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1. Introduction 

Let E be a bounded set in R a and consider the problem of covering E by a ran- 
dom collection of small sets. For simplicity, we will consider in this paper only the 
case when the random small sets are cubes of a fixed size with edges parallel to the 
coordinate axes and with independent, uniformly distributed centers. (See below 
for precise formulations.) For sets E of positive d-dimensional Lebesgue measure 
m~(E) (and with ma(OE)=O), this problem was studied in detail in [3]. Hence we 
are in this paper mainly interested in thin sets E such as fractal curves and Cantor 
sets. In order to avoid trivial complications, we assume that E is infinite. 

Remark 1. When md(E)>0 and m~(OE)=O, the results in [3] are more pre- 
cise than the results presented here. On the other hand, the methods in the present 
paper are more elementary. 

Remark 2. The results in [3] apply also to covering by spheres and, more generally, 
by sets of any given convex shape. Furthermore, the size, shape and orientation may 
be random. The results do not depend on the shape of the small sets except that a 
constant term changes. This strongly suggests that the results of the present paper are 
also valid e.g. for covering by spheres. 

We will study two versions of the problem. In the first version we take a fixed 
set VcR d with finite measure md(V) such that E c i n t  (V). Denote the cube 
[0, a] d by Q,, and let (for a fixed a>0)  the random cubes be Xi+Q,, i=1, 2 . . . . .  
where {Xi} ~ are independent, uniformly distributed points in V. Define 

(1.1) N, = min{n: U~ (X~+Qo) = E}. 

Thus the random variable Na is the number of random cubes of size a required to 
cover E. Obviously 

(1.2) P(Na ~_ n) --- P(the first n random cubes of size a cover E). 
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The set V is introduced because we want X~ to be uniformly distributed in some 
set, which then has to have finite, non-zero measure. Asymptotically (as ao0) ,  
the choice of  V influences the distribution of  N a only through rnd(F), which appears 
as a scale factor; see below�9 

In the second version we let r be a Poisson process of intensity 2 on R d. We 
regard ~ as a random set of points 4=  {xi}~, and let the random cubes be {x~+Qa: 
x~E~}. We will denote this random set of cubes by 2(2, a), usually abbreviated to S. 

We will discuss the connection between these two versions in Section 2. 
We will relate the random coverings to the most efficient non-random coverings. 

We define, for a > 0 ,  n(a) to be the smallest number of sets of diameter at most a 
that cover E, i.e. n(a)<=n iff there exist sets El,  ..., E, with diameters ~ a  and 
U~ E~ D E. (For our purposes, we may instead take the smallest number of cubes of  
size a, or balls of radius a, that cover E. These numbers are equivalent within constants 
depending on d.) We will also use a special covering by cubes. Let 

Fa = {1I~ [mka, (rnk + 1)a]}~l...,,~=_.. 

be a mesh of cubes of size a and define 

nx(a) = ~  {QE Fa: Q c~ E ~ ~}. 

It is immediately seen that n~(a)<=3an(a) and n(a)<-nl(a/l/-d). Further, n~(a/m)~_ 
mdn~(a) if m is an integer. 

We will in this paper use C to denote different constants that depend on d only. 
We thus obtain 

(1.3) Cn(a) <= nl(a) <= Cn(a) 
and, if 0 6=1,  
(1 4) n(a) < n(6a) < CO-tin(a) 

We define a dimension by 

(1.5) ~ = I ]m log n(a) 
o-0 log (l/a) " 

This dimension is sometimes called the upper entropy dimension. It is never smaller 
than the Hausdorff dimension, but it may be larger. (See Example 1 in Section 5.) 
For references and other definitions of dimensions, see e.g. Mandelbrot [4]. 

We are particularly interested in sets E with the regularity property 

(1.6) 0 < lira a~n(a) <= i ~  a~n(a) <oo 
a ~ O  a ~ O  

for some ~ >0  (necessarily the dimension given by (1.5)). We will give some of our 
results in two versions; one general and one special for sets satisfying (1.6). 

Acknowledgement.: I thank Peter Jones for posing me this problem. 
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2, Results 

In the Poisson case, we introduce a new parameter by 

(2.1) p = 2a a. 

