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1. Introduction 

The Weyl calculus of operators, defined by 

(1.1) a~'(x, D)u(x) = (2rc)-"ff  a(l[2(x+y), 4) exp ( i ( x - y ,  ~))u(y)dr d~ 

was developed with general classes of symbols by HOrmander [7], generalizing the 
calculus of Beals and Fefferman [1], [2], [3]. Both the Weyl calculus and the Beals-- 
Fefferman calculus require that the symbols are temperate, so they cannot grow faster 
than a polynomial at infinity. Thus one can't use the calculus to study, for example, 
the operator - A  +exp (lxl z) on  R n, where A is the Laplacean. In [5], Feigin introdu- 
ces symbol classes corresponding to the weightf(x)Z+ I~1 "~, where O<c<f(x) satisfies 

[gradf(x)[ ~_ Cf(x) 1+', ~ < 1. 

The symbols may therefore grow exponentially in the x variables. The corresponding 
operators are required to be properly supported, so that the Schwartz kernels are 
supported where 

Ix-y{ <- C(f(x)+f(y)) -r, ~ < 7. 

This condition makes it possible to get a calculus for the operators. 
In this paper, we generalize the results of the Weyl calculus to locally temperate 

symbols, which are temperate in the r variables only. In order to do that we introduce 
a metric in the x variables, to define neighborhoods over which the symbols are tem- 
perate. We use cut-off functions X supported in the corresponding neighborhood of the 
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diagonal, to define the operators 

(1.2) a~(x,D)u(x) = (2~r)-" f f a(1/2(x +y), ~)Z(x, y)exp ( i (x-y ,  ~))u(y)dyd~, 

where a(x, 0 is locally temperate. 
In section 2 we show that a~ is independent of the choice of X modulo lower 

order terms, if Z = 1 in a neighborhood of the diagonal. In section 3 we develop the 
Weyl calculus for the operators aT, under certain restrictions on the support of Z. 
C ~ and ~ '  continuity for these operators are proved in section 4, where we also show 
that a~ is continuous on L 2 when a is bounded, compact on L 2 when a ~ 0  at ~. 
In section 5 we derive conditions for the operators to be Hilbert--Schmidt or of  
trace class and prove an estimate of the trace class norm. These results are used in 
section 6 to improve and generalize Feigin's estimate [4] for the error term in the 
asymptotic formula for the number N(2) of eigenvalues <=2 of certain pseudodif- 
ferential operators p~ in R", 

in the same way Hrrmander [8] improved and generalized the estimate of Tulovskii 
and Subin [9]. In fact, the proof in [8] goes through with minor changes for the 
locally temperate case. For some temperated symbol classes, sharper estimates for 
the error term are known - -  see [6] and references there. 

2. Locally t~ temperate metrics 

Let V be an n dimensional vector space with a slowly varying Riemannean 
metric G. (See Definition 2.1 in [7].) 

Let g be a slowly varying Riemannean metric on W=V@ V', where V' is the 
dual of V. W is a symplectic vector space with the standard symplectic form 

or(x, 4; Y, q) = (~, y ) - (x ,  t/); (x, O, (Y, q)EW. 

The dual metric of g with respect to a is defined by 

(2.1) g~,(x, O = sup l~(x, ~; y, ~)12, w~W. 
C,,~) gw(Y, t/) 

The metric g is ~ temperate if there exist constants C, N such that 

gx,r ~ Cgy,.(1 +g~,,~(x-y, ~-Yl)) ~. 

We shall now localize this definition by using the metric G, which is assumed to be 
fixed in what follows. 
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Definition 2.1. We say that g is locally ~r temperate i f  g is slowly varying, 

(2.2) G~(t) <= g~,e(t, z) V(x, ~), (t, z)CW, 

and there exist positive constants c, C and N such that 

(2.3) gx,r <-- Cgy,,(1 +g~,e(x-y ,  ~ -~1)) N 

when G~(x-y)<=c. We say that the positive function m on W is locally a, g temperate 
i f  it is g continuous and there exist positive constants c, C and N such that 

(2.4) m(x, ~) _~ Cm(y, t/)(1 +g~,,g(x-y, ~_~/))N 

when G~ (x - y )  ~ c. 

Condition (2.2) means that the g neighborhoods in W are refinements of the 
liftings of the G neighborhoods in V. Observe that, by the slow variation of G, one can 
make (2.3) and (2.4) hold when min (G,~(x-y), Gy(x-y))<c,  with a smaller c. 

Let g be a slowly varying metric on W and m be a g continuous function. We are 
going to use the symbol classes S(m, g) of [7]. In order to have a calculus of pseudo- 
differential operators with symbols in S(m, g), where m and g are locally a temperate, 
it seems necessary to make the operators properly supported. For that purpose we 
shall need cut-off functions supported in a neighborhood of the diagonal in V• V. 
The neighborhoods are to be defined by the metric 

(2.5) G,,,(t, s) = Gx(t)+G,(s ) (x, y), (t, s)EVOV, 

on V@V, which is obviously slowly varying. The following lemma shows that g 
(or m) satisfies the estimate (2.3) (or (2.4)) in a G neighborhood of the diagonal. 

Lemma 2.2 Let G be slowly varying, and let 

(2.6) D(x, y) : inf G~. xo(x-xo, y-Xo) 
~o 

be the squared G distance o f  (x, y) to the diagonal, where G is defined by (2.5). Then 
there exist constants C, e>0  such that 

(2.7) rain (Gx ( x -  y), D (x, y)) <= 8 =* C-X < G~ (x - y)/D (x, y) <= C. 

Proof. By the slow variation of G we find that 

Gxo(X-Xo) y-xo) 
implies 

a x ( x -  y ) ~_ 2( G~,(x- xo) + Gx(xo- y)) ~= 2C~ 

if ~ is small enough. Conversely, if G~(x-y)~=e is small enough, then 

Gx+, ( ~ ( x - y ) )  <---- Ce/4, 
2 

which gives D(x,y)<-Ce/2. This gives (2.7) with a smaller e and proves the lemma. 



