R^{-1} \geqq 2^n r.$$

Hence, if $A_n^k = \{\xi_j \in A_n : kr \le q(z, \xi_j) < (k+1)r\}$, then $A_n^k = \emptyset$ for $k = 1, 2, ..., 2^n - 1$. Since $K(\xi_j, r) \subset K(z, 2(k+2)r)$ for $\xi_j \in A_n^k$ (this inclusion follows from the fact that $q^{1/2}$ is a metric on S), we have

$$|A_n^k| \mu \big(K(\xi_j, r) \big) \leq \mu \big(K(z, 2(k+2)r) \big) \leq C_1 2^d (k+2)^d \mu \big(K(z, r) \big)$$

and since $\mu(K(\xi_j, r)) = \mu(K(z, r))$, it follows that $|A_n^k| \leq C_1 2^d (k+2)^d$. Because of (2) and the definitions of A_n^k and a, we have

(14)
$$|h(z)| \leq \sum_{i=1}^{M} |h_j(z)| g(\xi_j) \leq \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\xi_j \in A_n^k} (k^{-N}a) 2^{n+1} g(z)$$

$$\leq \sum_{n=0}^{\infty} \sum_{k=2^n}^{\infty} C_2 2^d (k+2)^d 2^{n+1} k^{-N} ag(z) \leq \frac{1}{10} g(z),$$

which proves (i).

We turn to (iv). Let $\xi, z \in S$. For $\xi_j \in A_n^k(z)$, we have

$$\langle \xi, \xi_j \rangle | \leq |\langle \xi, z \rangle| + |\langle \xi, \xi_j - z \rangle|$$

 $\leq |\langle \xi, z \rangle| + |\xi_j - z| \leq |\langle \xi, z \rangle| + \sqrt{2} q(\xi_j, z)^{1/2} \leq |\langle \xi, z \rangle| + \sqrt{2} [(k+1)r]^{1/2}.$

Now, applying (4) and (5), we obtain

$$|g(\xi_j)(h_j)'_{\xi}|(z) \leq E \frac{a}{r} k^{-N-1} g(\xi_j) |\langle \xi, \xi_j \rangle|$$

$$\leq E \frac{a}{r} k^{-N-1} 2^{n+1} g(z) (|\langle \xi, z \rangle| + \sqrt{2} [(k+1)r]^{1/2})$$

Summing over j=1, 2, ..., M and applying the same argument as before, we get

(15)
$$|h'_{\xi}(z)| \leq \sum_{j=1}^{M} |g(\xi_{j})(h_{j})'_{\xi}(z)| \leq Ear^{-1}C_{2}2^{d}g(z)$$
$$\cdot \sum_{n=0}^{\infty} \sum_{k=2^{n}}^{\infty} (k+2)^{d}k^{-N-1}2^{n+1} (|\langle \xi, z \rangle| + \sqrt{2}[(k+1)r]^{1/2})$$
$$\leq C_{3}g(z) (|\langle \xi, z \rangle| R + \sqrt{R}),$$

where C_3 is some constant. This inequality shows that

(16)
$$T(h) \leq 2C_3 R \|g\|_{\infty}.$$

Proof of (iii): Because of (15) and (14), we have

$$\gamma_{\xi}(g - \operatorname{Re} h)(z) \leq [\gamma_{\xi}(g) + |h_{\xi}'|](z) \leq (1 + C_{3}) (|\langle \xi, z \rangle| R + \sqrt{R}) g(z)$$
$$\leq \frac{10}{9} (1 + C_{3}) (|\langle \xi, z \rangle| R + \sqrt{R}) (g - \operatorname{Re} h)(z).$$

This proves that

(17)
$$\gamma(g-\operatorname{Re} h) \leq \left(\frac{10}{9}\left(1+C_3\right)\right)^2 R$$

Let us assume that $\frac{(g - \operatorname{Re} h)(z_1)}{(g - \operatorname{Re} h)(z_2)} = s \ge 2$. Because of (14), we have $\frac{g(z_1)}{g(z_2)} \ge \frac{9}{11}s$. If $\frac{9}{11}s \ge 2$, then (because $\beta(g) \le R$)

$$\left(\frac{9}{11}s\right)q(z_1, z_2)^{-1} \leq R,$$

hence

$$\frac{(g - \operatorname{Re} h)(z_1)}{(g - \operatorname{Re} h)(z_2)} q(z_1, z_2)^{-1} \leq \frac{11}{9} R.$$

