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1. Introduction 

The purpose of this paper is to prove pointwise inequalities and to establish 
the boundedness on L p (weighted) spaces for pseudo-differential operators with sym- 
bols a(x, 4) in the class S -"~/~ 0 < a < l .  The prototype of our results is a theorem 
of Chanillo [1] for  the particular case a(x, 4)=eilr where 0(4) is a 
smooth cut-off function vanishing in a neighborhood of the origin. We point out, 
however, that whereas ChaniUo's results make extensive use of the kernel formula, 
the method used here is to break up the symbol instead, in a manner compatible 
with the decomposition of the function. This idea may also be used to establish weak- 
type (1, 1) inequalities as has been done by ChaniUo, Kurtz and Sampson [2]. 

In order to state our results we begin by introducing the relevant notations and 
definitions. We say that a symbol a(x, 4) is in the class Se~,~, or that aESe'~, if 
for x, ~ in R", 

0= 0a " 4) (1+1~1) m-Qlat+at=l. ~ - O - ~ t x ,  <_- c,.p 

We will consider in this paper pseudo-differential operators (~.d.o.) with symbols 
S m a(x, ~)E Q,~, that is we consider operators T given by 

TfCx) = f rt, e'~'' ~a(x, ~)f(4) d4, 

where f is a Schwartz function and f denotes the Fourier transform off .  
In addition to the well-known L ~ results for some classes of ~.d.o. we mention 

here that more recently sharp L p boundedness results for operators with symbols in 
the class S~-fa, n with 0 - < _ 6 < a - l < l  and fl<na/2 have been established by C. 
Fefferman [4]. 
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We set 
t 1 ~l/v 

m j ( x )  = sup |r-~ f ~ lf(y)l,'dy I 
x~ t2 

where Q is a cube with sides parallel to the coordinate axes. This is the generalized 
Hardy--Littlewood maximal function o f f  We also need the sharp maximal function 
f*~ o f f  which is given by 

1 
f *  (x) = sup ~ fo If(y)-ft2ldy, 

I 
where fQ=-~l f e f (Y) dy. 

For a general symbol a(x, ~acS-"/2 0 < 6 < l - a ,  0 < a < l ,  we will show ~1~'- l--a,6, 
that for fCCo (R"), 

(1.1) (Tf)* (x) ~- cMff(x). 

A proof of this assertion may be found in Section 2, Lemma (2.4). An interesting 
open question is whether (1.1) is best possible, i.e. whether 2 is the smallest index that 
may be used in the right hand side of the inequality. If one is willing to specialize 
the symbols a(x, 4) then it is possible to obtain sharper results. The main result proved 
in this paper is 

Theorem (1.2). Let 0 < a < l ,  and a(x, ~)ES~,g ~ Consider the ~b.d.o. 

Tf(x) = JR. 0?(0 de. 

Then for l < r < o o  and fECo(R" ) 

( r f )*  (x) <- c,M,f(x). 

Theorem (1.2), and of course Lemma (2.4), lead to various weighted L p inequa- 
lities. We list some of them as a theorem but do not prove them as the proof tech- 
nique, once we have the pointwise estimates, is by now well-known. We refer to 
Kurtz and Wheeden [7] and Miller [8], for instance, for further details. 

We adopt the usual notation that 

Ilfll,,,,, = (JR. If(x)l" w(x) dx) ~'p 

and we say that wEAv if 

( so x)( so 1"-' 1 1 _ l l ( p _ l ) d x  : sup w (x) d w (x) < c. 
Q 

Again, as usual, A~=  0v_~xAp. We then have 
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Theorem (1.3). Let Tf  be a ~b.d.o. with symbol a(x, e)~S~_~, 5 < l - a ,  
0 < a < l .  

(a) Let wCAoo, then, for 0<p<~o and f~Co(R~), 

Ilzfllp, w <- % l l n e f l l p ,  w.  

(b) Let w~Apl~, then, for 2<=p<oo, and f~Co(R~), 

liTfllp, ~ <-- % I[fllp,..  

Theorem (1.4). Let Tf  be a ~.d.o. with symbol e~lr ~), o(x, ~,-r '~/~- ~ 1 ,  0 

and O < a < l .  
(a) Let wCA.o, then, for l< r<r  0<p<r  and f6Co(R~), 

IlZfHp, w <= C . , p l l n .  f l l p ,  w.  

(b) Let w~Ap, then, for l<p<r  

IlZfllp,~ -<- %HfI[~,~. 

We would like to point out that it is possible to prove weighted weak type (1, I) 
estimates for w~A~, for ~.d.o.'s with symbol eitCt*o(x, e), a(x, ~)~S~o ~lz. The 
technique of the proof is based on the decomposition lemma of Chanillo in [1]. 

2. Preliminary lemmas 

We begin by introducing a notation. By Tx["~ t we denote the fact that the values 
of x in question lie in the annulus {xCRn: at<]xl<bt} where 0<a<=l<b<r 
and the precise values of a and b are irrelevant. 

Lemma (2.1). Let o(x,~:xcS -nat2 0<6<-1 and 0 < a < l .  Let k(x,w) 
denote the inverse Fourier transform, in the f-variable and in the distribution sense of  
o(x, e), that is informally 

k (x, w) = f e 'r162 w) a (x, 4) de. 

Then for Ix-xo[<=d<-l/2 and N>=l, 

(f Ik(x, x - y ) - k ( x o ,  Xo-y)12dy) 1/2 

~ ClX--XoltX-~)(m-"/z)l(2Nd)m(1-o) 

where m is an integer such that n/2<m<n/2+ l/(1-a). 

Proof. The idea behind the proof is by now fairly standard. However, we do 
point out that unlike the Calder6n--Zygmund class of symbols, i.e. a(x, r176 
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the exponent 2 in the integrand seems to be the largest value that can be used and the 
proof below breaks down for exponents larger than 2. 

Let ~i~o 0i(~ ) -  1 be a smooth partition of unity such that 0~( 0 is supported 
in 1~1~2% j>=l, and 0o(4 ) is supported in 1~1~_2. Let a ( x , Q = ~ c r j ( x , O ,  
qj(x, ~)=a(x, r Moreover, put 

fl~, ef(x' ~) aj (x, ~)f(~) de = f l t .  ki(x' x -  y) f ( y )  dy, j >= O. 

Thus k(x, w ) = Z j ~  o kj(x, w). We now get 

( f  tk(x, x -  y)-k(xo. Xo- y)1'dy) 

-<- 27=0 (fjy-~oI~c~"a),--lkj (x, x -  y ) - k j ( x o ,  x o -  y)l ~ d Y f  I~" 

We choose j0 so that 22~lx-xol.-.1, and break up the sum on the right above as 
follows, 

Y.  <jo ( f  ikAx, y)-k j (xo,  Xo- Y)l 2 dY) 112 

+ Zj ,. xo- y)[~ dy) v2 

+Z~_~A(fly_x01~(z~a)a_ * [kj(x,x-y)]Zdyf/~ ~ It+I2+Ia, say. 