62 Nils Dencker 

To constrain the supports of the operators, we shall use cut-off functions in 
S(1, G) supported near the diagonal. By using partial sums of partitions of unity in 
V@ V with respect to G, for sufficiently small and positive e, one can construct 

E 
zES(1, G) with support where D(x,y)<e so that Z=I  where D(x,y)<-~. 

(See Lemma 2.5 in [7].) In what follows, we shall denote by G neighborhoods of the 
diagonal the sets {(x,y)EV@V; D(x,y)<c}. If Z has support in a sutficienfly 
small G neighborhood of the diagonal, then Lemma 2.2 shows that ~ is properly 
supported. 

Let a(x, ~)E~(I'F) and xES(1, G) be properly supported. We define the op- 
erator a~ by 

(2.8) a'~u(x) = (2rc)-"ff a (~(x+y), r y)exp(i(x-y, r 
COO uE (V), which maps C~176 into C*~ and CO(V ) into Co(V ). When 

aES(m, g), m and g are locally temperate, then (since Z is properly supported) 

(2.9) (a'~ u, v) = (2n)-" f f a (~ (x + y), r Z(x,y)exp (i ( x -  y, ~))u(y)o(x) dx dy dr 

uEC*(V), vECo(V), gives a well-defined mapping of Co(V ) into g'(V) and 
c~(v) into ~'(v). 

We shall study how the operator a~' changes for different choices of X. Let 
a(x, ~), b(x, ~)ESe(W) and let Z, ~0ES(1, G) be properly supported such that 
[q~[_->c>0 on supp Z, which implies ~=x/q~ES(I, G). 

We have a~=b'~, ff 

(2.10) d(-~(x+y) ,y -x)x(x ,y )=~(~(x+y) ,y-x)9(x ,y ) .  

Dividing by q~ and taking the inverse Fourier transform, we obtain (2.10) if 

( ') (2.11) b(x, ~) =- (2~)-" f f  exp(i(t, tl-~)) 0 x+ 2 ,  x---ff a(x, ~)dtdrl 

We shall show that (2.11) can be extended to a weakly continuous map 
S(m, g)?a~bE S(m, g) when ~ has sufficiently small support, m and g are locally ~r 
temperate and gNg~. 

First, we study the integrand in (2.11). If aES(m, g) and )~ES(1, G) has sup- 
port where D(x, y)<~, and ~ is small enough, then Lemma 2.2 and the slow variation 
of G imply 

( '1 (2.12) (t, z) --~ ;( x + 2 ,  x - ' ~  a(x, T)ES(~, g) 
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uniformly in x. Here 

(2.13) ~ ( t ,  z) = m(x, z) 

and 

(2.14) r r/) = ax(y)+gx,,(o, q) 

are constant in the t variables. Obviously, r is slowly varying and rh is r continuous. 
Let A be the quadratic form on W defined by 

A(x, 0 = (x, r (x, OCW. 
Let 

(2.15) ~a ](r, n ) +  (Y, O)l ~ gi,,(Y, r/) = sup = g~,,(y) + O~(rl), 
c,.~) g,,,(r, e) 

be the dual metric of  ~ with respect to .4, where 

(2.16) GxB0/) = sup I(r' ~/)l~ 
Gx(r) 

and 

[<Y, O)l ~ (2.17) g n,, (y) = sup- g - -  (~,, ~-). 

In order to estimate (2.11) we have to prove that g is uniformly A temperate, i.e. 
there exist constants C, N such that 

g,,, ~_ Cr q-gg,(r-t,  0-~)) ~ 
uniformly in x. 

Lemma 2.3. I f g is locally ~ temperate, m is locally a, g temperate and g<=g* h ~, 
then ~, is A temperate, r~ is A, ~ temperate and 

(2.18) g,,, <= h~(x, T)r 

The estimates are uniform in x. 

Proof Since 
Gx(r) <= g~,,(r, o) V(r, o), (t, z)Cl~, 

we obtain that 

(2.19) a~Ol) ~= g~,,,O, tl) ~ h-Z(x, z)gx,,(O, ~1). 

Thus 

g L ( y )  -> 
g ~ . . ( ,  e) - 

which gives (2.18). Since g is locally a temperate, m locally a , g  temperate, (2.19) 
implies that ~ is A temperate, and m is ,4, r temperate, which proves the lemma. 
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Proposition 2.4. Let g be a locally a temperate metric, m be a locally a, g tem- 
perate function and g/g~<=h2<=l. There exists e>0, so that i f  zCS(1, G) has sup- 
port where D(x,y)<~, then the mapping C~'(W))a(x, ~)-~b(x, ~) defined by 
(2.11) has a unique extension to a weakly continuous linear mapping of  S (m, g) into 
itself. The remainder term 

�9 �9 t t x-7)o(x.,>/j,l=. ,, 
where b(x, ~) is defined by (2.11), is weakly continuous with values in S(mhN+l,g). 

Proof. Since r~(0, r  ~), Theorem 3.5' in [7] and Lemma 2.2 immediately 
imply 

Ib( x, r ~-- Cm(x, ~) 

with C independent of x. To obtain bounds on the derivatives of b, we observe that 
differentiation commutes with the convolution operator exp ( - i (D, ,  Dn) ), and 
aE S(m, g) implies (w,/9)aC S (ml, g) where ml =mg (w) 1/~. Taking wC W so that 
gx.~(w)<=l we obtain that 

I(w,D)b(x, r =< C'm(x, ~), 

since G,(t)<=gx,r ,). Repeating this argument gives that b6S(m, g). Using the 
corresponding argument with Theorem 3.6 in [7], we obtain that (2.20) is bounded in 
S(mhN+l,g), which proves the proposition. 