If $\frac{9}{11}s \le 2$, then applying Lemma 3 and the inequality $s_0 \stackrel{\text{def}}{=} \frac{9}{11}s \le \frac{18}{11}$, we have $q(z_1, z_2) \ge C_2 \left(\frac{s_0 - 1}{s_0}\right)^2 R^{-1} \ge C_2 \frac{49}{324} R^{-1}$, hence

$$\frac{(g - \operatorname{Re} h)(z_1)}{(g - \operatorname{Re} h)(z_2)} q(z_1, z_2)^{-1} \le s \frac{324}{49C_2} R \le \frac{792}{49C_2} R$$

because $s \leq \frac{22}{9}$. This shows that $\beta(g - \operatorname{Re} h) \leq \max\left(\frac{11}{9}, \frac{792}{49C_2}\right)R$ and together with (17) concludes the proof of (iii).

Lemma 5. To every $\psi > 0$ corresponds a number $W=W(\psi)>0$ with the following property: If $g \in C(S)$, g > 0, $\max(\beta(g), \gamma(g)) \leq R$, then there is an $h \in A(B)$, with Re h(0)=0, so that

- (i) $||h||_{\infty} \leq W ||g||_{\infty}$,
- (ii) Re h < g on S,
- (iii) $||g \operatorname{Re} h||_{p}^{p} \leq \psi ||g||_{p}^{p}$,
- (iv) $\operatorname{max}(\beta(g-\operatorname{Re} h), \gamma(g-\operatorname{Re} h)) \leq WR$,
- (v) $T(h) \leq WR \|g\|_{\infty}$.

Proof. Let us take a function g satisfying the assumptions of Lemma 5 and a number $n = \left[\frac{\log \psi}{\log (1-\tau)}\right] + 1$. We shall construct two sequences of functions: $\{g_0, g_1, ..., g_n\}$ and $\{h_1, h_2, ..., h_n\}$. Let us put $g_0 = g$. Now let us assume that for $0 \le i < n$ we constructed a sequence $\{g_1, g_2, ..., g_i\}$ of positive and continuous functions on S such that

(a) $\max(\beta(g_i), \gamma(g_i)) \leq C^i R$,

where C is a constant as in Lemma 4. Of course, this condition is satisfied for i=0. Lemma 4, applied to g_i and $C^i R$ in place of g and R, yields a function $h_{i+1} \in A(B)$, $h_{i+1}(0)=0$, satisfying the following conditions:

- (b) $|h_{i+1}(z)| \leq \frac{1}{10} g_i(z)$ for $z \in S$,
- (c) $||g_i \operatorname{Re} h_{i+1}||_p^p \leq (1-\tau) ||g_i||_p^p$,
- (d) $\max \left(\beta(g_i \operatorname{Re} h_{i+1}), \gamma(g_i \operatorname{Re} h_{i+1})\right) \leq C^{i+1}R,$
- (e) $T(h_{i+1}) \leq C^{i+1} R \|g_i\|_{\infty}$.

Let us define $g_{i+1}=g_i-\operatorname{Re} h_{i+1}$. From (b) it follows that $g_{i+1}\geq 0$. The condition (d) is the condition (a) for i-1.

We shall prove that the function $h = \sum_{i=1}^{n} h_i$ satisfies the conditions (i)—(v) of Lemma 4 with $W = (2\tilde{C})^{n+1}$, where $\tilde{C} = \max(1, C)$. We claim that $||g_i||_{\infty} \le 2^i ||g_0||_{\infty}$ for i=0, 1, ..., n. The equality holds for i=0. Let us assume that this is true for some $0 \le i < n$. Then

1

$$\begin{split} \|g_{i+1}\|_{\infty} &= \|g_i - \operatorname{Re} h_{i+1}\|_{\infty} \leq \|g_i\|_{\infty} + \|h_{i+1}\|_{\infty} \leq \|g_i\|_{\infty} + \frac{1}{10} \|g_i\|_{\infty} \\ &\leq \left(1 + \frac{1}{10}\right) 2^i \|g_0\|_{\infty} \leq 2^{i+1} \|g_0\|_{\infty}, \end{split}$$

because of (b) and our assumption. Hence,

$$\|h\|_{\infty} \leq \sum_{i=1}^{n} \|h_{i}\|_{\infty} \leq \frac{1}{10} \sum_{i=1}^{n} \|g_{i-1}\| \leq \sum_{i=1}^{n} 2^{i-1} \|g_{0}\|_{\infty} \leq 2^{n} \|g\|_{\infty},$$

because of (b) and the definition of g_0 . This proves (i), since $2^n \leq W$.

