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O. Introduction 

The use of potential theory to solve the Carleman--Milloux problem and cer- 
tain extremal problems was first developed by A. Beurling [1] and R. Nevanlinna [6] 
in 1933. They obtained lower bounds on the harmonic measure, coB(z), of a su~- 
ciently nice set E in the unit disc in R ~ evaluated at a point z in the disc. 

More precisely, take the unit disc to be centered at the origin. The set E is pro- 
jetted on the line segment which is drawn from the origin to the unit circle such that 
the segment does not contain the point z but its linear extension passes through the 
point z (see figure 1). The projection of ~CE is accomplished by rotating the point 
about the origin at a fixed distance [~[ until it intersects ~* on the line segment (see 

~gut~ 1 
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figure 1). Let E* denote the set of points ~*. Beuding and Nevanlinna showed 
that tOE(Z)>--WE,(Z). 

A few years later, in 1937, T. Hall [2] showed an analogous result in the upper 
half-plane of the complex plane, C, which will be stated after introducing some no- 
tation. 

Let r ) be the harmonic measure of a sufficiently nice set E evaluated 
at a point x +iy in the upper half-plane of C. Let E* be the set of points obtained by 
rotating the points of E about the origin onto the positive x-axis. Hall showed that 
oge(x+iy)>-koe,(-[xl+iy), where k is a constant such that 2/3<=k<=1. 

This paper obtains a variant of these results in the unit ball in R" for n=>2. 
Let E be a dosed set in the interior of the unit ball in R" such that the points of E 
are regular and let oge(z) be the harmonic measure of E at z. It is shown that oge(0)= > 
(c/1/n)oge,(0), where c is a positive constant independent of n, by the use of a 
simple formula involving the Green's function. The author conjectures that we (0)-> 
coJe,(O ) with c independent of n. The methods in this paper are not sharp enough 
to obtain this result. 

E. Stein and J. O. Strrmberg [7] have recently shown that the Hardy--Little- 
wood maximal function on R" is weak-type (1,1) with a constant cn with c indepen- 
dent of n using the idea of subordination and applying the Hopf maximal ergodic 
theorem. The same result is obtained here by means of a new proof via the previously 
stated theorem on harmonic measure. 

Furthermore, it is shown that the radial maximal function of the unit sphere in 
R" is weak-type (1,1) with constant c ~ From this it easily follows that the Hardy--  
Littlewood maximal function on the unit sphere in R" is weak-type (1,1) with cons- 
tant cn 

The author would like to thank Lennart Carleson for his advice and suggestions, 
in particular for showing the connection between maximal functions and harmonic 
measure. In addition, the author appreciates the time spent by Benjamin Mucken- 
houpt in proofreading the manuscript and making suggestions for improving the 
presentation of  some of the proofs. 

1. Notation and definitions 

Let B, stand for the dosed unit ball in R" centered at the origin,//, for the open 
unit ball, and OB, for its boundary (the unit sphere). If  EC=B,, define E* to be the 

radial projection from the origin of E onto OB,; that is, (~ E implies that ( = - ~  E E .  

Let ]E*] signify the Lebesgue measure of E* on OB,. The surface area of the unit 
sphere in R" will be denoted by to._1., 
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A point zEE will be said to be regular if there exists a barrier function at z. 
The definitions of a regular point and a barrier function are given in Hayman and 
Kennedy's book entitled Subharmonicfunctions [3, p. 58] in the beginning of Section 
2.6.2. Suppose E is a dosed set contained in/)~ such that each point of EuOB~ is 
regular and such that B . \ ( E u  OB.) is connected. The harmonic measure of E, a~E (z), 
is defined to be the solution of the Dirichlet problem on B~\(EuOB.) with boundary 
values 1 on E and 0 on 0B. in the sense stated in [3, p. 58] in Theorem 2.10. The 
above conditions guarantee that ogE(z ) is well-defined. 