We discuss I~ and I~ first. Since both terms are treated similarIy we only estimate I~ 
here, Now 

Ia < c X (2 N d) -'(x-~) ( f lkj(x, x -y)]~ ly-xor  m dy) ~l~" 
=" ~-" J-~io " ~d ly_x01~(~Ox-- 

Since Ix-xol ~-d~_ 1/2 and lY-x0l ~ (2Nd) ~-~ in the above integral we also have that 
for those y's in question ]y-Xo] <=c Iy-x[. Thus the right side above is bounded by 

--. . , ,~ . - , . (1 - . )  ( f  ,y_~~ lkj(x,x_y)lZiy_xl~,~dy)~/2. 

We may now majorize the above expression by 

~_ c z~.i~t (2n d) -'~(x-~ 
0 

The choice o fm assures us that -na /2-m(1-a)+n/2<O.  Thus the sum above is 
dominated by 

c(2Nd)-r"(~-")2 ~0(-"0/~-"(~-")+'/~) ~-- c(2~d) -m(~-") tX-X01 (~"-"/~)(x-"). 
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We have finished estimating/3. We now consider Ix. In the first place 

(2.2) /1 ~-- Z i < j o  ( f l ,_xoi~f~1_,  [kj(x, x-y)-k.l(Xo, x-y)lgdy) tj2 

+ ~, j<jo (fly_x01~(2~31_ a [ks(xo, x -  y)-lc.i(xo, xo-y)P dy) a/~" 

We consider the first term on the right. Since as we observed above ]y-Xo] <=c ]y-x] 
we can bound this expression by 

U2 
/Y<Jo (2~ d)- '(1-a) (fb,--xol~(2Nd)t-" (lY--Xo] m ]kj(x, x--y)-- kj(xo, x - y ) ] )  dy) 

--C Z j.<jQ ( 2N d) -"(t-a) ( f  ly_~ol~C~,dF_. ([Y-xl"[k~(x, x-y)-kj(Xo,  x-y)l)  ~ dy) ~/~ 

~CZj<jo(2Nd)-ra(1-a)Zl#l=r a sup 0"-~- t)~ adr On 0~" as(q' 0 [X-Xol 

c ( Z j  <so (2N d)-  ,,,(t- ,,) 2st- ..12- me- ,,) +.Is § 1)) Ix - xol- 

The choice of m and the fact that 2S0]x-xol~l  yields that the sum above is 
bounded by c(2Nd)-'(t-'OlX--Xol ~176 

We now consider the second term on the right in (2.2). In this ease we first 
dominate this term by 

Z j  ~ Jo (2u d ) -  ~ ( t - ,0  ( f l y  - xol ~ (2~r ' - "  ( lY - xo I"  [k. /(xo, x - y )  - k . / (xo,  x o -  Y) l )  3 dY) 112" 

By Leibniz's formula we can majorize this expression by 

c ~',-~.io (2~v d ) - ' ( ' - ' )  ( f  ~ ' , # , + b , - . l ~ "  (7,( xo' 0 ~ ' ~  (e ' ( ' - ' o .~ ) -1 ) r .~ )  ,,2 

c J<~'o lPl+lv =m,l~l~o Z (2NK) --(1-") Z ix_x01 ~ 2s(-../~-I~ (1-a)+./2) 

+ c ZS  <So (2N d) - ~(1 - ,) Ix - x012 j( - ,./2 - , , , - . )  +./2 + a). 

But I x -  x0] <= 1/2 and since m <n/2  + 1/(1 - a), it is easily seen that the second sum 
above dominates the first one. Since 2Jolx-xol ~ l, this second term is readily seen 
to be bounded by c(2Ud)-'(1-~ (''-'/2)~z-'), as desired. This completes the 
proof. Note that we only needed derivatives up to a finite order to obtain the conclu- 
sion. 

We shall recall one more fact about symbols in S~" ~, namely that the convolu- 
tion kernels are essentially compactly supported. 

Lemma (2.3). Let a(x, ~)s176 0 < 0 < 1 ,  and let as usual 

k (x, w) = f~,  e~t-'v a(x, 0 d~. 
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Then for [w[->l/4 and arbitrarily large M, 

Ik(x, w)l ~- r Iwl -=M. 

Proof. Choose an integer M so that n<2M O. Then 

Iwl2~k(x, w) = c f R e'C~'e)(-a~)Ua(x, Ode, 

where Ar denotes the Laplacian in the l-variable. Now l(-Ar Ol<= 
cM(l+l~l) - ~  and since n<2MQ it follows easily that 

Iw? ~ lk(x, w)l -< cM 

as we wanted to prove. 
We now wish to show the sharp function estimate for general symbols o (x, ~)E 

S-.~ 
l - - a ,  8 " 

Lemma (2.4). Let -..1~ a(x, r O < a < l  and & < l - a .  Let T be the pseudo- 
differential operator with symbol a, i.e. 

rf(x) = f ~. e'{X'O tr(x, {) f ({) d~. 

Then for f~Co(R"), 
( r f ) *  (x) <_- cM~flx). 

Proof. The proof foUows the lines of the argument in Theorem 1 of Feffermann-- 
Stein [5]. Fix a point x0 and a cube I centered at x0 of side length d. The non-trivial 
case is when d-<_l, which we consider first. 

Let f(x)=fl(x)+f2(x) with fl(x)=f(x))r~(x), where J is a cube concentric 
with I of siddength d ~-". Let a(x, 0=o-(x, =)[~["a/~l~I-'~/2=q(x, ~)1~] -'~/2, say. 
We note that q(x, ~)~S~ and by a result of H6rmander [6], the ~/.d.o. with 
symbol q(x, ~) is bounded on L~(R"). We denote this operator by G. We also let 
l/p= 1/2-a/2. Then by the usual Hardy--Littlewood--Sobolev fractional integra- 
tion theorem 

f ,  lrA (x)lax <- r ( f  . .  IrA (x)l" dxy'" <- r ( f  . .  IcA (x)l'dx) 1''. 

Thus by the L 2 boundedness of G we get 

f I  IrA(x)ldx < cd"'~" ( f ,  IA(x)l 'dxf '' < n , I (  o) = = cd" x . 

We now estimate the term involving Tf2(x). Since 

Tfa(x) = f i t ,  k(x, x -y) f~(y)  dy, 
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letting cz=fR, k(xo, xo-y)f~(y)dy we get, for xEI, 

[TA(x)-c~[ ~- f R. [k(x, x -  y)-k(xo, xo- y)[ lA(y)ldy 

<-- z ~ = l  (fl,-xol~~:a)l-* [k(x, x -y ) -k (xo ,  x0-y)] 2 dy) 1/2 

• (flr_x01~~:~l_~ [A(Y)[ ~ dy) t/z. 