Corollary 2.5. Let aES(m,g) where g is locally a temperate, m is locally a,g 
temperate and g/g'<=h2<=l. Let )~, ~oES(1, G) be properly supported such that 
lgl =>c >0 on supp x and Z/tP- 1 vanishes of  order N on the diagonal�9 l f  z has support 
where D(x, y)<g, ~ given by Proposition 2.4, then 

W w (2.21) a~' = a~, +r~,, 

where rE S(mh N, g). 

Proof. Let ~=;r G). We have that the equality (2.21) holds if 

a(x,~)~--exp(--i(D,,D~))O +- f  , x -  a(x,~)~-~ 

N-X ( t t )a(x,  tl)/J,i ~-- Z o  (-i(Dt,D,t))ir x+-~,  X---~ ;:=or 

modulo S(mh N, g), which holds since ~b-1 vanishes of order N on the diagonal. 
Thus the operator a~ does not depend on the choice of Z, if aES(m, g) is de- 

fined moduloS(mh N, g) and Z=I  in a neighborhood of the diagonal. 
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3. The calculus 

We shall now develop a calculus for the operators defined in section 2. First we 
consider the case when the symbols are in Se(W). Let a, bC Se(W) and X, tp6 S(1, G) 
be properly supported. Then (2z)-~d (-~(x+y), y - x )  X(x,y) and (2n)-~b (~(x+y) ,  
y-x)tp(x,y)  are the Schwartz kernels for the operators a~ and b~, where t~, b 
are the Fourier transforms in the r variables. The composition a~b~ has Schwartz 
kernel equal to 

(3.1) a(�88 z--x)~(-~(z+y),y--z)z(x,  z)q~(z,y)dz 

which is supported in {(x,y)CV@V; 3z: X(x,z)tp(z,y)~O}, thus is properly sup- 
ported. In order to get a bound on the support of (3.1) we need the following simple 

Lemma 3.1. Let D(x,y) be the squared G distance of  ( x , y )6V~V to the 
diagonal, defined by (2.6). Then there exist C, ~ >0 such that, for any x, y and z, 

(3.2) max(D(x, z); D(z, y)) <= e=, D(x, y) <-- Cmax(D(x, z); D(z, y)). 

Proof. According to Lemma 2.2 it suffices to prove that 

(3.3) 

implies 

(3.4) 

,i,~ ( x - z )  < x : 8  

[ G~(z- y) <- 

C x ( x - y )  <- c8 

if 8 is small enough. The slow variation of G and (3.3) imply Gx~_CG~ for small 8, so 

Gx(x-y) <- 2(Gx(x-z)+G~(z-y)) <- 2(1 +C)~, 

which proves the result. For later use we observe that (3.4) implies Gx+y<-CG~ 
2 

if 8 is small, which together with (3.3) gives 

{ Gx+y (x -y )  <- C's 
(3.5) T 

c~+, ( x - z )  ~_ c'~. 

Thus Lemma 3.1 gives that (3.1) has support where D(x,y)<C~ if X and cp 
have support where D(x,y)<e and e is small enough, Now choose ~ES(1, G) 
properly supported so that ~ = 1  on the support of (3.1). We want to find cE6e (W), 
so that 

(3.6) ~, w w a z b~, = %,  
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which is satisfied if 

(3.7) 

e(-~(x +y), y-x)  = (2=)-"f a(}(x + z ) , z - - x ) ~ ( ~ ( z + y ) , y - - z ) Z ( x ,  z)cp(Z, y)dz.  

By taking the inverse Fourier transform of (3.7) and making a linear change of  
variables, we obtain 

(3.8) c(x, ~) = z~-=nffexp (2ia(t, z; z, O)a(x+z,  r  {+z) 

XX(x + z - t ,  x + z +t)q~(x + z +t, x - z  +t) dz d( dt dz 

r i 
= exp[Ta(Dz,Dr Dt,O,)Ja(x+z, ~ +Ob(x+t ,  ~ + ~) 

• Z(x + z - t ,  x +z +t)~p(x + z +t, x - z  +t) ~j~=o o. 

Now we are going to extend (3.8) to general a~S(rnl,g~) and b~S(rn~,g~), 
where gj is locally ~ temperate and mj is locally tr, gj temperate, j =  1, 2. According 
to the proof  of  Lemma 3.1, the integrand in (3.8), for fixed x, is supported over a 
fixed bounded Gx,~ neighborhood of  (x, x)CV@V if Z and (p are supported in a 
sufficiently small G neighborhood of  the diagonal. In fact, if 

)~(x+z- t ,  x+z+t)~o(x+z+t ,  x - z + t )  ~ 0 

then by substituting x + z - t ,  x + z + t  and x - z + t  for x, z and y, (3.5) gives that 
G~(2t)<=C'e and G,(2(z-t))<-C'e.  Thus, if Z, ~0CS(1, G) are supported where 
D(x, y)<~  and e is small enough, then the slow variation of  G and the inequalities 
G<=gj, j =  1, 2, imply that the integrand in (3.8) is a symbol in S(rh, ~), where 

rh (wl, w2) = ml (Wl) m2 (w2) 
and 

gw~,~(tl, t2) = g~,~(t,)+g~,~(t~), wj, tjEW, 

is a metric on W@ W. Obviously, ff is slowly varying, r~ is ~ continuous and G ~ .  
Let B be the quadratic form on W@ W defined by 

B(w~, w~) = 2tr(wl, wz), (WI, w2)~W~W. 