The Poisson kernel of B n is given by 

P ( z ,  ~*) - 1 - 1 e l  ~ 
o ~ . _ l l Z -  ~*1 ~" 

If fE L s(oB.), then 

(1) u(z) = f o..e(z, ~*)f(~*) dE(~*) 

defines a harmonic function in B., where zEB. and d~ is the Lebesgue measure on 
the unit sphere. If E* is a closed set in OB., the harmonic measure of E*, o~e,(z ) 
is defined to be 

(2) = r as(r) 

where XE, is the characteristic function of the set E*. 
The radial maximal function o f f  is defined to be 

(3 )  u*(z*) = s u p  lu(rz*)l 
O ~ r ~ l  

with z*EOB.. The Hardy--Littlewood maximal function o f f  on the unit sphere is 

1 
(4) mf(z*) = sup - ~f an" iS(? ' t)[ Xs(z*,t)(~*)lf (~*)l d~(~*), 

O~_t~_2 

where S(z*, t)={~*EcqB.: [z*-~*[-<_t} and z*EOB.. 
The symbol c will stand for a positive constant that may be different at diffe- 

rent appearances but will always lie between 10 -~ and 10 6. 

2. The results 

We begin by stating the main theorem on harmonic measure. 

Theorem. l f  E is a closed subset of 1~. such that B.\(EuOB.) is connected and 
every point of  EuOB~ is regular, then ogE(0)@(C/t/~)coe.(0) for n~_2. 
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The conclusion of the theorem can be restated to be 

c 
(5) toE(0) ~ cO._xCn Ig*l 

1 
for n=>2. This we now verify. Letting z=0  in (2), we Obtain a)e.(0)= [E*I, 

Okn- 1 
which establishes inequality (5). 

There is a striking connection between the theorem above and weak-type (1,1) 
inequalities for the Hardy--Littlewood maximal function and the radial maximal 
function on 0B. as we shall see in the following two applications. 

Corollary 1. I f  fELt(OB~) and n>=2, then 

[{z*EOB.: u*(z*) >- 2}[ <= T I[fllx 

for all 2>0. 

Proof The technical part of this proof consists in constructing for almost 
all 2>0 certain corresponding sets S=S(2);  two of their properties are that 
B.\(SuOB.) are connected open subsets in B~ and every point of S is a regular point 
for every S. These two properties will insure that Ogs(Z ) is well-defined and has well- 
behaved boundary values for every S. The rest of the proof of this corollary is an 
elegant argument due to L. Carleson. 

Without loss of generality we can assume that f->0 and fEC=(OB,). Fix 
2>0. Consider the closed sets E={zEB.: u(z)=>;t} and E*={z*EB,: u*(z*)=>2}. 
Suppose IEnE*I>-~tE*I . On the set EriE* we have u(z*)=f(z*)>-2. This 
implies that 

f(z*) 21lf]I1 
Ig*l <- 21gng*l -<_ 2f~ dS(z*) 

n r *  2 = 2 

as desired. We are left to consider the case when I(En/~.)*l-->~-IE*[. Define the 
set F to be F={zE/~,: u(z)=2}. Suppose I f* l<l (En/~ . )* l .  In this case there 
exists a z*EOB, such that u(rz*)>), for all 0<-r<l .  In particular, u(0)>2 
and thus IIfIh/o~._x=u(O)>L Clearly we would then have IE*l<=o~._l<=llflldL 

:~1 F,* So we are left with the case iF*I=I(EnB.)*I and If*l =-e  - �9 
Define the set D1 to be DI={ZEBn;  u(z)>~,}. Fix a point zoEB. in D~. Consid- 

er the component of Dt which contains the point z0. We claim that the closure of 
this component must intersect OB,. If not, then the boundary of the component is 
contained in ~ . .  By the maximum principle u(z0)=2, which contradicts the assump- 
tion. The same argument implies that the closure of every component of the set 
Dz = {zE/~.: u(z) >2} intersects OB.. 
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Pick 5>0  so that the set S=Fn{zEBn: 0-<-[zI~-l-8} has the property that 

1 IE,I which clearly can be done. Since the closure of  every component of  I S * l - > ]  - 

DluDz intersects 0Bn, then it is obvious that B ~ \ S  is a connected open set in B,. 
Since fEC**(0B~), then u: B ~ R  is a C~-function. By Sard's theorem [5, p. 

16], we have for almost all 2 that every point of  S has a non-zero gradient ofu.  Clearly 
it is enough to prove the corollary for these 2. Since the gradient of  u is non-zero at 
every point of  S, then it is obvious that every point of  S satisfies the "cone" condition 
(a) or (d) in Theorem 2.11 in [3, p. 61]. This guarantees that each point of  S is a regu- 
lar point. Since dist (S, 0B~)_->5, every point of  0B n is also a regular point. 