Using Lemma (2.1) for the first term in the summands on the right above we get, 
for IX-Xol<=d, 

= T ea .4 (1 - -a ) (m- -n /2 ) [ '~N, l~ - - ra (1 - -a )+n(1- -a ) /2 l ld"  r  
I Z f z ( x ) - - C l [  "< c ~ a N = l  " v "  t~; - " - ~ . / v * o J  

<- c z ~ = l  2NCn/~-')Cx-~ M~f(xo) <= cM~f(Xo) 

since m>n]2. This concludes the case d<-l. 
In case d > l  we proceed as follows. Let 21 denote the cube concentric with I 

but with sidelength twice that of L Put f(x) =f~ (x) +f2 (x), where fx (x) =f(x)  z~ (x). 
By the boundedness of T in L~(R n) 

L Ir (x)l dx dx) <- 

To estimate Tf~ (x) we simply use the rapid decay of k (x, y). Indeed we note by Lemma 
(2.3) that lk(x,x-y)l<=clx-y[ -~. Therefore 

IZJ~(x)[ <-- c f ly_xol>u If(Y)l lx-Yl -~ dy 

and since ]X-Xol <=d a well-known argument, similar to that of Theorem 2 in Chap- 
ter 3 in Stein's book [9], shows that 

IZA(x)l -~ cg~f(Xo) 

in this case. Combining all these estimates, and since I is arbitrary, we obtain the 
desired conclusion. 

Lemma (2.59. Given tr(x,:~c.~ -na/~ 6< l -a ,  then for l < p < o o  we have "~.'"- ~  6 

IITfl[~, ~ cpllfl[,. 

Proof. From Lemma (2.4) it follows by Theorem 5 of Fefferman and Stein [5] 
that the result is valid for 2 < p <  co. We now consider T*, the adjoint of T. It is 
also a ~.d.o. with principal symbol in ~-~/~ if 6 < 1 - a ,  by a result of H6rmander ~ ' l - -a ,  

[6]. Thus T* is bounded on LP(Rn), 2<p<r  by Lemma (2.4). This means that T 
is bounded on L~(R~), l < p < 2 ,  and consequently on L~(R *) as well, by interpola- 
tion. This completes the proof. 
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We shall now proceed to prove some lemmas which are to be used in the proof 
of the main result. 0(~) denotes a non-negative, smooth radial function so that 

0(~) = {; [~l_~l 
I~1-<- 1/2. 

Lemma (2.0. Let a(x, 4)CS~ o and define 

Then, for 1 <p ~_ 2 and 1/p + 1/q = l, 

[Iapfll~ ~- c~llfllp. 
Proof. We will prove this theorem by using a complex family of operators which 

we define, for the complex parameter z, as follows, 

i -  - -  e l l e I "  
G=f(x) = f R= e ~'r162 - ~ -  a(x, r d4. 

In the first place observe that if Re z = 0, then by the L z continuity alluded to 
before we clearly have that 

(2.7) ][a=f[1 z <- c l[fllz. 

Next let Re z=n(2--a)/2, I m z = y .  In this case 

0(4) ei1r 
(2.8) G~f(x) = f R~ ei(X'r 14[.c~_.)/~ I~l-~'a(x, 4)](r d4 

___ f e~(*, o k ({) q (x, {)f(~) d{, 

where k({)=0(r "~=-~ and q(x, 4)=]4[-iYa(x,~), say. Let A denote the 
~.d.o. with symbol k(4) and B the ~.d.o. with symbol q(x, ~). As is well-known 
the symbol aaon(X,{) corresponding to composition of A and B is given by 
the asymptotic expansion 

(4) ~ q(x, ~) k 

0 �9 0 �9 
= k(4) q(x, r  c~ -~(~)-g~ q(x, ~)+r(x, ~). 

Because of the explicit form of the kernels involved the reader can readily verify that 
we have 

Jr(x, ~)1 ~- c(1 +141) -("+1), 

provided N is chosen sufficiently large, in fact N~(1 +ha/2)/(1-a)  will do. Conse- 
quently, and referring back to formula (2.8), in order to obtain the desired estimates 
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in this case it will suffice to consider the ~.d.o. with symbol 

0" 0 ~ 
(2.9) aAon(X, 4) -Zo<l , l<N c, ~-g k (~) ~--~ q(x, 4)-  r(x, ~). 

We readily see that 

(2.10) IIf.. e',X  )m)de {~ d lV LI,  LIStI, , 

where H t ( R 0  denotes the Hardy space, see Fefferman and Stein [5]. Similarly, since 
q(x, ~)~S~ by Theorem 26 in Chapter 4 of Coifman and Meyer's book [3] it 
follows that B maps / /~ (R0  into L~(R0 boundedly. From Theorem 9 in part II of 
Wainger [11] we also know that the kernel k(x) corresponding to A is in L~176 
Therefore 

Hf . &(r  a, . IlalI -IL. ei(~'r *)f(*)de t 

cllkl[ L-(1 + ]y[)U []fil~* 
as well. 

To treat each summand in the sum (2.9) we proceed in an identical fashion. 
To illustrate this point fix a, 0 < j =  [a]<N. We have to deal with a term of the form 

cg~;k(~)ff-d-; q(x, 4) -- [c,(~)G(x, 4), say. 

Again by the results of Wainger we know that the kernel k,(x) is in L = (R") and since 
q,(x, ~)C SO, o, we can write a similar expression to that appearing in (2.9) but now 
with the sum consisting of terms of the form 

0P k "~" 0 ~ + ~  " Zo<i~i <N-jcP "~- ~tr ~ q~x, ~). 

Iterating this procedure, after a finite number of steps, we obtain only principal 
terms which can be treated as aao B and remainder terms which can be treated as it 
was done in (2.10). Collecting our estimates we finally obtain that for 

Re z = n ( 2 -  a)/2, I m  z = y 

(2.11) l[G~f][oo -<_ c(1 + ly[)U][f]tnl. 

We are now in a position to interpolate between the inequalities (2.7) and (2.11). 
A simple argument, outlined on p. 159 of Fefferman and Stein [5], shows how we 
can apply Corollary 1 on p. 156 of that paper to obtain the desired result. Our 
proof is thus complete. 

We would like to point out a simpler version of the above lemma which proves 
helpful later on. 
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Lemma (2.12). Let a(x, ~)ES~ and define, for fixed zER ~, 

Then for l<p~_2 and 1/p+l/q=l ,  

Proof. The proof  uses the same ideas as that of  Lemma (2.6) and may be deduced 
from it by treating z as a fixed parameter. 

Lemma(2.13).  Let ~/(r ~) and radial. Assume that supp t /~{~ :  
0"<r0<[~l<rl}, ro, rl are some fixed real numbers. For 2_->1 and t5 real we define 

(R~T) ̂  (~) = 
Then 

[IRafIIp <- Cp2 nllfl[", 1 _~ p ~_ ~.  

Proof. Rewriting (Rff)^(~)=2~(l~l/2)nn(#/2)f(~), we see that R~f(x)= 
= 2 ' ( r  where r  is a Schwartz function and r  Thus 

[IRffHp <-- 2'  II~*fll~ -<- 2' 11r 11111fllp --< cA' I[f[l~. 