The dual metric of  ~ with respect to B is equal to 

t 

~a = gx ~, ~x (t~) q- g~,w, (tl) .  g~ ,~( t l ,  tz) = sup [tr(tl' tx)q-~ t~)lz 
t~, t~ gx, wx (t~) -I- g2, w2 (t~) 

In order to extend (3.8) to general symbols we need to know that ~ is locally B tem- 
perate with respect to the diagonal in W @ W, rh is locally B, ~ temperate with re- 
spect to the diagonal and that r on the diagonal. 
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~'llen 

(3.9) 

if and only if 
(3.10) 
which is equivalent to 

w~=wz=w, we find 

g(tl,  t~) <- g~(tl, t 0 vo w 

The conditions for ~ to be locally B temperate and rh locally B, g temperate with 
respect to the diagonal are 

(3.11) 
gl, w(1) q-g%w (2) C(gl, w~(tl)q-g2,w,(tz))(1 q-gl, w,(w~-w)"kg~,w,(wl-w)) 

and 

(3.12) ml(wl)m~(w~) <- Cml(w)mz(w)(l + g [ , w , ( w z - w ) + g [ ~ ( W l - W ) )  N, 

when G~(xl-x)+G~(x~-x)<=c; w=(x,~)  and w~=(x~,~)EW. When wj=w,  
j =  1, 2, this reduces to 

(3.13) ~ ga~' TM (t) <= Cg[, w o (t) (1 + g [  ~ (wo -- w)) N 
<=C ~ ~ N I g[~,(t) g%,~,(t)(1 +g~,w(Wo--W)) , 

when G~(xo-X)<=c; and 

(3.14) ~ ml(wo) <-- Cml (w)(1 + g[ ~,(Wo- w)) N 
a N t m~(wo) <= Cm~(w)(1 + g l , ~ ( w o -  w)) , 

when G~(xo--x)~=c; w and wo=(x0, r Conversely, we shall prove the follow- 
ing result. 

Lemma 3.2. Assume that gx, g~ are locally a temperate and that mj is gj contin- 
uous, j = l ,  2. I f  (3.13) and (3.14) are satisfied, then ~ is locally B temperate and rh 
is locally B, ~, temperate with respect to the diagonal in W@ W. 

Proof. Put 
~r ~r M = 1 +g~,~l(W2-W)+g~,w~(w~-w), 

then according to (3.13) and (3.14) it suffices to prove that 

I g[, ~ (wg. - w) <- CM N 
(3. 15) / g [  w (Wl-- w) <-- CM N, 

when G~(xl-x)+G~(x~-x)<=c.  If c is small enough we obtain, by the slow varia- 
tion of G, that 

{ G~(x~-x )  ~_ Cc 
(3.16) G ~ ( x l - x )  <- Cc, 

t gl, w(t) ~-- ga, w(), VtEW, 

t g~,w(t) <= gl, w(), VtEIE. 
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which gives 

( ) C(1 + ( )) = 1 +gl,  wt+~-w wz--w <-- g[,~x wz--w s+l -< CMN+I 
and 

1 ~ = ( )) = +g2,w~+~-~(wl--w) < C l + g ~ , ~ ( w l - w  N+I < CMN+X 

for small Cc, since gj is locally a temperate. Also (3.13) and (3.16) imply 

g~, ( ) Cg" ( )(1 ,, ( ))N-< N' ~ w2--w <= 1,wl+w~-w wz--w +g2,wz wl - w  = CM 
and 

= ~ 1 o N < -<- C M  

a W a N + I  gl .w(~--w) <_-- C(1 +gl, w~(w~-w)) ~= CM N" 
and 

c(  <_- g w(wx--w) <= l+g~,wl(Wl--W CM N'', 

when G=(xx-x)+Gx(xz-x)<=c and c is small enough. This proves (3.15) and the 
lemma. 

Now by using Theorems 3.5" and 3.6 in [7J, Lemma 3.2 and the fact that 

0" O" sup gw, ~/g~, w = sup gx,~/g2, w = sup ga, w/gx, w 

we obtain the following 

Theorem 3.3. Let gt and g2 be locally a temperate Riemannean metrics in 
W = V @ V', satisfying (3.10) and (3.13). Let mj be & continuous functions on W satis- 

fying (3.14), j = l , 2 .  There exists e>0,  so that i f z  and ~p~S(1, G) are supported 
where D(x, y)<e ,  then (3.8) can be uniquely extended to a weakly continuous bilinear 
map from S(mt ,g l )XS(m2,&)  to S(mlm=,g), where g=max(gl,g~). I f  

(3.17) h 2 = sup gl/g~ = sup g~/g~ 

then for any N, the remainder 

i i 
(3.18) c ( x , r  D d Dr, D,)) a ( x + z , r 1 6 2  

X Z ( x + z - t ,  x+z+t)~o(x+z+t,  x - z + t ) / j !  tz-,-o, 

where c is given by (3.8), is weakly continuous with values in S(mlm2h s, g). 

Remark. When X and r in a neighborhood of the diagonal, then (3.18) 
gives the usual formal Weyl calculus. The G neighborhood, in which Z and q~ have to 
be supported only depends on the constants in the slow variation of G and in Defi- 
nition 2.1. Also c(x, ~) in (3.8) has support where x has a fixed Gx neighborhood 
intersecting both the projection of supp a and Supp b on V. 

Thus we find 
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The dual metric to g = m a x  (gl, g,) is 

(3.19) g~(w)= inf (g[(wl)V*+g[(w2)~l*) ~. 
wl+w2=w 

The metric g is obviously slowly varying and mlmz is g continuous, since gj<=g, 
j =  1, 2. We shall digress to study the conditions fo rg  to be tr temperate and to satisfy 
g<-g~. Observe that gl<=g~ does not imply g<=g~, for example when gl<=g~< 
g2<=g~. But if g<=g~, then 

gj ~ g <= g" <_- gg, j , k  = 1,2. 

Conversely, we shall prove the following 

P r o p o s i t i o n  3.4. Let gl ,g2 be a temperate metrics on Fe" satisfying (3.I3) for  all 
W, WoCW, such that gj<=g~, j = l ,  2, and g ~ g ~ .  Then g = m a x ( g l , g z )  is a 
temperate, and g<=g~. I f  in addition mj are a, gj temperate, j =  1, 2, and satisfy 
(3.14)for all w, WoEW, then mj are tr, g temperate, j = l ,  2. 