We have now shown that B~\(Su~B~) is an open connected set and every point 
of  Su~B~ is a regular point. By Theorem 2.10 in [3, p. 58] we know that COs(Z ) is 
well-defined and 2O~s(Z)<=u(z). By the maximum principle we have 

1 
2O~s(0) < u(0) = ~ llfJlx. 

By the theorem we have 

(0) c I s* l  > c IE*I O~ s ~ = ~  ,on_1r 
which completes the proof  of  the corollary. 

Corollary 2. I f  fELI(~B~) and n>-2, then 

c n  
[{z*Et)Bn: Mr(z*) >= 2}[ <_- ~ Ilfllx for all 2 > O. 

Proof. For any z*EtgB~ and 0<-r<:l,  define z=rz*. Fix z*. By (1), (3), (4), 
and Corollary 1, it is enough to show that for every t, 0<=t<_-2, there exists an r 
depending only on n and t such that 

Mf(z*) <= cn u(rz*) - cn u(z). 

This implies that it is enough to show that 

1 
IS(z*, t)l Xs(,*,o(~*) ~- cn P(z, ~*) 

for every ~*EOB n. Since Xs(, .o is supported on S(z*, t) and equals 1 there a n d  
P(z, ~*) decreases as [z*-~*I increases, it is enough to show 

I = ne(z, s t)[ _-> c 

for every [* such that [~*-z* l= t  with 0~_t<=2. Using spherical coordinates it is 
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easy to see that 

f 2 arc sin (t/2) 
IS(z*, t)[ = o~._2 S~ a~r sin"-2u du >= o~._2 j ~ sin"-~ u cos u du 

C U J n  - 2 _-> [t 2 (1 - t214)] ("-x)l~, 
n 

as long as 0-<_ t <= ]/-2-. By the law of cosines it is a straightforward calculation to verify 
that 

Iz-~*l ~ = ( i - lz l )"+lz l t  =. 
From this we obtain 

co ._d l - lzD [ #(1--t214).l "12 
,r => c ~ o , _ ~ t ~  (1-lzt)'+lztt~J 

when 0<_-t<-r If 1/~<-t~_~, choose 1-Izl=t~/2. In this case 
I~=cr162 since w._ffW,_l~C]/-n " and t>-l/]/n. If  0 < t < l / ] / n ' ,  choose 

l-lzl=t/Vg. One then has 

[[ 5)/[, .'-1[" I>=c-to,_x]/n 1 -  + >--r 

The case ] / 2 ~ t ~ 2  is trivial to handle by picking 1 - l z [ = l  and observing that 

"~o~.-tl <= IS(z*, t)[ -<_ (o,-1, 

whenever ]/2-<= t~2 .  

Proof of  the theorem. Without loss of  generality we can assume that Ec~{0}=0 
since otherwise there is nothing to prove. Furthermore we can assume that E has the 
property that every ray from the origin intersects E at most once by the following 
argument. Let F={zEB,: z----Rz*, z*EE*, and R=sup0~_,~_lr such that rz*CE}. 
Since E is a closed set in B,,  then F* is a closed set in OB. and ] E * ] = f * [ .  Since 
FC=E, we have tOE(0)---->COF(0) and thus it suffices to show 

C 
o~F(O) -> - - I r * l .  

o~._1 r 

The first part of  the proof  is not cumbersome and consists of reducing the 
problem to a one variable maximization problem. We wish to show wE(0)= > 

(c/w,_t]/n) IE*I. The idea of  the proof  is to construct a harmonic function, say V, 
1 

explicitly, from which it will immediately be seen that V(0)= IE*l and 
(-'On -- I 

C 
which, but this takes some work, satisfies r 

Vn 
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First consider the case when n=>3. We define 

lr "-~ d~r(O ' (6) V(z)=o-~ifrG(z,O i_]~[,_~ ' 

where G (z, ~) is the Green's function for B n and d~ is the Borel measure on E such 
that Z(F)---[F*) for any Borel set F~E. Since E ~ B  n and every ray from the 
origin intersects E at most once, (6) is certainly well=defined. It is well-known that 

I ' [ I Iz--r r , . -3 ,  r ~ o 
(7) G(z, 0 z[([--~1 

~ - 1 , 1  ~ = 0  

is harmonic in B#\{z} and equals zero on OB n. It is easy to see that V(z) is harmonic 
in B.\E and equals zero on 0B.. 