Lemma (2.14). Given rp(~)~Co(R ") such that supprp~{~:  1<1~1<2} define 
rp~(0=g0(~/2 ) and let 

Then 
g(x) = f rt, ei(X'O [~I~rPa(~) de. 

Ilgtlp ~ c 2a+"/q, 1/p+l/q = 1. 

Proof We note that Thus 
where ~k is a Schwartz function; the conclusion then follows by a simple change of  
variables. 

The next lemma deals with a gradient estimate. We choose a function Q1 of 
a single, non-negative variable supported away from the origin and in Co(R+) .  
We extend 0x radially to R", call this extension again 0t, i.e. 0x(~)=01([~), and we 
can now consider QICCo(R" ). More precisely assume suppQl( r  
(1/8)1/(1-*)<1~I<:501/(1-a)}, and let el,j(~)=Ol((a/2Jd)X/('-l)]~l), j~_l. We can 
now state the lemma; in applications we only need the result for d ~ _ 1. 

Lemma (2.15). Let a(x, ~)ES~o al~, and define 

Kj(x, x - y )  = f Rn ei(x-r'e) e~tel*O(Ool, J(Oa(x' ~) d~. 

Let lX-Xol<=d, then for l<p<=2, 1/p+l/q=l,  

IKj (Xo, Xo - y) - K~ (x, x - y)1 q d y f  Iq ~- c(2 - J'/P d I - ~/' + d (2 j d) l/t"- 1)- ./,). 



Sharp function and weighted Lr estimates for a class of pseudo-differential operators 11 

Proof We break up the integrand into two terms, 

(JR-  IKj (xo, Xo-  y ) -  K~ (x, Xo-  y)l ~ dy)  1/~ 

q-  xUq + ( fR-IKj(x '  Xo-y)-Kj(x,  x - y )  ay) = tz+I~, say. 

We will estimate 11 first. We write the integrand as 

5,n fXX-Xol 0 K~(xo, xo--y)-Kj(x, Xo-Y) = -  ~-~=xa o Uk-~kK~(xo+tU, xo--Y)dt, 

where u=(ux,  . . . ,u,)  is the unit vector (x-xo)/Ix-xol. Thus 

f I -  I r )x/q 
I1 <- ~,k=ln W fa"  I~o 

By Minkowski's integral inequality and H61der's inequality with l/p+ 1 /q= l ,  we 
can further majorize this by 

(2.16) 

-~ :~ t - ' o  f~" Kj(xo+tu, xo-y) dydt)llqlX-Xo[X/t' 

<= dl/,Z~=ltj0 fR. Kj(xo-4-tu, w) dwdtJ . 

As the estimates are independent of  the coordinates we carry them out for an arbi- 
trary k. Put  z=xa+tu. Then the integrand of  the above expressions is 

O fR. et(w'e)e*lr O Ox~ Kj(., w) = o(0-~ .(x, Oaa, j(Od~, 

and since lr176 Lemma 2.12 applies. We may thus choose fj(:,)= 
QI,~(~)[~[ "<*-")O/p-a/z)-"/* and estimate (2.16) by 

11p n Ix-xol (2.17) d ~,=,[:; (:..[~--~kKi(xo+tu, Iq 'q,' ]',q 

= cdl!p n [x-xo[ )llq < Z~=x ( f  Ilfjll~,dt <- cd ~/'ll/jll,d 1/~ = cd Ilfj!l~- 
~,,d 0 

With a minor adjustment of the constants involved because of the support of 01, 
we may employ Lemma 2.14 with 6=n(2-a)(1/p-1/2)-na/2, 2=(2~d) x/("-a) 
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to get that (2.17) is bounded by cd(2~d) ~+"lq)lc=-x). A simple computation shows 
that (6+n/q)/(a-1)=-n/p.  Thus 

(2.18) Ix <= cdX-"/v 2 -1"Iv. 

We now estimate the main term, i.e. 12. Now, 

Z" /.nx-~ot K~(x, Xo -y ) -K j ( x ,  x - y )  = k=ld o Uk Kj(X, Xo+tu--y) at, 

where u=(X-Xo)/Ix-xo[ is the unit vector with components (ul, ..., u,). Conse- 
quently 12 is majorized by 

dx/'Z" ( /+_~o, r aa__KAx, ~ ~x~ k=zl, ao dR- y~ Xo+tU--y) dydtJ 

= dl/P~;=l~k, , /o ,,/R n ~ j ( X ,  W) d w d f )  . 

Note that 
0 

Kj(x, w) = f ~. eiC"~) eilr162 ~)01,i(~) d~ 
Owk 

0(4) 
= fx,. e, cw.r o I~1 "r ,r~(x, ~)Tj(~) aC, 

where ak(x , ~)=~kl~l"=/2-Xa(X, 4) and fj(~)=01,i(r176 "c=-~ Now 
ak(x, ~)ES~ and as above we may apply Lemmas (2.12) and (2.14) to get 

with 
I~ = [n/q-  1 - na/2 + n ( 2 -  a) (1/p - l/2)]/(a - 1) = 1/(a - 1) -  nip. 

Thus h is majorized by cd(2~d) x/("-x)-"/p. Combining this estimate with that for/1 
we obtain the desired conclusion. 

The next sequence of lemmas deals with asymptotic expansions. Let 02 be a 
smooth function of the positive real numbers vanishing on [(1/4) x/(x-~ ~). Let 
Q~ECg'(R') also denote the radial extension of the above function, i.e. 02(~)= 

~(1~I). 

Lemma(2.19). Let #z(~)ECo(R ") be as above and put e~,l(~)= 
e2((a/2Jd)X/c=-x)14l); j>-I and d<-_l. For a(x, 4)ES~"o ~ put 

K~(x, y) = f ~, e~C~'r e~l~l*O(4)a(x, 4)#2,~(r d~. 

Then for lYl~,,2~d, more precisely 2~-~d<lyl<2~d, 2Jd<=l, we have for e=e(a)>0,  

Ig~(x, Y)I ~-- clYl -"+~. 
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t r p Proof. We express Kj (x, y) in polar coordinates. Thus for y = l YlY', ~ = 1~ ]~ = ~, 

KAx, Y) = f s.-1 f [  e'('*+lrl'e"e))O(r)o~,J (r)a(x' rr dr de'. 

We now integrate by parts the inner integral. Before we proceed we note that 
O(r)o2,j(r) is supported in {r: O<=r<(2~+~d/a)Xl~"-x)}. Since 0 < a < l  we have for 
[y] ,-,2Jd that 

(2.20) lar'-X+lYl(Y ', ~')l => ar"-1 - lyl >= cr"-l. 

Thus integration by parts yields 

(2.21) f ?  e~('*+lrl'Cr O(r)Q~,j(r)tr(x, r~')r"-ldr 

= i f [  e '('=+lrl'(', r d [(ar,_ 1 + lYI(Y', r x, r~')r"-l] dr. 