Note that the number of  cubes in 3 (2, a) that contain a fixed point x is distributed 
as Po(p), and in particular 

(2,2) P(x  is covered by 5) = 1 - e  -u, xER a. 

The basic result of  this paper is the following pair of  estimates, proved in the next 
two sections. 

Theorem. I f  p~_l, then, with notations as above, 

(2.3) e x p ( - C n ( a / p ) e  -~) <- P(~(2,  a)coversE)  <= exp( -Cn(a /p )e -U) .  

We obtain easily, using (1.4), the following corollary. 

Corollary 1. Let p = p ( a )  be a function o f  a. Then, as a~O, 

(2.4) P ( ~  covers E)  --- 1 ~=~ p - l o g  n(a/p) ~ + oo r  p - l o g  n(a/log n ( a ) ) ~  + co 

and 

(2.5) P (5 covers E)  ~ 0 r p - log n (a/p) ~ - co r  p - l o g  n (a/log n (a)) . . . .  

If  (1.6) holds, then 

(2.6) suP {ilog n(a/log {log @ +log logll[ a 
Hence 

Corollary 2. I f (1 .6)  holds for  some •>0, then, as a~O, 

(2.7) P ( ~  covers E ) -  1~:~ # - ~  { l o g l + l o g l o g  1 1  - - + = ,  

(2.8) P ( ~  covers E)  --- 0 ~ p - ~  {log 1 +log  log 1 ) . . . .  

We connect the two versions of our covering problem as follows. Let V be a set 

as in Section 1, and assume that t / d a < i n f  { Ix -Y l :  xEE, y~V}.  The n only cubes 
x~+Qa with x~EV meet E. The number of  points in ~nV has the Poisson distri' 
bution Po(2md(V)) and the set CnV is distributed as  {X~}~, where {X~}~" is as in 
Section 1 and M has the distribution Po(s and is independent of  {Xi}~*. 
Hence 

P(~(,~, a) covers E)  = P({X~+Q,}g covers E ) =  P(Na ~- M) .  
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Now let T1, T~. . . . .  be independent of each other and of {X~}, and with the common 
exponential distribution Exp(1), and let S n = ~ T t .  We may take M = s u p  {n: 
S,<=2md (V)}. Hence, 

(2.9) P(~ covers E) = P(Na ~- M )  = P(Sn, <- 2m~(V)) = P(Za <- I~), 

1 
where we put Z a -  adSNa. 

m~(V) 
Remark 3. This argument is closely related to a method by Holst [1], who intro- 

duces a time coordinate and a Poisson process in the space-time. 

For simplicity we will henceforth assume that m d (V)= 1. In general, the results 
remain valid if N a is divided by rod(V). 

Now, assume that n(a)=>3. By (1.4), 

(2.10) log n(a) ~_ log n(a/log n(a)) <= log n(a)+d log log n(a)+C. 

Take 
/~ = log n(a/log n(a)) + x. 

If x->0 we obtain by (2.9), (2.3), (1.4) and (2.10), 

(2.11) P ( Z  a >/~) ~ 1--exp ( -Cn(a /# )e  -~') <= Cn(a/I.t)e -~' = 

= Cn(a/#)(n(a/log n(a)))-le-X<= C(/t/log n(a)) d e-X<= C(1 +x/log n(a))de -x. 

If -~-logn(a)<=x~_0, then / t~ logn(a)+x>-~logn(a)  and 

(2.12) P(Z~ <= I1) <= exp ( -  Cn(a/l~)e -~) = exp ( -  Cn(a/p)(n(a/log n(a)))-le -~) 

=exp  ( -  Ce-~). 

It follows from these estimates that, for n (a0)-->3, 

{Z~ - log  n (a/log n (a))},___ oo 

is a tight family of random variables, and further, as a~0 ,  

(2.13) Zoflog n (a) ~ 1 
and 
(2.14) EZa = log n(a/log n(a))+0(1) = log n(a) +0(log log n(a)). 

Since Sn./Na e-~ 1 by the law of large numbers as a---0 and thus N ~ o ,  and 
ESN, = EN~ . ETt = ENd, we obtain 

Corollary 3. I f  md(V)=l,  then, as a-~O, 

aaN~ e. .  1, 
(2.15) log n (a) 

(2.16) aaENa = log n(a)+dg(loglog n(a)). 
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This yields the following expression for the dimension e defined in (1.5). We may 
here replace EN, by the median or any other fixed percentile of the distribution of N,. 