Suppose we succeed in showing V(z)<-c]/-n for every zEE. Since V(z)=O 
on OB, we would have V(z)<=c ]/ncor(z) for zEEuOB.. By the maximum principle 
we could conclude V(z)<=cl/-noE(z) everywhere in B n. Picking z=0,  we would 
have V(0)~clfnoE(0). Since 

1 .  d (o 1 [E* I (8) V(0) = ~ j  G(0, ~) 1-]~-~z, dZ(O = = 
(Dn_ 1 E (.On_ 1 (.On_ 1 

the theorem would then follow. So we are left to show V(z)~c ]/n for zEE. 
Independently, T. J. Lyons, K. B. Mac Gibbon, and J. C. Taylor [4] constructed 

and studied the same function V(z) and have shown that the function is bounded 
independently o f  z and E. Their bound on the function grows exponentially with n. 

We can decompose the set E into two parts, E=E~uE~, where E~={~EE: 
0<[~l<=l-1/n} and E~={~EE: l-I/n<l~l<a}. Clearly we have 

(9) 

where 

(lO) 

and 

(11) 

V(z) = v,  (z) + v~ (z), 

v,(z) = o(z , - - . ,  o Ir 
~On-, 1--1r 

V2(z)= 1 ~f-G(z '~)  1~[.-2 dZ;(O. 
o~.,a 1 - l ~ ]  n'~ 

z 
Let t be the distance from the point [z--/to the point - ~ .  By the law of cosines, 
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we have 

(12) 

and 

(13) 

I z -  (1' = (Izl-I~1) ~ + Izll~lt' 

zl~l--rer = (1-1el I(I)~+lzl Ifflt'. 

Thus we can view V~(z) for i =  1 or 2 in the following way: 

(14) V,(z) = n ( l z l ,  I~1, t) d~r(O, 

where H is a function of Izl, I~l, and t. Clearly it is enough to find for each fixed z 
the set F~ which maximizes 

(15) n(lzt ,  Iffl, t) d~(O 

and then to show that expression (15) is less than c ~ where F~ has the property 
that  any ray from the origin intersects F~ at most once and furthermore 

F~ ~ {(EB,: 0 < I~1 ~ l - - l /n}  
and 

F~ __c_ ( ~ B . :  1 - 1 / n  < I~t < i}.  

Certainly we can assume (F~)* =OB,. Since d~ r is Lebesgue surface measure on OB, 
it is a matter of  choosing F~ so that H(]z[, Iff[, t) is maximized for each (*EOBn 
with ff=lfflff*; that is, we wish to find I~l so that H(lz[, Iffl, t) is maximized for each 
~*EOB, with ( =  [(l(*. We may regard l~l as a function of  (* in (15). Since n(Izl, 
l~l, t) depends on 1~1 and t for fixed z, we can regard I~1 as a function of  t alone. By 
what we have said F~={(EB,:  [([=g~(t)} where g~ is the appropriate function of  t 
to maximize (15) subject to the constraint O<g~(t)<=l-1/n if i = I  or l - l / n <  
g~( t )< l  if i=2 .  Thus (15) can be rewritten as an integral in t. The surface area on 

the unit sphere of  the spherical cap, S(I- ~ -  ) z is , t , of  radius t about  the point [z--T 

with O~t~-2. Consequently the surface area element is 

diS(- ~ , tl[ = og~_2tn-2(1-t2/4)(n-a)/2 dt. 

Hence (15) can be replaced with the problem of maximizing the following expressions: 

1~1"-2 t~-2(1-t~/4) ~-3)/~dt (16) vi(z) = c '/ jo G(z; 0 1 
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such that l ffl =g~ (t). Rather than finding g~, (t), we will obtain upper bounds on v~ (z). 
To accomplish this we establish a number of lemmas. Let s =  1 - [z[ and a =  1 -I~I 
in order to make future calculations less cumbersome. 

(17) 

L e m m a  1 .  I f  0~_ c<N, then 

e -c/r <_- ( 1 - c / N )  N <= e -~. 

Proof If  0<=x<l ,  then 

- x  __., 1 
1 - x  --'-Zk*=~ xk <-- log(1 --X) = --2,'k=x'~- ~-- --x. 