This process may be carried out repeatedly depending on the value of  a. More- 
over in view of the support of  Q2,j(r) the range of  integration extends only to 
(2Jd/a)l/(~-l),,.c]yl 1/("-1). We now observe that each integration by parts yields 
an extra factor of r - "  in the integrand. For e.g. if we estimate the integrand on the 
right in (2.21) we note that 

d 1 
[( ar~- + lYl (Y', ~'))-10 (r)e~., j (r) o" (x, r~')r ~- 1] 

= a (1 -a)r~-2(ar ~-1 + lYl (Y', ~'))-20(r)Q2,j (r) cr(x, r~,)r ~-1 

+(arC-l+ [y[ (y', ~'))-lO' (r)Q~d(r)tr(x, r~')r "-x 

+(arC-l+ lYI(y', ~'))-lO(r)e;,j(r)o(x, r~') r"-I 

+ (a r ~ -1 + [Yl (y', ~'))-10 (r) ~ z. j (r) ~ ~ (x, r ~') r n 

+(n-1)(ar~- l+ly l (y ' ,  ~'))-lO(r)e2,j(r)tr(x, r~')r "-2 = I~+I2+I~+I4+I5, say. 

We now apply (2.20) t o / 1  and use the fact that ltr(x, r~')l<=cr -"~/2. Thus /1  
is dominated by 

(2.22) cO(r)r a-2+~(1-~)+"-x-"~t~ <= c(1 + r )  "-1-~-"~/2. 

As for /2  we note that O'(r) is supported in {r: 1/2<:r<4}. Thus again by (2.20), 
(2.22) holds trivially. F o r / 3  we note that lr -1. Again by 
(2.20), 13 is bounded by c ( l + r )  "-1 . . . . .  /2. For /4, ld/dra(x,r~')[<=cr -"/~-1, 
and we again arrive at (2.22). For  the last term, /5, because ]r r~')l<=cr -""/~ 
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and (2.20) hold, we get immediately (2.22). Thus the right side of  (2.21) may be 
bounded by 

f ~  - - n + a ( 1 - - n / 2 ) l ( 1 - - a )  lYla/ta-x) +r)n-l-a-na/2dr <= clY[ �9 . e (1 

When n = l ,  a ( l - n / 2 ) / ( 1 - a ) = a / 2 ( 1 - a ) = s ( a ) > O .  For n > l  we integrate the 
right side of  (2.21) by parts once more to get 

i r a I d a 1 �9 if~ e( +ly,'(",r [(ar - + [ y l ( y ,  r 

X d ~  {(ar~-X + lyl (y', r (r)o2. j (r) a (X, r~')rn-1}] dr. 

The gain in the integrand is now r -~a. Therefore such repeated integration by 
parts gives the requisite decay at infinity and thus the lemma. In fact one may show 
that Igj(x,y)l<=c, but for our purpose it is enough to prove that [K~(x,y)]~_ 
cly[ -"+~, s>0 .  This is what we have just done. 

We shall now need to perform a stationary phase computation. To do so we 
reguire the following lemma. Its proof  was supplied to us by Ravi Kulkarni. 

Lemma (2.23). Let /21 . . . .  ,/2, be real numbers such that ~:=t/2~= 1. Let A 
be the n X n  matrix given by 

[.12 "Ji-/An g /21P2 " "  #1 /2n - -1  ) 

a = I'Pl /2~ +/2n2 "'" P2/2n-1 1. 

Then det A =/2~(.-2). 

It is evident that det B = d e t  A. 
Ri--/2t-lR1, i : 2 ,  3 . . . . .  n, to get 

Proof. We construct the n X n  matrix B as follows 

/21 + P,, /21/22 -../2x#.-1 [ 
B = /./2/21 / 2 ~ + / 2 n  g . . .  /22/ . /n_1 �9 

2 2 
/2n-1/21 /2tl-1/2Z " "  ~ln-l'~-/2n] 

Now in B we perform the row 

det B -- det 

operations 

--/21 

]'Ltl ~ 1 

o . . .  

o . . . .  

o o . . . / 2 .  ! 
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Expanding by the first row we get 

det A = det B = 02(n-1) ~ ,,z(,-2) ~;,,-1 p2 r~'n --/.~n , ~ / j = l  J "  

But ~,~'=1 ~ -  A -  n2(n-1)d--  112(n--2)/ |  I l % - -  II 2(n-2)  / t j - 1 ,  thus d e t . - - r . ,  _ ~ ,  ~ - -~ , J -~ - ,  , as we wanted to 
show. 

We now need to recall the asymptotic formula for the principle of stationary 
phase. The proof of this proposition may be found in Chapter 7, volume II, of 
Treves' book [10]. To state the proposition let us introduce some notation. Points in 
R k are denoted by o-. f(tr)EC~*(R k) and is real-valued, g(x, o-)~C~*(R"XR k) and 
is compactly supported in the variable o.. Moreover, and in order to satisfy the hypo- 
thesis of the principle of stationary phase, we shall assume that o-0 is the unique criti- 
cal value off(o.) in the support of g(x, o.) in the variable o-.Thatis, Vf(o-o)=0, but 
det H0~0,  where Ho denotes the Hessian of f(a) at go. Moreover, we shall assume 
that g(x, a) is uniformly bounded along with its partial derivatives in both x and o. 
variables. 

we have With the usual notation D~= 1/i ~ ..... Oo.k 

Proposition (2.24). For t ~ ,  and for any M > 0 ,  

f R ettS(')g(x, o.) do. = ( ~)k/2 idet Hol_l/~ exp {i [tf(o.0) + 4  sgn Ho] } 

X/M (i/2] s (HolDoDo)Sg (x, o'o)t -s + 0 (t-M-l-kl~). Xz-~j=ol, j ) 

The O bound is uniform and does not depend on x, because by assumption g(x, o.) 
and all its derivatives in both x and o. variables are in L ~ (R n • Rk). For the next lemma 
we need one more new notation. Let Q3 be a cut-off function on the positive real line. 
More precisely, Q3 is a C ~ function which vanishes for O<=t<(1/2) 1/(~ and 
equals 1 for t>31/(1-a). Extend Q~ radially to R", and for j ->l  put Q3,i(0= 
O3((a/2Jd)V(a-1)lr Then suppo3, j~{r  l~[>(2J-ld/a) 1/(~-"} and Oa, j - 1  for 
]~[ >31/(a- 1) (2Jd/a)l/(a- 1). 

Lemma (2.25). Let o.(x, ~a~r and define 

Kj(x, y) = f Rn ei(C~'~)+lel~ 0 d~. 

Then for lyl ~"2Jd, more precisely for 2J - ld<  [y[<2Jd ~ _ 1, IK~(x, y)[<=c. 
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Proof. We first express the integral defining Kj(x ,  y)  in polar coordinates to 
get, for y ' E S  "-1, 

(2.26) Kj (x, y) = f1~2 el' ' 03, j ( r ) r - ' /2  + . -  1 

X f s,_ ~ e~'lYlcf ,e') O(r)r"a/2tr(x, r~') d~" dr. 