Corollary 4. I f  ma(V)=l, then 

(2.17) ~ aa EN~ 
,~o log(l/a) = g" 

Furthermore 

as a~0.  Consequently 

Corollary 5. I f  mn(V)=l and n(ao)~3, then 

{ad Na--log n(a/log n(a))}a__<oo is tight. 

I f  further (1.6) holds, then 

ladNo-~t[logl+loglog 11~ is tight. 
L a a I J a ~ l / e  

If E is a subset of {(tl . . . .  , td): tk+X, -.., td=0} for some k<-d, mk(E)>0, 
then the dimension ~ defined by (1.5) equals k and (1.6) holds. Further, if mk(@E)=0, 
where @E is the boundary of E regarded as a subset of R k, the results of [3] imply that 

a~ N a - k l l o g l + l o g a o g l )  d--~ klogk.+logmk(E)+ U, 

where P(U<=u)=exp (-e-~). 
We further note that if a subsequence of {adNa--log n(a/log n(a))} converges 

in distribution to some W (as a~0),  then, by (2.18), (2.9), (2.3), cf. (2.11), (2.12), 
W is stochastically larger than U - C  and smaller than U+C, where U is as above. 

This might lead one to expect that adNa--logn(a/logn(a)) (or adN= - 

ct [log a + log log a}  when (1.6)holds)convergesindistributionas a--0. However, 

as we will see in Example 2 in Section 5, this is not true for the Cantor set. This 
suggests the following modification, at least for sufficiently regular sets E. 

Conjecture. There exists a bounded function if(a) (depending on E) such that 
Of md (V) = 1 ) 

adN,--logn(a/logn(a))--~b(a) d-L~ U as a ~0 .  

(This is equivalent to the property that every limit distribution of a subsequence of 
{adN~--log n(a/logn(a))} is of the type U+constant.) 
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3. The lower bound 

We will use the following correlation inequality for the Poisson process. For a 
more general version and a proof, see [2, Lemma 2.1]. 

Lemma 1. Let D~ .. . .  ,Dm be Borel sets in R d and let Aj denote the event 
rn  ~ m ~nDjr Then P(Ot Aj)=/-/~ P(Ai). 

Let e>0 and consider a covering {Ej}~= I of E consisting of sets of diameter at 
most ca, with n=n(ea). Thus, there exist points y~(R a such that 

Ej c y j + Q , , ,  j = 1, ..., n. 

Hence, if {xi + Q,- ~,} covers {yj}~, then U (xi + Q,) contains every yj + Q,~ and thus 
every Ej, whence E is covered�9 Consequently, 

(3.1) P(~.(2, a) coversE)>= P(yjEU~(2,  a-ea),  j =  1, ...,n)>= 

~-- 1-11 P(yjE U ~(2, a-ca)), 

where we have used Lemma 1. By (2.2), each factor in the last product equals 

1 - -exp(-2(a  --ea) a) = 1 --exp (--#(1 --e) a) ~ exp ( -  C exp ( -#(1  - e)a)) 

provided /~_->1, e~_l/2, say. Consequently, 

(3.2) P(Z(2, a) covers E) =~ exp ( - C n  exp ( - g ( 1  -e)a)). 

Now take e=l/(2d/0. Then /~(1-e)a=>p(1-da)_->#-l, whence 

(3.3) P(N(2, a) covers E) _-> exp ( -  Cn(ea) e ~-~') >= exp (-- Cn(a/l~) e-~'). 

4. The upper bound 

L e m m a  2. Let Q be a cube o f  size a and let {yj}~ be a set o f  points in Q such 
that i f  y~ and yj are two points in the set and their coordinates are denoted by Yl, k 
and Yj,k, k= 1 . . . . .  d, then ]Yi, k--Yj, k] ~=a/# for at least one k. Then 

(4.1) P(.~ covers {yj}~) -<_ 1--Cne-" <= exp (-Cne-").  