This implies that 
e -Nxl (1-x)  <~ (1 - -x )  N <~ e -Nx .  

Choose x=c/N to conclude the proof. 
I(I " - ~  

Lemma 2. The term which appears in expression (16) satisfies 
1 -I~[ "-2 

I~1 n - ~  ~ 101~1 , - ~  
(18) 1 - I ~ l  " - ~  - 

i f  a>=l/n and satisfies 

(19) 1([ "-2 10 
] - I ( [  "-~ = n--'a 

i f  a ~  1In. 

Proof By Lemma 1 and the condition a~=l/n, we have 

1 - 1~1 " - ~  = 1 - ( 1 - a )  " - ~  = > 1 - e  - ' ~ " - ~ )  = > 1 - e  -1~3 = > 1 / 1 0 .  

This verifies (18). To verify (19), we first note that 

[ff["-~ 1 
1-I~1 " - ,  -~ 1-I~l "- ' '  

By the mean-value theorem, we have 

1 - ( 1 - a )  " - z  = ( n - 2 ) a ( 1 -  ~ ) . - a  

for some 0 < ~ < a .  By applying Lemma 1 and the condition a<=l/n, the following 
chain of inequalities is valid: 

--or(n--3) (n--$) 1 
(n--2)(1--~)n-3 _> (n -- 2) ( 1 -  a) "-a => (n--2)e 1-r >= (n--2) e (n-l) => ~_ ne-1. 

This establishes (19). 
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L e m m a  3. The Green's function satisfies 

2nas 
(2o) C(z, 0 -<- Iz-~l" " 

Proof From (12) and (13), it is easy to see that 

(2I) {z[~[- ~{[~ = [z-~[2 +(1-[z[Z)(1- l~[2). 

By equation (7), it is enough to show that 

(22) x -  ("- ~)/~ - (x + y) - (" - 2)/z < ny x-"/2 
- 2 

for  any x and y>O. It should be noted that 

(1 -Izl2)(1 -I~P) <-- 4as. 

By the mean-value theorem we have 

x_(,_2)12_(x + y)_(,_2)/~ _ n--2 2 YW-"/2 

for  some w such that x<w.<x+y. Clearly 

n - 2  ny x_,p.. 
- -T -- yw-"/2 <= -T 

We are now ready to conclude the proof  of  the theorem for n->3. 
V(z)<-vl(z)+v~(z), it is enough to prove the following lemma. 

Lemma 4. For any zEB,, we have v~(z)~=cl/-n and v~(z)<=c. 

Proof First consider va(z). Since [~l=g~(t) satisfies O<~(t)<-l-1/n, 
implies that 

r~'l"" < io{~{"-' (23) 1 -1~}"- 2 = 

by Lemma 3. Furthermore we always have 

1 
(24) G(z, 0 <= iz_ffl._2 

as can be seen from (7). By (12), (16), (23), and (24), we obtain 

[ {r ) ](.-2)/~ 
tT1 (Z) (1 dt. c 

' " . 1 o  t(Izl-I~1)~ + Izl t~i ~J 

Since 

this 
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However, it is true that 

(25) I/s t z ( 1  - t ' / 4 )  
<- l, 

(Izl -I~l) ~ + Izl I~l t~ - 

since inequality (25) reduces to simply 

> 0  

which is clearly true. Hence we arrive at 

vx(z) <= c -  "~Vn'Jo (i-t~14) -'/2 dt<= c Cn, 

as we wished to show. 
Next we handle vs(z). Since 1-1/n<g~(t)<l,  then v2(z) is harmonic in 

{zEB,: O<=]zl<=l-1/n}. By the maximum principle, if we show that v~(z)<=c for 
zEB.c~{zEB,: 1-1/n<= Izl< 1}, then v~(z)<=c for every zrB..  Thus we can assume 
zrB.c~{zrB.: 1-1/n<=lz]<l}. 

We break the range of integration in equation (16) for v,(z) into two parts as 
follows: 

f ' ~  f~ = v2(z)=-~o +~sr I~+I~. 