Our aim now is to apply the stationary phase principle to the inner integral. Thus 
our goal is to convert the inner integral into a form where Proposition (2.24) applies. 
Put y '= ( i t l  . . . .  ,It,), z~ .=lp~=l .  Since those y ' ~ S  n-~ with one of the # f s = 0 ,  
1 ~ j  =n,  form a set of measure zero and can thus be disregarded, we only consider 
those y 's  such that p j # O  for all j ,  1 ~j<=n. We will first show that there exist an 
integer M and C ~ functions ~Om, ~,,, l<=m<=M such that 

(2.27) f s.-, ei'lyl(f '~') O(r)r"a/2tr(x' r~') d~' 

= ce "Iyl (r ly l ) - ("- l ) /zZ~=o (r lyJ)-mq>,n(X, r, It1, ..., It,) 

_t_ce_~,lyl(rly[)_(,_l)/2 M -m It,)+O((r]yl)--M--(,+l)/~). Z, .=0  (rlyl) tim(x, r, ~1 . . . . .  

Moreover, for l<-m<=M and j = 0 ,  1,2 . . . .  

,I ~Om(X, r, Itl, . . . , I t ,  ~ cr - j ,  

(2.28) 

1 ~  fire(x, r, Its, ...,It,)[ ~_cr - j ,  

and the 0 constant may be taken uniformly independent of x, r and p~ . . . .  , / t , .  
We choose a finite and smooth partition of unity as follows. First construct a 

band around the equator of S"-1 and cover this band by a finite number of surface 
bails. Together with the semi-hemispheres of S "- ~ \band containing the North and 
South poles of S "-~, we obtain N regions which we call .~k, 1 ~=k<=N. The illus- 
tration on the next page will clarify this situation. Let now {~kk}~= 1 be a smooth 
partition of unity on the surface of S "-1 such that supp ~Ok~ ~k" 

The choice of .~k is made in a manner so that the projection of z~k onto one 
of the coordinate hyperplanes a~=0, i =  1, ..., n, is non-singular, i.e. the Jacobian of 
the projection of ~k  onto one of the hyperplanes a~=0 is non-zero there. Now 

f s~ e#lyl (y', ~') 0 (r)r ha/2 t7 (x, r~') d~' 

= eirlyl(r"e')O(r)r rr162 -- ,~Ak ,  say. 
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Figure 1 

From now on we set rlyl=t. Since ly]~2~d and r>c(2Jd) 1/(a-1), we note that 
t>c(2Jd) a/(a-1)_~l since 2Jd <- 1. Thus as j ~ o ,  t~o~. Let us consider one term in 
the right side above. Assume that  we are considering the reg ion/ ,  and that  ffl is the 
function corresponding to this region. Clearly we may project region I onto t r ,=0  

and the projection is non-singular. Thus we have 

P ( , /  
~ --JR~_,e"(~='*~ *~o~*- ~,~t~ .. . .  , ~n.l' V ] -  ~ ~J 

• r, or1 . . . . .  o ' ._ l )da l . . .d~ ._ l ,  with 

q~(x, r, Crl . . . .  , a . -1)  O(r)r"a/~ (x, r~xr~r2, rl[~ .~..l lel __ l " - ' ~  ~ 
. . . . .  1'~ - ~ j = l  a~) 2(,rl,  . . . ,  ,r~_O, 
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where jr is the Jacobian of the projection. We notice that in the projection of  the sup- 
~" 'm  - -  1 2 <  port  of~k 1 onto a . = 0 ,  we have ~ j = l a j = c < l .  Thus, if we define 

r ,  . . . ,  = . . . .  r ,  . . . .  , 

then it follows that qh(x, r, al . . . . .  tr,_ 0 is compactly supported and C ~ in al . . . .  
.... c , -1 ,  and bounded in x and r. Thus A1 equals 

(2.29) 
n - I  ' n-1 2 

f2:7:I.~_~< 1 e '(/,=~ ~,~+u.h- ~ $ = 1  Gj) ~l (X ' r, ~I .... ' G'.--I) d(rl...d(rn-1. 

We may now apply Proposition (2.24). To do so we compute the critical point a0 
Of" ~ 'm--1  n--1 2 " l . a j = l  a i  ]'Li-~-]'L. r 1 -~=i a j ,  and arrive at the system of equations 

/ r  .-1 
g i = p ,  ai 1 - - z ~ j = l a  j ,  i =  1 , 2 , . . . , n - - 1 .  

Assuming that /~, > 0  (the case p , < 0  can be treated in an entirely analogous man- 
ner) and since ~,~'=x #j-8-1, the solution of  the above system is ai=g~. Thus 

ao=(pl ,  .... /~.-0. Now the Hessian Ho of  -J ~ = l ~ J U J + ~ . l /  . -1  2 1-z~=~ aj at a o is 

[#12 +~ ~/1]'L2 �9 �9 �9 1-~1]-,/,-- 1 

#~+#~ .-- mP.-~ | (/~;2) [/~1/~2_ [ 
~,~11[/.-I ~ / 2 ~ / . - 1  . . .  ] . /2_l"lL]. l  ~ 

So by Lemma (2.23), d e t H o = ( -  . -1  2(.-=) ~(.-1) . -~ -8 1) #.  /p.  = ( -  1) # . .  We now see by 
virtue of  Proposition (2.24) that 

A1 = (2n/t) ("- 1)/2 I#.I exp {it +__ n/4} 

M (i/2)m Ot2nD, Da)raq)l(X, r, ffO)t--mq-O(t-M-l-("--l)12). 
Xz~m=o rn! 

We let 

(i/2) m . 2 . - ~ . . m  , 
lP, I ~ ~u, JJ~u~ r r, ao) = q~m(x, r , / q ,  ...,/~,). 

Since O(r)r"a/2a(x,r~')ES~ , we can establish (2.28) by a direct computation. 
Recalling that t---r]yl, we see at once that 

A1 = ce "l'l (rlyl) ("-1)/2 ZM=o (rlyl)-mem(x,  r, ~ 1  . . . .  , Itm) +O((rlyl)-M-r l)/2). 

We repeat this process for each of  the functions Ok in the partition arriving in each 
case at integrals as in (2.29). Moreover in each case, depending on which hyperplane 
we project, the phase function will be 
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The negative sign arises if we consider a region such as II in the picture, where a , =  

-1/1-ff.~.-~ tr~ and thus 

n--1 r n--1 2 
(y ' ,*)  = Z j= .*~ t~ -V ,  1 - 2 j = 1 ~ ,  

for tTEII. Integrals arising from such a region give rise to the second term on the 
right in (2.27). We have thus proved (2.27). 