Proof By translation, we may assume that Q=Q,.  Let Aj denote the event 
{~(2, a) does not cover yj, but every t=(q . . . . .  td)EQ, such that tk~=yj, k+a/l~ 
for at least one k is covered}. Then the events {Ai}~ are disjoint, and 

(4.2) P({yj}~ is covered) <_- 1 - P  (U1 AI) = 1 - z ~  P(Aj). 

�9 / ~2~-~ 2 a-  To estimate AI, let, for each k = l ,  .., d, t R j ,  k, lJl=t denote the rectangular 
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boxes 11 • • where lk = (Yj;k, Yj, k +a/~) and either I~= (0, a/2) or l i=  
( - -a /2 ,0)  for i#k .  

Let Aj, k,t denote the event  r k,z#O. Since rnd(Rj, k,t)=- ff 

2 ~- d ___~, we have 
/t 

P(As, k,t # 0) = 1 --exp (--2mn(Rj, k,3) = 1--exp (--2~-0. 

It is easily seen that 

d 2 d - ~  Aj D {yj is not covered} c~ (']k=l AZ=l Aj, k,:. 

Since {yj is not covered} and Ok Ot Aj, k,Z are independent, we obtain by Lemma 1, 

(4.3) P(Aj) >- P{yj is not covered}P (Ok Al Aj, k,3 ~-- 

>= e'U (']k Az P(Aj, k,Z) = (1--exp (--21-a))n'~"-le-~. 

The lemma follows by (4.2) and (4.3). 

We now prove a special case of the sought inequality. 

Lemma 3. I f  E c Q ,  where Q is a cube of size a, then 

(4.4) P ( ~  covers E)  -<_ exp ( -  Cnl(a/lOe-~'). 

Proof. Let, for m=(ml ... .  , rn,l)EZ d, 

Q" (m) = I~=i [rnk (a/~), (m k + 1) (a//~)l. 

For  any sequence l=(ll,...,la)E{O, 1} a, define Bz={Q'(m): Q'(m)caE#O and 
m - l ( m o d 2 ) } ,  where m=l means mk----lk(mod2) for each k=l , . . . , d .  By 
definition, nl(a/#)=~,l #~ B:. 

Fix I and choose one point in Q'(m)~E for each Q'(m)EB t. This gives a set 
{yj}~, with n =  ~ Bt, that satisfies the condition of  Lemma 2. Thus 

P ( ~  covers E)  _<- P(N covers {yj}) -< exp ( -  C ~ Bte -~) 

and, taking the product over all l~ {0, 1} a, 

P (Z  covers E)  ~d <_-//z exp ( -  C@ B~e -~') = exp ( -  Cnl(a/#) e-a), 

which yields (4.4) and proves the lemma. 
We complete the proof  of  (2.3) by a similar argument. Define for mEZ a, 

Q(m)=lI~[mka , (mk+l)a] ,  and let nl,,, denote nl(a/#) computed for the set 
Ec~Q(rn). Clearly nl (a/#)<=z~,,, nl,,, ,. 
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Again let lE {0, 1} d. Note that the events {3 covers EnQ(m)} for rn such that 
m - l  (mod 2), are independent. Hence, using Lemma 3 on Ec~Q(m), 

P(~E covers E)  =< P (~  covers EnQ(m) for an m :--/) 

=/-/m~_, P(Z covers EnO(rn)) !-= 1L,,==_t exp ( -  Cnx,,~e-O = exp ( -  C z~m=_-, n~.me-~') �9 

Consequently, taking the product again, 

P (~  covers E) 2d ~ exp ( -  C .~, ~m=-t nl, 'ne-~') ~ exp(-- Cn(a/Ig) e-Z). 

The theorem is proved. 

5. Examples 

- - 7  o o  Example 1. Let d =  1 and E =  {k }k=l for some fixed 7 >0. It is not diffi- 
cult to show that the dimension defined by (1.5) equals (1 +T) -1 and that (1.6) holds. 
Note that the dimension is positive although E is countable and its Hausdorff dimen- 
sion thus equals zero. Corollaries 2--5 answer various questions about the random 
coverings. 