Proof. To prove that g is tr temperate, it suffices to show that 

(3.20) g/,w <- Cgy,,o(1 +g~(wo--w))  n 

for all w, wo~W, j = l ,  2. According to (3.19) we can choose WlEW so that 

(3.21) g~ (Wo - w) 1/2 g~, ~ (Wo - wl) 112 § g~, ~ (wl - w) v2. 

If  (3.13) holds and gj is a temperate, then 

N gj, w <- Cgj.,a(1 +g2,,(Wl-W)) , 
and 

gj, wx <- Cgy, ~0(1 q-gl, wl(wo-w~)) n, 
Since 

j - - l ,  2 

j =  1,2. 

g~, w l (Wo --  wl )  ~= Cgl ~. w (w0 --  w 3  ( i + g~, w (wx --  w))  n, 

Now, for every 

and 

l a g  t')l ~ ~ g~(t')g~(t); Vt, t'EW. 

t, t ' E W  we can find w, w'EW such that 

g~(t) l /~ = g~ (t--w)ll~ + g~ (w) 112 

g" (t') v2 = g~ (t '-- W') 1/2 + g~ (W') vz 

we obtain (3.20). The same argument works with rnj instead of  g j ,  so mj is a, g 
temperate. 

In order to prove that g~=g', we observe that 

gl(t) = sup l a g  t')[ ~ g~(t'------~ <= g~(t), VtCW 

is equivalent to 

(3.22) 
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at Wo. Then, since gl<=g~ and gj<=g~, j =  1, 2, we obtain 

let(t, t')l = I~(t-w,  t ' - w ' ) + a ( t - w ,  w')+~r(w, t ' - w 3 + a ( w ,  w')l 

<= gf ( t -  w) atz g~ ( t ' -  w') v2 + gg ( t -  w) a/z g~ (w') ~/z 

+ g~ (w) ,/2 gf ( t ' -  w') ~/~ + g~ (w) ~/2 g~ (w') '/2 = g" (t) ~/2 g" (t') 1/z 

at wo, which proves tha t  g<=g" and finishes the proof of the proposition. 
In general, we do not expect g to be locally a temperate when g~, g2 are locally a 

temperate and satisfy 0.13), since Wl in (3.21) need not be in a lifted G neighborhood 
of w and w0. 

Example 3.5. Let f (x)ECI(R ~) satisfy 

Igradf(x)l <_- Cf(x) 1+~ 
(3.23) 1 <=f(x) 

where 0<-7 ~ 1. Put 
G~(t) = [tl" f (x)  2r 

and 
g~.e(t, z) = ltl2A(x, r r 

where ~<_-3~0<=1, 6<1,  and 

h (x,  = + Ir 
Then G is slowly varying, g is locally a temperate, and g/g*=A(x, ~)2(6-Q)<-1. 

4. Continuity in C ~ and L 2 

In this section we shall prove that the operators a~' are continuous in C 0~ and 
~ ' .  We then get a calculus for these operators according to Theorem 3.3. 

Theorem 4.1. Let g be a locally a temperate metric on W, m locally a, g tempe- 
rate and g<=gL There exists e > 0  such that i f  zES(1, G) has support where 
D(x, y)<e and a~ S(m, g), then a~ is a continuous map from C~(V) to C~176 and 
.from ~ ' (V)  to ~ ' (V) .  

Proof. Since X is properly supported if the G neighborhood is small enough, 
C ~~ continuity implies Co continuity, which by duality gives ~" continuity. We are 
going to prove that, if Z(x,y) has support where Gx(x-y)<=c, and c is small 
enough, then for all N there exists M with the property that 

(4.1) ~'I~[~_N ID~a'~u(xo)l <= C Zlat~_M sup IDau(x)l. 
~xo(X- xo)~_c 

Here the constant C depends on Gxo,g~,,o and m(xo, 0). 
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Choose a partition of  unity z~oj----- 1 in W and neighborhoods U~ of supp ~pi 
such that 

supp~j  c__ {w: gwj(w-wj) <- Co} c__ o~ = {w: gwj(w-wj) <= c~}, 

Co<C2, q~j is uniformly bounded in S(1, gwj), gw and re(w) only vary with a fixed 
factor in U~. and there is a bound on the number of U~. having non-empty intersection 
(see Lemma 2.5 in [7]). Choose Co<Cl<C 2 and put 

uj  = {w: g~(w-wj)  <= cl}. 

Let aj=gja, and consider 

a) ~, x u (Xo) = (2x) -n f f  exp (i (x0 - y, ~)) Z (Xo, Y) aj (~ (xo + y), r u (y) dy de, 

Since Z(Xo, y) has support where Gxo(Xo-y)<=c, we find that the G~,o distance from 
x0 to the projection of  Uj is less than cX/2/2 when xo~supp a~zu. Then, for small c, 

G,~ o ~ CGx <- Cgx,r <: C'gwj 

if (x, ~)6Uj. Thus Gxo(x-xo)<:c when (x, ~)EU~- and xoEsupp a~zU if c and c~ 
are small enough, which we assume in what follows. 