We first handle ~ .  By Lemmas 2 and 3, 

(26) G (z, () 1 - I CI"-~ <= 

By (12), (16), and (26), we have 

20s 
t z _ ( [ .  �9 

s 
1~ <= cl/n 1G [(ls Izt)~+lzllr "/~ t"-*(1-#/4)t"-z)/*dt 

2 st "-~ c ~  ~,z st .-2 . 
<= cf-~ f~r [[z~. /2  dt< (l_l/n).J~6---F-at, 

since 1-1/n<-]z]<=l and 1 - 1 / n < ] ( l < l .  We finally obtain 

Is <= cs t - s  d t  <-- c - - s  

as desired. 
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To handle 11, suppose first a~_s/2. We use estimate (26) once again. Equations 
(12), (16), (26), and the fact that a<=s/2 imply 

s t"-z(1 -t~/4) <"-a)/z dt 
11 _-< c [s~/4 + I~t Izlt~l "/~ 

<-- c [s2/4+(1 - l/n) z t2]n/z dt <- (1-1/n)----------"., o [s2/4+t2],/z dt. 

s 
After the change of  variables t ~ 2 - ~ - ,  we obtain 

r r(./2- c 1/2) 
I1 <-- c 1 / g f ~  (1 + t ) - " / ~ t  -1/~ a t  = r(n/2) <= c. 

Now suppose a>=s/2. We use the estimate 

I~1 "-~ 20 
(27) G(z, ~) l _ l ~ l n _  ~ ~_ ns]z_~l,_ z, 

which follows by (19), (24), and the fact that a>-s/2. By (12), (16), and (27), it fol- 
lows that 

11 c v g f f  1 t"-~(1 --tz/4) <"-s)lz dt 
- ns[(lzl-  lffl)~ + Izl Ifflt2] ~"-2m 

t c r  t 
<- c ns[lzl [~1 t~](,_2)/2 dt <= (1 - ' 1 ~  "-2 .' 0 nst,_ 2 dt <= c. 

This concludes the proof  of  Lemma 4 and hence also that of  the theorem for n_->3. 
It remains to prove the theorem for n=2 .  Here the formulas are different 

as the Green's function in two dimensions has logarithmic terms. The proof  is the 
same for n = 2  as for n->3 up to expression (16), except we use 

1 
V(z) = f ~  a (z, 0 a~ (0  ('/ log - ~  

in place of  (6), where 

(28) G(z, O = log lz l~l - -~l  l - l og  l z - ~  I 

if ~ ~ 0 and d~ is as before. Analogously, we need an upper bound, independent of z, 
o n  

(29) vi (z) = f ~  G(z, 0 1 (1 - t~/4) -1/~ dt 
log - ~  
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with  I(l=glz(t) a function of  t such that  O < g ~ ( t ) < l / 2  and 1/2<-g~( t )<l .  It  is 
easy to check that 

4trs 
(30) G(z,  0 ~- [z_( t~  

by the same proof  as in Lemma 3 and it is easy to verify that 

100as 
(31) a ( z ,  0 ~- log i z . f f l~ ,  

trS 
as long as - ->1/20. 

Iz-ffl  ~ 

Let us first handle vl(z) which means 1/2<o"<1. Consider the case 0_~s~_I/4. 
We then have 

(32) G (z, 0 <- cs 

by (12) and (30). It  is obvious that  

(33) 1 "<C 

lo (§ = 

when 1 / 2 < ~ < 1 .  By (29), (32), and (33) we have 

Vl(Z) ~ c f 2  s(1 - t2 /4)  -~1~ at ~= c. (34) 

There is left the case 1 / 4 ~ s ~  1. In this case it is easy to check that the log form 
applies. There are three subcases to consider. I f  [(I >2[zl, then 

f : ,  [_~_1/400 I T ~ )  i f :  2 -~/~Iog dt < c = vl(z)  <= c (1 - t / 4 )  log = (1 - t2 /4 )  -11~ dt < c. 

If  I~l<lzl/2, then 

f:(1 ,/4) 1 ,  [.._]/400 (~-~[~1 _<--c f : ( 1  /4) (z) < - t  - I  lOgtlzl~jllog dt Vl = c  - - t  ~ - ~ ? d t < = c .  

Finally if Izl/2<= lr <-- 2 lzl, then 

vl(z)  <- c (1-- tZl4)- l l~log (lffl_lzl)~§ log dt 

S; ' ' '  [ 2f~-~ 1/ (l-~12) S: 1200] dt <= c (1 - t / 4 ) -  I log log dt <= c (1 - t~14) - 1/2 log I.-~-J ~ c. 