We have $0 < g_n = g_0 - (\operatorname{Re} h_1 + \operatorname{Re} h_2 + ... + \operatorname{Re} h_n) = g - \operatorname{Re} h$ and (ii) follows. We shall show that $\|g_i\|_p^p \leq (1-\tau)^i \|g\|_p^p$. The equality holds for i=0. If it is true for some $0 \leq i < n$, then $\|g_{i+1}\|_p^p \leq (1-\tau) \|g_i\|_p^p \leq (1-\tau)^{i+1} \|g\|_{\infty}$, because of (c) and the definition of g_{i+1} . It follows that $\|g - \operatorname{Re} h\|_p^p = \|g_n\|_p^p \leq (1-\tau)^n \|g\|_p^p \leq \psi \|g\|_p^p$, because of our choice of n. This proves (iii).

The condition (iv) follows from (d) for i=n-1, since g_{n-1} -Re $h_n=g$ -Re h. Finally, because of (e) and the inequality $||g_i||_{\infty} \leq 2^i ||g||_{\infty}$, we have

$$T(h) \leq \sum_{i=1}^{n} T(h_{i}) \leq \sum_{i=1}^{n} C^{i} R \|g_{i-1}\|_{\infty} \leq \sum_{i=1}^{n} C^{i} 2^{i-1} R \|g\|_{\infty},$$

which proves (v).

Lemma 6. Let us assume that $h_i \in C(S)$, $||h_i||_{\infty} \leq w_1 2^{-i}$, $T(h_i) \leq w_2 W^i$, where w_1, w_2, W are some constants, $W \geq 2$, i=1, 2, ... Then $h = \sum_{i=1}^{\infty} h_i \in \text{Lip } \alpha$ for $\alpha \leq \frac{1}{2} \frac{\log 2}{\log W}$.

Proof. Let us take any number $0 < \varkappa \leq 1$ and an integer *n* such that $W^{-(2n+2)} \leq \varkappa \leq W^{-2n}$. Define $f_1 = \sum_{i=1}^n h_i$, $f_2 = \sum_{i=n+1}^\infty h_i$. Then $T(f_1) \leq \sum_{i=1}^n T(h_i) \leq w_2 W^{n+1}$. Hence, if $\varrho(z_1, z_2) = \varkappa$, then $|f_1(z_1) - f_1(z_2)| \leq w_2 W^{n+1} \varkappa \leq w_2 W^{-n+1}$. For $V = 2 \max(w_2 W^2, 4w_1)$ and $\alpha \leq \frac{1}{2} \frac{\log 2}{\log W}$, we have $|h(z_1) - h(z_2)| \leq |f_1(z_1) - f_1(z_2)| + |f_2(z_1) - f_2(z_2)|$ $\leq w_2 W^{-n+1} + \sum_{i=n+1}^\infty (|h_i(z_1)| + |h_i(z_2)|) \leq w_2 W^{-n+1} + 2w_1 2^{-n}$ $\leq 2 \max(w_2 W^2, 4w_1) 2^{-(n+1)} \leq V \varkappa^2 = V \varrho(z_1, z_2).$

This ends the proof of Lemma 6.

To prove the assertion of the Theorem, let us assume at first that $g \in \text{Lip 1}$ and g > 0. Let $1/2 \ge \varepsilon > 0$, $\psi = 1/4\varepsilon$ and let $W = W(\psi)$ be a corresponding number from Lemma 5. It follows that $\max(\beta(g), \gamma(g)) \ge R$ for some number $R \ge 1$. We shall construct two sequences of functions: $\{g_i\}_{i=0}^{\infty}$ and $\{h_i\}_{i=1}^{\infty}$ such that $g_i \in C(S)$, $g_i > 0$ and

(*)
$$\max(\beta(g_i), \gamma(g_i)) \leq RW^i$$

for i=0, 1, ...

Let $g_0 = g$ and let us assume that, for some $i \ge 0$, we constructed $g_i \in C(S)$, $g_i > 0$, satisfying the condition (*). Lemma 5, applied to g_i and RW^i in place

336

of g and R, yields a function $h_{i+1} \in A(B)$, $h_{i+1}(0) = 0$, satisfying the following conditions:

- (i)' $\|h_{i+1}\|_{\infty} \leq W \|g_i\|_{\infty}$,
- (ii)' Re $h_{i+1} < g_i$ on S,
- (iii)' $||g_i \operatorname{Re} h_{i+1}||_p^p \leq \psi ||g_i||,$
- (iv)' $\max \left(\beta(g_i \operatorname{Re} h_{i+1}), \gamma(g_i \operatorname{Re} h_{i+1})\right) \leq RW^{i+1}$.