Now, if Z has support in a sufficiently small G neighborhood of  the diagonal, it 
follows from the slow variation of  G that 

c ~ ( v ) ~  u(y) ~ z(xo, y) u(y)~ c~" (v) 

is continuous with continuity constants only depending on G~o. Thus (4.1) follows if 
we show that for all N there exists M such tha t  

(4.2) ZI~I aN l D" a7 u (Xo)[ --<-- C Zla[ ~_g sup [Da u[ 

if u6C o has support when G~o(x-xo)<=c. When proving (4.2) it suffices to con- 
sider the case ~=  0. In fact, integration by parts  gives 

(t, Dx) ay' u = a 7 ((t, D~) u) + b 7 u, 

where bj(x, ~)=(t ,  Ox)a~(x, ~)~ S(m~(wj), gwj) uniformly in j ,  and m~=mg(t, O) ~/0" 
satisfies the same conditions as m. When ~ = 0  we have 

(4~3) laTu(xo)l ~_ CI]aj]lL, Ilu]IL- :< C'm(wj) (det g~)-~/~llultL- 

and we shall improve this estimate by using integration by parts. 
Let L(x, ~)=(t ,  ~)+(z,  x) be a linear form on W. Then 

- L ( y - x ,  ~) exp ( i ( x - y ,  ~)) = L(D~, D r) exp (i(x--y, r 

so integration by parts gives 

(4.4) a~'u=bTu+cT((t,O~,)u) at xo, 
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where 

and 

if 

(4.5) 

bj (x, r = (-~ (t, D~) + (z, De)) c~ (x, r 

c~ (x, r = a t (x, 0 / Z  (x, 0 

~(x, 0 = L(2(x-xo),  r ~ 0 when (x, r Us. 

Lemma 3.1 in [7] gives 

~(w)/~(wj)~ so, g,O 

uniformly when wEsuppai, if ~,r in Uj. Thus 

and c tE S(m (wj)/L(wj), gwj) 

by6S[m(wj)g, j{2 ' ,a/~ IZ(w ), g.j} 
uniformly. By repeating this argument we obtain 

(4.6) laZu(xo)l <= C~tm(wj) (det gw~)-a/2R-f N ~'lol~_~ v sup IDPu I 

if Rj<=L(wj), Z,(x,r162 x -xo )~O in Uj and gwjl 2 ,  z ) ~ l ,  since 

Gxo(t) <- CGxj <= Cgwj , "c ~_ C 

when Gxo(x~-xo)<=e. As before, we put 

(4.7) ~ ( y ,  ~/) = sup l<t, ~/)+(y, ~)l~/gw(t, ~). 
t , ,  

Since 
[Z(x, r [L(2(x-xo), r = 4 Kt/2' r  z)[ ~ 
gwj(t/2, z) = g,j(t/2, ~) gw,(t/2, ~) " 

the Hahn--Banaeh theorem gives that we can take Rj equal to 2 times the g~j dis- 
tance from (xo, 0) to Uj. Thus we obtain 

(4.8) ]a 7 u(x0)] ~- Cm(wj) (detgwj)-l/2(1 +dj) -u ~ipl~_ N sup [s 

where 
d~ = inf g~. (w-(xo,  0)). 

Now we need the following 
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Lemma 4.2. Under the assumptions above, there exist constants N, c > 0  with 
the property that for any xoC V there is a constant C such that 

(4.9) g~o,O <- Cgx,r + ga~.~(x-xa, O) N, 

(4.10) re(x, ~) ~_ Cm(xo, 0)(1 +g~,e(X-Xo, {))N 

when Gxo(X-Xo)~C; and 

(4.11) z~ (1 +dj)  -N <_- C 

i f  the sum is taken over those j for which 

Gxo(X-Xo) <= c when (x, ~)6Uj. 

End of  proof of  Theorem 4.1. Choose w '=(x ' ,  ~')E Uj such that 

d~ g~i (x' - Xo, ~'). 

Then (4.9) and the minimax principle imply 

(det gw~) -xl~ ~_ C(det gw,)-~lz ~_ C'(det g~o,o)-1/~(1 +dj)  ~N 

when Gxo(x'-xo)<-c. Similarly, (4.10) gives 

m (w j) ~_ Cm (w') <- C" m (Xo, O) (1 + dy) ~N. 

Thus, using (4.11) we obtain from (4.8) for large N 

z~ la7 U(Xo)[-<_ Cm(xo, 0) (det gxo, O) -112 ,~lPl~-n sup IDPu I 

if u~C~(V) has support where Gxo(x-xo)~_c, and c is small enough. This com- 
pletes the proof of the theorem. 

Proof of  Lemma 4.2. First we observe that since g and m are locally a temper- 
ate, there exist 0<c,  C such that 

1/C <= gx, o/g:,o,O ~-- C (4.12) 

and 

(4.13) 

when 

1/C <_= re(x, O)/m(xo, O) <- C 

Gxo(x-xo)<=c. Here C only depends on g~o,o and Gxo, and c is independent 
of xo. Also, we can find C such that 

(4.14) gxo,o(t, 0) _--< C6~o(t ) VtEY. 

Since g't(t, z)=g~(t, - z )  and g is locally a temperate, we obtain by using (4.12) 
that 

(4.15) gxo.o <= Cg~,,-~,o.o ~- C'g:,r O) ~, 
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when G~o(X-Xo)<-c, and c is small enough, because 

C x ( ( 2 x - x o ) - x )  = Cx(X-Xo) <- CGxo(X-Xo) ~ Cc. 

This gives (4.9). Also we find 

(4.16) g~,r <---- Cg2x-x0,0(1 +g'~,r r <= C, gxo, o(1 +g~,e(X--Xo, r 

when Gxo(X-Xo)<=c. The same argument works for re(w) instead of  gw, so we get 
(4.10). 

To prove (4.11) we observe that by (4.12) and (4.14) we have 

(4.17) g~o,o(X-Xo, 0 <= 2(g~o,O(2(X-Xo), O)+gxo, o(Xo-X, 4)) 

<---- C(1 +g2~-~0,o(X0-X, 43) <- C(1 +g~x_~o.o(Xo-X, 4)) g C'(1 +ga~,e(X-Xo, 4)) N+I 

if G~o(X-Xo)<=c is small enough. Now, the estimates (4.16) and (4.17) and the slow 
variation o f g  are sutticient for the proof of [7~ Lemma 3.4] to go through in this case, 
so we get (4.11) for large enough N. The details are left for the reader. 