Example 2. We will perform an explicit calculation for Cantor sets in R and 
certain values of a. First, let E be any closed subset of [0, a] with ml (E)=0 ,  and let 
CE:( - ,o ,  ao)u(bo, oo)ui]~" (at, bi) where the intervals are disjoint. Denote the 
smallest positive element of  ~ by Y+, and the largest negative element by --Y_.  
Then Y+ and Y_ are independent Exp (1/2) random variables. Hence, since 
P(Y+ E E)= O, 

(5.1) P (~  does not cover E)  = P(~  does not cover E and Y+ < ao) 

+ P ( Z  does not cover E and Y+ > b 0 ) + ~ i  P(Z does not cover E and ai < Y+ < bi) 

= O+P(Y+ > b0and -Y_  < bo-a )+~ iP(a i  < Y+ < bi and - Y _  < ai-a)  

= e - ~ ' b ~ 1 7 6  + Z f  ( e-;''' - e-;'b') e-~r = e-aa( 1 + Z ,  (1 - e--;~(b,--",))). 

NOW let 6<_--1/3 be fixed and let Eo=[0, 1], E~=[0, J ] u [ 1 - 3 ,  1] . . . .  so that E k 
consists of 2 ~ intervals of length 3 k separated by at least (1-2~)6 k-~. Let E =  A~  Ek. 
It  is easily seen that if 3k--<_a<J k-l, k:>0, then n (a )=2  k. Consequently (1.6) is 
satisfied with the dimension ~=log  2/log 6 -x, i.e. fi~= 1/2. 

Suppose that 

(5.2) 6 k <-- a -<- (1-2~)  ~k-~ 

for some k=>0. 
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By (5.1), and a simple count of the intervals in [0, 6qN, E, 

(5.3) P(E covers En[0, 6k]) = 1 --e-"(1 +~'*~ 2~(1--e-a(x-~)a~+~)~ 
,~,a j =  0 ,. / .  

Since E consists of 2 ~ parts congruent to Ec~[O, ~5 ~] and these are covered indepen- 
dently of each other, 

(5.4) 

Define 

(5.5) 

P(~ covers E) = (1 -e-~(14- S '0~ ~ir --a-a(1-~)ak*J~h~ z~ 
- - ~ a j = O - -  x ~ - J ' /  " 

~(x) = x-"~'_~=, 2'(1 -exp  (-x(1-26)dit)), x > O. 

The series is uniformly convergent on compact sets and thus q~ is continuous (and 
in fact analytic). Furthermore, ~o(x/6)=a'2cp(x)=qg(x). Hence ~0 has the multipli- 
cative period 6 -1. Thus, since 9(x)>0,  log cp(x) is bounded above and below. An 
elementary computation, which we omit, shows that the periodic function q~((1/6) '/~) 
has Fourier coefficients 

- (log (1/6))-1 (1  - -  2 a )  (1~ + 2~in)/log(l/~)f" (__ (log 2 + 2r~in)flog (1/0)), 

n . . . .  - 1 , 0 ,  1, .... In particular, q~ is not constant. 
Now, let a-*0 through a subsequence such that (5.2) holds (with k depending 

on a)and let p = , ~ a ~ .  If ~-m<=2~Sk<6-'~-~ then m~r and 

(5.6) 27=02] (1 - e  -a(1-~a}ak+s) = 2'~ Z~=_= 2 ' ( I - e  -a6~+=(~-2a~a') 

= 2 m (za~ +-)~ (~ (~a ~ + - )  + o (1)) = e 2 -~  (~  (4) + o (1)). 

Consequently, since the last expression -~2"~=(26k)'---~% (5.4) yields 

(5.7) P(Z covers E) = (1-2-k2"e-U(~ (2) +o (1))) =~. 

1 (1 1) 
Taking /*==log- -+c t log log l+ log~o  ~ a l O g a  +ct log=+x,  the right hand 

a a 

side of (5.7)converges to e x p ( - e  -=) as a-~0. Consequently, el. (2.9), 

(5.8) Z.-c t  ( l o g l + l o g  log 1 ) - ~  log ~ - log  t# ( ~ 1  l o g 1 )  ~--~ U, 

as a-~0 through values satisfying (5.2). (We do not know whether (5.8) holds for 
unrestricted a.) By (2.18), we may here replace Z,  by adN,, (provided mx(V)= 1). 

We repeat that this example suggested the conjecture at the end of Section 2. 
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