Now choose M so that n - l - n a < 2 M .  With this choice of M we substitute 
the right side of (2.27) for the inner integral of (2.26) to get 

IgAx, y)l c (lyl-<"-l)/ lf17 eiC'*+rlyl)os, 
" - -  arl) Xz~m=0 (rly[) tp,.(x, r, lzl . . . .  ,it.) 

+c(lyl-("-i)/2lf e'("-'tYl)Oa, J(r)r-"/~+("-x)/= Z~=0 (rlYl)-'f,n(x, r, ttl . . . .  , # .)dr D 

+clyl-~-o'+a)/a f17= ea, j(r)r-""/~-M+("-~)/=-I dr =--- Iz, l+l/,,l+lI~l, say. 

Recalling that supp Oa,yC{r: r>c[yl 1/{"-a)} we see that the term [/3[ above is at 
most 

dr = ely[ TM+v~)'/"-")-". 

Thus if n < ( M +  112)a](1-a), a choice which is compatible with the earlier determi- 
nation of M, then because IY] <- 1 the term 1/31 is uniformly bounded. 

We handle/1 and/2 by repeated integration by parts. The technique for both 
terms is the same and thus for brevity we only consider/1. We first note that the 
derivative of the phase function in/1 for r in the support of Q3,j(r) satisfies the esti- 
mate 

(2.30) lar"-l +lY]] ~-- lY]--ar "-1 >-- clyl, 

Thus performing an integration by parts in/1 we get 

-(.-1)/s ~o 
(2.31) 11 = c[y[ f~/ e~'*+'lyl)-~[(ar"-l +{y[) -1 

X ~,~(r)r-"/~+~ r, bq . . . . .  kt,)] dr. 

The process above is a typical step and we may carry it out repeatedly. At each step 
the integrand decays by a factor of (rly]) -1 over the previous step. Let us show this 
for the first step. We now make use of the estimates (2.28) and (2,30) to estimate 
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the integrand above. Now 

O [ ( a r . _ l  + lYl)_le3,j(r)r_.=/~+(._a)lZ(r[yl)_,.q~m(X, r ,  Its, . . . ,  It.)] 
Or 

= a ( 1 - a ) r a - 2 ( a f - a + ] y l ) - ~ a s ,  y(r)r-"~ r, 1a~ . . . .  , It,) 

+ o~,j(r)(ar~ + [yO-' r-"~,'2+("-a)/~(rlyl)-"~Om(X, r, Itx, ..., It.) 

+ (at  ~-1 + }y])-le~ ' j(r) 0 ~  (r-"*12+ (,-ll/z ( r ly t ) - , ,  r (x,  r, #a . . . .  , It,)) 

= Y~+Y~+J~ ,  say. 

ConsiderYl first. Now for rE supp 03,j(r) ,  we have (2.30), thus r" -2 (ar" -X+ ly]) -~-< _ 
c(r"-a[yl -X)(r[y[)-~<=c(rly[)  -1. The other factors appearing in the integrand of  J1 
coincide with the original factors in the integrand of  1~. Thus we have verified our 
claim in this case. 

For J~ we simply note that [O'3,j(r)l<_-cr -a  and thus again because of  (2.30) 
our claim is verified. In view of (2.28) the claim follows for J3, too. Thus performing 
M - m +  1 integration by parts for the m th summand in (2.31), we get that I1 reduces 
to the ease 13, or in other words, 

II~I ~- clyl ,  ("-~)/~ -=, f (rlYi)-M+m-lr-n"/2+("-z)/2(r[Y[)-'dr 

= c[y[ -M-("+z)/~ flyl~/(~ r -"=/2-~t+c"-a)/~-~ dr = c[y[ (M+~/~)'/(~-=)-". 

But because ly]<_-I the choice of  M yields that 111]<=1. 
To handle I~ we note that the derivative of  the phase function is ar = - 1 -  ]Yl, 

and for rEsupp O3,~(r) we again have [ar"-~-lyl[~=clyl and we proceed again as 
we did fo r /1 .  This completes our proof. 

3. The basic estimate 

We are now ready to prove Theorem (1.2) of  the introduction. Before beginning 
the proof  we note that if needed we may assume that a(x,  ~) is supported in 1~1>= 1/2, 
in the 4-variable. The reason being that we may write 

ellel* a ( x ,  4) = O(~)eilel* a ( x ,  4)+(1-O(~))e~lel~ 4), 

where 0(4)EC~(R") is a cut-off radial function, which equals 1 at infinity and 
vanishes near the origin. Then a direct computation yields that (1 -O(4))e~le l*r  ~) 
has a kernel which satisfies an L~-Hrrmander condition, for l < q < ~ .  This in turn 
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yields, see for instance Kurtz and Wheeden [7], that the operator induced by the sym- 
bol (1-0(4))eil~l*a(x, 4) indeed satisfies the sharp function estimate of Theorem 
(1.2). Thus the main point is to prove the estimate for the ~s.d.o. induced by 
O(4):~J~ 4). 

Proof of  Theorem (1.2). Fix a point xo and a cube Q centered at x0. The proof of 
the basic estimate breaks up into the analysis of two eases according to the size of Q. 
We let diameter Q = d and consider the trivial ease first. 

Case 1. Suppose d>-l/4. Let 3Q denote the cube concentric with Q but with 
diameter 3d and let fl(x)=f(x)x3Q(x), f~(x)=f(x)-ft(x),  Thus suppfz lies outside 
3Q. Now 

d-" f Q Irf(x)l ax <- d-" f Q IrA (x)l dx +d-" f ~ ITA @)1 ax. 

For the first term on the right above we have 

a-" f <21rA(x)l ax <= (a-" f ~. lrA(x)l, dx)"', 1 <= p <oo. 

But by Lemma (2.5), for any p, 1 <p  < 0% 

~l-. fR ITf~(x) lPdxa/P ~ c(a-. f~ tN(~)t" dx) air' < cMp{(Xo). ,, Q 

Now, there is a constant cl (depending only on the dimension n) so that suppf2~ 
{y: ]x0-Yl >cld} and consequently for x~Q, f~(x-y)  vanishes unless I x - y l >  
c2d, where c2 is another (dimensional) constant. Consequently 

Tf2(x) = f . k ( x , x - y ) f ( y ) d y  
,11x-yl>c: 

and since d>=l/4 by Lemma (2.3), for x~Q we have 

< fl If(y)lllx-yl~dy <= cn~,f(Xo). IZA(x)l = ~o-,,i~-:,a 

Thus in this case d - n  felTf(x)[dx<-cMJ(xo), as we wanted to show. 

Case 2. The case when d~_ 1/4. Let Z~ (x) denote the characteristic function of 
the set {x: l x - x 0 l < 2 ~ ,  z~(x) that of the set {x: ~A~=lX-Xol<d~-~ z~(x) 
that of the set {x: dl-a<-lx-xo[<I/2 } and Z4(x) that of the set {x: [x-xol>=l/2}. 
Put fj(x)=f(x)zj(x), l<=j<-4, Thus f(x)=fl(x)+f2(x)+f3(x)+f~(x). We first 
consider fl(x) and f4(x). 