Remark. It is easy to see that the number of  derivatives needed in the C = esti- 
mates of azu only depends on the constants in Definition 2.1. 

Theorem 4.3. Assume that g is locally a temperate on W and that g<=gL There 
exists ~>0  such that i f  zES(1, G) has support where D(x,y)<e and aES(1,g), 

w is L 2 continuous. then a z 

Proof Choose a partition of  unity 2~q~j= 1, ~pjE S(1, g~,~) and neighborhoods 
U~cU~ of supp cpj as in the proof of  Theorem 4.1. The proof  of [7, Lemma 5.1] 
gives, with L ~ operator norms 

(4.18) liar(x, D)fl <-- (2~)-2"IIzIIL - Ii'~ll,, = [IxIIL-Ilal[~L~ 

if a(x, 4)ESe(W) and )~(x,y)EC=(V@V). 
Since the Fourier-L ~ norm is invariant under atfine transformations and can be esti- 
mated by seminorms in re, this gives 

(4.19) [la~,xl [ <_- C, gj .  

Since we are going to use the lemma of Cotlar, Knapp and Stein, we consider 

(4.20) 

and 

(4.21) 

where ~ ( x , y ) - ~ ( y ,  x). 
Choose cpES(1, G) 

W �9 W ~ W  W 

(aj, z) a~,z = aj, oak. x 

ay, x(a~x), w -~, 
= a j , x a k , ~ ,  

Naturally, it sutficcs to consider (4.20): in wha t  follows. 
such that ~0(x, y ) =  1 when there exists zEV so that either 

r z)z(z, y) # 0 
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o r  

Then 

if 

(4.22) 

x(x, z)r y) o. 

ajk,~, (a~,x)* a[ z 

ajk(x, ~) = exP ( 2  cr(Dz, D~; Dt, D~)) Z(x +z+t, x + z - t )  

• x -z+t )~ j (x+z ,  ~ +()ak(x+t, ~+z),=~=0, 
t ~ O  

As in the proof of Theorem 3.3, if Z has support in a sufficiently small G neighbor, 
hood of the diagonal, then we can use the estimates (3.10) in [7, p. 369] and (3.11) to 
obtain 

la~k(W)l <= C~(l +gS(w)) -~, V?'/ (4.23) 

where 
4 9 (w) = rain g~ (w-  w') +win in g~ (w - w"). 

w'E Uj 

We also obtain that g is a temperate between supp ajk, Uj and Uk, i.e., 

a N (4.24) gwl --< Cgw~(1 +g~l(wl-w2)) , 

when Wl, W2EsuppaSkUUjWUk and aSkS0. 
Now, the estimates (4.18), (4.23) and (4.24) are all that is needed for the proof of 
[7, Th. 5.3] to go through in this case. The details are left for the reader. 

Remark. The G neighborhood in which the cut-off function Z has to have sup- 
port, only depends on the constants in the slow variation of G and in Definition 2.1. 
The L 2 operator norm of a~ only depends on the seminorms of a in S0 ,g ) ,  of Z 
in S(1, G) and the constants in the slow variation of G and Definition 2.1. 

Corollary 4.4. Assume that g is locally a temperate on W and that g<-gL There 
exists e>0,  such that i f  zES(1, G)has  support where D(x,y)<e, a6S(m,g), 
where m is g continuous and m--*O at ~, then.a~ is compact in L2(V). 

Proof. Since m is bounded, we find S(m,g)c=S(1, g) with fixed bounds on 
every seminorm. Thus, if we choose the G neighborhood as in Theorem 4.3 we obtain 
that a~ is L ~ continuous. Let {q~j} be the partition of unity used in the proof of Theo- 
rem 4.1, and put aj=~oja. Since m~0  at co, we find that for every e>0 there 
exists N, such that 

a.~s~_~ajES(e,g) if N>- N~ 

uniformly in e. The remark after Theorem 4.3 gives a constant C such that for every 
e>0, the operator norm in L 2, 
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so 
a z -  _ - * 0  as  N ~ c o .  

Since ay, z is compact in L~(V), we obtain that a~ is compact, which proves the theo- 
rem. 

5.  H i l b e r t - - - S e h m i f l t  and  trace  c l a s s  n o r m s  

The Hilbert--Schmidt operators on L~(R ") are those with kernels in L~(R"XR ") 
and the Hilbert--Schrnidt norm is equal to the L * norm of  the kernel. Thus ifa~(x, D) 
is defined by (2.8), then the Hilbert--Schmidt norm is equal to 

(5.1) 

llo ll ,s = ff +,, _-< H  Jz-][a ]1~, 

by Parseval's formula, here d is the Fourier transform in the ~ variables. 
The trace class operators are those which can be written as a composition of 

Hilbert--Schrnidt operators, and the trace class norm is equal to 

(5.2) IIA[I,,= inf IlAlll~sl[A2llus. 
A=AaA s 

The argument of [7, p 415] gives 

(5.3) tra'~ = (270-~ f f  z(x, x)a (x, ~)dx de 

ff a x is of trace class, aELlOi ~) and zEL~(R~).  
We shall now estimate the trace class norm. The proof of [7, Lemma 7.2] easily 

gives that a z is of  trace class and 

(5.4) IIa~[I,, " # ~ -<- CZt~l+..+ta,t~_z ~ D~Z][L| ~ r x al[~, 

if the right-hand side is finite and 2k>n. 
This shows that ff a and zE Se(R~) then a~ is of trace class with the norm de- 

pending continuously on a and Z in Se(R~'). In the following, the metric g need not 
be locally a temperate, but we assume that g is a slowly varying metric on R ~, saris- 
lying 

(5.5) Gx(t) <-- gx,~(t, ~) <= h~(x, Og~,~(t, x) 

for all (x, O, (t, z), where h<= 1, and m is a g continuous function. 