Now let us handle vz(z) which means 0<a<=1/2. Since 1/2<=g~(t)<l,  then 
v~(z) is harmonic in {zEB~: 0~[zl~_l/2}. By the maximum principle, if we show 
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that v~(z)<=c for z (B~ .n{z (B2:  1/2~-[zl<l}, then v~(z)<=c forevery z (B2 .  Thus 
we can assume 0 < s  <- _ 1/2. We break the range of  integration for v~(z) into two parts: 

s 9~ 

o2(z)- f~ + f; =--.11+12. 

First consider 12. As in the proof  of  Lemma 2, 

log (1 -er) <- -er. 

From this one immediately sees that 

(35) 1 1/tr. 
I o ~ ( §  I - 

By (12), (29), (30), and 05) ,  we obtain 

12 -< s  /4) = c _ t z - Ir .  dt <_ c. 

To handle/1 we consider two cases. First we assume O<=a<-s/2 or 2s~a<=l/2.  
This implies that 

(36) 

by (12) and (30). Hence 

G(z,  ~) <= 16a/s 

f ~  1 dt I 1 <  -< ~-'C~o S ~ C  

by (30), (35), and (36). Finally we consider the case s/2<=a<=2s with O<a<-l /2 .  
By (12) and (31), it is trivial to check that 

, 1' 800s 2 
(37) G(z, r <= log [----~---). 

By (29), (35), and (37) it follows that 

r176176 ( 800s21 1 dt  = c log dt <= c, Ix<--c l o g t , ~ ) s  t t 2 J 

as we wished to show. This completes the proof  of the theorem. 
We end the paper with a new proof  of  the Stein--Str6mberg result. Consider the 

Hardy--Lit t lewood maximal function on R "-1, which is defined to be 

.gf(x) = ~up f ~,  1 o < , . , .  1,1- lB.-d,"-' 7f(x-y)] dy. 
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Stein and Str6mberg have shown that 

l{ x }[ cn (38) ER",I: .,glf(x) => 2 <= T II/[h 

for all 2>0  and fELt(R"-X). We only consider n_->3 since the interest of this 
result is on the size of the constant bound in (38) in terms of n. Without loss of gen- 
erality let g be a C*%function on OB. such that g~0.  As before, let 

Define 
u*(z*) = sup u(rz*) 

1--1]n~_r~_l 

with z*EOB.. Let E={rz*: u(rz*)>=2, 1-1/n<=r~l, z*EOB,}. Define V(z) as 
before and observe that V(z)<=c for zEB. by (9), (11), (16), and Lemma4. Bythe 
proof of the theorem and the proof of Corollary 1, we obtain 

(39) 

for all 2>0.  

(4O) 

with z*EOB.. 

I{z*EOB~: u~*(z*)> 2}[ < cllgh 

Define 
1 

M.g(z*) = sup f Xs(**,t)(~)g(Od~ (~) 
O~t~l/lFn OBn IS(z*, t)l 

The proof of Corollary 2, using (39) and (40), gives 

(41) [{z*EOB.: M.g(z*) => 2}[ -< ~ Hg[[, 

for all 2 >0. 
Clearly it is enough to prove (38) for C'-functions fw i th  compact support and 

such that f=>O. F i x f  We need only be concerned with the set {xERn-I: [xl~_R } 
for some fixed R sufficiently large, since 

cllflll f(x) <-- 
I~n=lllxi n-1 

once ]x[>=R and R is sufficiently large. By dilating the function f w e  can take R as 
small as we like and at least arrange R<= 1/n. Fix R. For any x such that Ix] <= R<= l/n, 
we now have 

1 
d / f  (x) <= sup IBo_,Ir -1 f [f(x- y)Idy. 

Place an n -  1 dimensional hyperplane tangent to B, at the point (0, 0, ..., 0, - 1) in 
R". Define g(z*)=f(x), where xER "-1 and z*=(x,-I/'I-[xI2)EOB, (see figure 
2 below). 
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X 

Figure 2 

- -  R n - 1  

I t  is obv ious  tha t  

cMn g (z*) ~ ~g f (x )  ~ CMn g (z*). 

Inequa l i ty  (38) now fol lows f rom (41). 
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