Now, by Lemma (2.5) for any p, l<p<oo ,  

a-" f o " IrA (x)l ax <-(a-"fQ irA(x)l" ax)"  

:< c(d-" i r,(x)l" <= 
X -  Xol < l d  
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which ends the estimate for f~(x). Now for xEQ, by Lemma (2.3) 

IZf,(x)l <- c f l,,,_~l..11 ~ [A(Y)l/[x-Y[V'dY 

~- e f l,:o-~,l > al~ [f(.v)l/lXo- y[~ dy <-cMpf(Xo). 

As this is a uniform estimate for xE Q, we see that 

d-" f Q IZA(x)l dx <= cM,,f(Xo). 

We are thus left with estimating Tf2(x ) and Tfz(x). We begin by estimating 
X Jo Tfz(x). We break up f2(x) by setting fz( )=~J=~ fj(x), where f j(x)=f2(x)g{x: 

2~-td<lx-Xol<2Jd} with 2Jod...d 1-'. Now, 

J0 Try(x) - ~J=~ fn -  k(x, x -  y) f)(y) dy. 

We will now break up k (x, x - y )  into three pieces, with a decomposition depending 
upon j. To do so we need to construct a partition of unity for R". Let th(~), t/~(~) 
be radial and in C o (R ") with the property that 

f l  (1/7) a/(x-", < 141 < 40 I''I-~ 

tI1(~) = ~o t~1 < (1/8) I/~-~ or t#1 > 50 ~/(~-~ 
and 

, l  ,*, < (1/5) 1/(1-.) 
I/~(r = /0 1r > (1/4)a/(x-a). 

Now define ~ (~) radial, C o (R"), be such that 

O(,) = {10 [ '[ < 301/O-") 
141 > 40tm-~). 

We let e~(~)=$(r162 and e~(~)=$(~)n~(~)/(nd~)+n~(~)). 
Becanse of this construction e~ and Qz are essentially the cut-off functions in the 
statements of Lemmas (2.15) and (2.19), respectively. Also, if we set e3,j(~)= 
1 -  (e~.j(~)+0~.j(r the p3.j(~)'s basically satisfy the conditions imposed on the 
cut-off function in Lemma (2.25). Thus, for each j ,  the new functions Q1,i(~), Q~,j(~) 
and ez, j(~) form a partition of unity for R" and we have 

rA(x)  Jo = Zj=~ [fR-e'"~'g)+l~t"O(*)a(x' *)(~x,~(r + ~,,~(r + e~, ~(r162 

Jo = X~=~f,~. (K~,~(x, x--y)+Kj,,(X, x -y )+Kj . z (x ,  x=y))f~(y) dy, 

say. By Lemmas (2.19) and (2.25), for x~Q, 

Z~ .  /"  
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Since [Xo-yl",[x-y[ for x<Q and d_~l, it follows that 

IrA (x)l ~- c ZJL, f t~o-,~ ~,,~ lfAy)l/lXo- yl'-" dy 

Thus 

(3.1) 

a-"re ITA (x)l d~ ~ cM, f(xo)+Z~% a-.f,,lf,,, d,] d~. 

We need further to estimate the second term above. By H51der's inequality this 
term does not  exceed 

Jo --n 
A : Z j ~ ( d  f~[f~~ 

Now letting 5=n(2-a)(1 /p-1/2)  we get 

fR" KA'(x' x - - y ) f j ( y )dy  

= fR- e~((~'O+lel~ O(Oa(x, ~) 

Since a (x, ~ rz m/~ E S O and we may thus use Lemma (2.5), we get, for 1/p + 1/q = l, ]1'~1 1,0~ 

( f ~ l fRo Kj, dx, x-- Y) fAY) dYl" dx)~'" 

=< cl](]~[ -'=j2+*Qx,,(I~IL(O)~Np = cllFjllp, say. 

We now apply Lemma (2.13) and since 0~j(~)= O~((a/2Jd)V('-~)[~t), we have, for 
1 < p  < 0% that 

<_ c(2J d)(6-n,/~)/t=-x)+"/p M, f(xo). 
Thus for such p's, 

A < cd-"/qMpf(xo) S'A ~2Jd)t~-,~/~)/~-x)+./, 

Now (5 -- na/2)/(a --1) + n/p = n/q (1-- a). Because 2~od,~d 1-~ it readily follows that 

A ~-- cd-"lqMpf (Xo) ZjL~ (2id) "/q(1-") <= cMvf(Xo)" 

In view of  (3.1) we easily have 

d-" f Q ITA(x)I dx <- cMpf(xo). 

We now consider Tfs(x). We again write A(x)=ZjL~,13(x), fAx)=A(x)z(x: 
2~-~d<[x-xo]<21d} and 21od~,,d ~-~ 2hd,-~l. Defining ex.~,e~.~ and es j  
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exactly as we did while considefingfl(x),  we get, 

TA (x ) :=  J~ 2j=~o f g~ (Kj, l (x, x- -  y) + Kj z(x, x -  y) + Kj, a(x, x -  y)) f~(y) dy. 

We also let 
Jt cQ = Z~=jo f s .  Kj,~(~o, xo--Y)UAY) dy. 

Thus 

IrA(x)-cd <= 2~'=j~ (JR~ IKJ'l(x'x-Y)ltf~(Y)l dY+ f a. [Kj.,(x, x - y ) [  lfi(y)l dy) 

+2JLjo flxo_,l~v~ ]Kj(x, x -  y ) - K j ( x o ,  xo-Y)} tZ(Y)] dy - B + C  +D, say. 

Using Lemmas (2.19) and (2.25), we see that for xEQ, 

~-q f , f (  ~t/t : t - - J -  flfAy)I/lXo-y[ dy M,f(xo.) B + C  ~= c ~.~i~iod, .~y, , , tx  . < c~..~[i,_ "=" <=c 

We now estimate D. We have, again for 1/q+l/p=l~ that D is dominated by 

~jL,0 (fl~0_~t~~ a ]Kj,~(x, x - y) = Ki.3 (xo, x o -  y)l~ d y)lr ( f  jf] (y)t p d y)  lip . 

Using Lemma (2.15) for the first term on the fight above we see that 

D <= c ~.J.t . (2-J~/Pdl-~/P+d(2Jd)a/t"-l)-~/~)(2Jd)~/~Mpf(xo) 
~ J = J o  

cMpf(xo) ( d 2 ~  ~ So 1 -t-d -"I(1-") i, Zj=jo2-J / ( t -")  ). 

Since 2 h d ~ l ,  2~od-,,d t-" ,  we see that the expression above is at most 

cdMpf(xo) ( - d log (d"- 1) + 1). 

But d~=1/4, thus D<-cMpf(x6) as well. Combining these estimates we have the 
uniform bound 

ITfa(x)--cQI <= cMvfCxo), 
thus arriving at 

d-" f e ITA(x)-cel dx <- cM, f(xo). 

This finishes our proof. 
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