T h e o r e m  5.1. There exists e > 0  such that i f  zES(1, ~) has support where 
D(x,y)<n and aES(m,g), then for every integer k > 0 ,  

(5.6) I[a~'l[,, <-- Ck(llal[-+ llhkml[-IlaU), 

where Hall is a seminorm of a in S(m,g) whose order only depends on k. 
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Proof. Choose a partition of unity ~ g j =  1 and neighborhoods Uj of supp q~j 
as in the proof of Theorem 4,1, so that q~j~S(1, gw) uniformly, wj=(xj, ~j). By 
the triangle inequality for trace class norms, we obtain 

(5.7) I[a~'ll,, ~- Z I[aT.xll,, 
where aj=q~ja. Since G<=g, we may assume that 

when (x, 4)~Uj, by taking a refinement of the partition of unity. Choose 
kgj~S(1, G~) uniformly such that ~Pj(x)=l when (x,~)Esuppaj and ~ei(x)=0 
when (x, ~) ~ U i, V 4. This gives 

a~, z = a TM. 
J, ZJ ~ 

where 
Zj(x, y) = Z(x, y)tPj (-~ (x+y)) 

is uniformly bounded in S(1, G~j,~j) and has support in a fixed, bounded G~ ~j 
neighborhood of (x j, x j) if)~ has support in a sufficiently small G neighborhood of tile 
diagonal. We now need the following simple 

Lemma 5.2. I f  a and xESa(R ~) then 

(5.8) Ila~'ll,, ~ (2~)-~ll~ll,~ Ila~ll,, = llxilrL, IlaWl],,, 

where ~ is the Fourier transform of  )~. 

End of  proof of  Theorem 5.1. Since the Fourier-D norm is invariant under 
affine transformations and can be estimated by seminorms in 5e, we obtain from 
(5.8) that 

a TM (5.9) [l J.~,ll,, <-- CltaTl[,,. 
Now, [8, Theorem 3.9] gives 

(5.10) [laTl[,~ --< c~  (lIaj[IL~ + h (w j) ~ (det g~)-~/~ sup la j l~ )  

with N depending on k. This implies 

a TM (5.11) X i[ ill,, <- Ck([taltr~ + [thkm[tL~ ttatl) 

for every k>0,  where Ilall is a seminorrn of a in S(m,g) only depending on k. 
Combined with (5.7) and (5.9), this proves the theorem. 

Proof of  Lemma 5.2. We shall prove (5.8) by Fourier decomposition of 
Z(x,y)ESe(R~). Let L(x,y)=Ll(x)+L~(y) be a linear form on R ~ and put 

(5.12) 
aZ u(x) = (2n)-" f f exp (i (x-- y, r + iL(x, y))a (-~ (x + y), 4) u(y) dy d4, 
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uEC o (R"). Then 
a'~ = exp (iL, (x))oaWoexp (iL~(x)), 

which gives 

(5.13) [[ a'~[[,, -- [[aWl[,, 

by (5.2), since multiplication by exp (iLj (x)) is unitary on L z (R"). Fourier decompo- 
sition of ;~(x, y) gives 

wll 
tla~ ~t,, -<- (2~)  -~" 11211,~ Ila~iI,,, 

since the trace class norm depends continuously on Z in Se(R~). This proves the 
lemma. 

6. The Weyl formula 

In this section we shall generalize H6rmander's estimate [8, Th. 4.1] of the error 
term in the Weyl formula for the number N(2) of eigenvalues _-<2, 

N(2) ~ (2n)-" f fp( , ,  e)~-~ dx d4 

for certain pseudodifferential operators with symbol p(x,  4). In fact, H6rmander's 
proof of that result goes through for the locally temperate case, with minor changes. 
We therefore only state the results. 

Let g be a metric on R ~" which is locally a temperate and satisfies g/g~ 1. 
Assume that p is a locally a, g temperate function, such that p is a symbol of weight 
p, i.e. pES(p ,g ) .  

In what follows, we assume that the cut-off functions xE S(1, G) are supported 
in a sufficiently small G neighborhood of the diagonal, so that a~ is L ~ continuous 
when aES(1, g). 

Proposition 6.1. Let pE S(p,  g) such that p<=ch -N and assume that )C(x, x) = - 1 

and X ( x, y) = )C (Y, x). Then p ~ defines a se l f  -adjoint operator P on L ~ which is bounded 
from below. I f  p (x, 4) ~ ~ when (x, 4)-~ ~, then P has discrete spectrum. 

The proof is just a modification of the proof of [8, Th. 3.4]. Observe that we can 
impose any restriction on the support of X in the proof. In fact, if r G) has 
support in a sufficiently small G neighborhood of the diagonal, ]Xl =>c>0 on supp 
and ~k=)~ in a neighborhood of the diagonal, then Corollary 2.5 gives 

P~ + r x , 

where rES(hNp, g)c=S(1, g), so r~ is L ~ continuous. 
Let pES(p ,  g) satisfy 

(6.1) sup g/gO = h e <= cp-~,, ~ > O, 
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and 

(6.2) 
Let zES(1 ,  G) 
o f  eigenvalues 

(6.3) 

l+lxl+l~l ~ cp(x, ~)N. 
satisfy X(x, x ) - -1  and • ( x , y ) = x ( y ,  x). Let N(2)  be the number  

- -  V #  _-<2 of  P--Pz  and  pu t  

w(~) = ( 2 ~ ) - " f f .  axa~. �9 " ptx, ~)~_2 

The methods o f  [8] and the results o f  the earlier sections give the following result. 

Theorem 6.2. I f  0 < 6 < 2 y / 3 ,  then there exists a constant Ca such that 

(6.4) [N(2 ) -W(2) I  =< C a ( W ( 2 + 2 a - n ) - W ( 2 - 2 1 - ~ ) )  

f o r  large 2. 

Observe that  the r ight-hand side o f  (6.4) tends to ~ with 2 (see [8, p. 309]). 
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