(v)'
$$T(h_{i+1}) \leq W^{i+1} R \|g_i\|_{\infty}.$$

We define

(vi)'
$$g_{i+1} = \min(g_i - \operatorname{Re} h_{i+1}, 2^{-i-1} ||g||_{\infty}).$$

The definition (vi)' and the condition (iv)' show that $\gamma(g_{i+1}) \leq RW^{i+1}$. Let $z_1, z_2 \in S$ be points such that $\frac{g_{i+1}(z_1)}{g_{i+1}(z_2)} \geq 2$. Then

$$g_{i+1}(z_2) = (g_i - \operatorname{Re} h_{i+1})(z_2)$$

and

$$\frac{g_{i+1}(z_1)}{g_{i+1}(z_2)}\,\varrho(z_1,\,z_2)^{-1} \leq \frac{(g_i - \operatorname{Re} h_{i+1})(z_1)}{(g_i - \operatorname{Re} h_{i+1})(z_2)}\,\varrho(z_1,\,z_2)^{-1} \leq RW^{i+1},$$

because of (iv)' and the inequality $\frac{(g_i - \operatorname{Re} h_{i+1})(z_1)}{(g_i - \operatorname{Re} h_{i+1})(z_2)} \ge 2$. Hence, $\beta(g_{i+1}) \le RW^{i+1}$ and this ends the proof of (*) for i+1 instead of i.

Moreover, from (vi)' it follows that $||g_i||_{\infty} \leq 2^{-i} ||g||_{\infty}$. Hence, because of (i)',

(a)'
$$||h_{i+1}||_{\infty} \leq W 2^{-i} ||g||_{\infty}.$$

Since $0 < g_{i+1} \le g_i - \operatorname{Re} h_{i+1}$, from (iii)' and by easy induction, it follows that

(b)'
$$||g_i||_p^p \leq \psi^i ||g||_{\infty}$$
.

The condition (v)', applied for i-1 instead of *i*, together with the inequality $||g_{i-1}||_{\infty} \leq 2^{-i+1} ||g||_{\infty} \leq ||g||_{\infty}$, gives us

(c)' $T(h_i) \leq W^i R \|g\|_{\infty}$.

Because of Lemma 6, (a)' and (c)', it follows that $f = \sum_{i=1}^{\infty} h_i \in \text{Lip } \alpha$, for $\alpha \leq \frac{1}{2} \frac{\log 2}{\log W}$. Moreover $\text{Re} f \leq g$. Let $A_i = \{g_i - \text{Re} h_{i+1} \leq 2^{-i-1} \|g\|_{\infty}\} = \{g_i - \text{Re} h_{i+1} = g_{i+1}\}.$ Then, because of (iii)' and (b)',

$$\mu(S-A_i) \leq \frac{\|g_i - \operatorname{Re} h_{i+1}\|_p^p}{[2^{-i-1}\|g\|_{\infty}]^p} \leq \psi^{i+1} 2^{i+1}.$$

Hence, $\mu(\bigcap_{i=1}^{\infty} A_i) = 1 - \mu(\bigcup_{i=1}^{\infty} (S - A_i)) \ge 1 - \sum_{i=1}^{\infty} \mu(S - A_i) \ge 1 - \sum_{i=1}^{\infty} (2\psi)^i \ge 1 - \varepsilon$. For $z \in \bigcap_{i=1}^{\infty} A_i$, we have $\operatorname{Re} f(z) = g(z)$. This ends the proof of the assertion

of the Theorem in the case g>0. The general case follows by replacing g by g+c, if necessary, where c is some positive constant.

Acknowledgements

I am grateful to Professor Walter Rudin for his many valuable hints during preparation of this text.

References

- 1. ALEKSANDROV, A. B., The existence of inner functions in the ball, *Mat. Sb.* 118 (1982), 147–163. (In Russian: Mathematics of the USSR Sbornik, Vol. 46.2 (1983), 143–161.)
- 2. ALEKSANDROV, A. B., preprint.
- 3. RUDIN, W., Function theory in the unit ball of C^n , Springer-Verlag, New York, 1980.
- SIBONY, N., Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Lecture Notes in Mathematics, No. 578, 300-313, Springer-Verlag, Heidelberg, 1977.

Received January 1, 1984

Boguslaw Tomaszevski Department of Mathematics Oklahoma State University Stillwater, Oklahoma 74078 USA