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Introduction 

Suppose that G/K is a noncompact Riemannian symmetric space and that G 
has an Iwasawa decomposition G =KAN. The Abel transform Fj, o f a  bi-K-invariant 
function fo r t  G is the Weyl group invariant function on the Lie algebra of A defined by 

Fe(H ) = eQ(n) f Nf(ex p (H)n)dn, HCa. 

Gangolli has shown that f~Fr is an isomorphism KC~(G)K~--~C*~(a). In this 
paper we describe the inverse of the Abel transform in the case when G = SU(p, q). 
The main ingredients are as follows. 

Firstly, it is known that the Abel transform relates the spherical transform on G 
and the Euclidean space Fourier transform on A in the following manner: 

spherical 
KCc(G) K transform , ~]~S~(a, ) 

Abel~ S ~ 
transform NN,~, / transf~ 

wcT(a) 
Hence, a function fEKCc(G) g" is equal to the inverse spherical transform of 

~ In the case of SU(p, q) there is an explicit formula for the spherical func- 
tions, due to Berezin and Karpelevich, and so one can write out an explicit formula 
for the inverse spherical transform. This involves a product of inverse Jacobi trans- 
forms, one for each of the dim (A) variables describing coordinates in a*, applied to 
the Fourier transform of a /-//<j (O~-O~)Ff. Here Oi means partial differentiation 
with respect to the ith coordinate on a. The final step uses a result of Koornwinder, 

* Dedicated to the memory of Irving Glicksberg. 
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which states that an inverse Jacobi transform is a composition of fractional integral 
operators following the one-dimensional Fourier transform applied to even func- 
tions. Our formula states that if fExCT(G) K then f is a fixed function multiplied 
with a product of compositions of fractional integral operators (in each of  dim (A) 
variables) applied to 

lI,<j s.  

We obtain a similar inversion formula for the Radon transform (in the sense of 
Helgason) acting on S(U(p)• U(q))-invariant functions on Mp.~(C). As an appli- 
cation of this latter formula we demonstrate a local regularity property for 
S(U(p)• Fourier transforms on Mp,~(C), when q>=p>l or 
q >p ~ 1, and exhibit some sets of nonsynthesis for the algebra of Fourier transforms 
on M~,q(C). 

I. Preliminaries 

Let G denote a connected noncompact semisimple Lie group with finite centre 
and with a fixed Iwasawa decomposition G=KAN. Furthermore, denote by a the 
Lie algebra of  A and I4: G-~a the Iwasawa projection. Fix a Weyl chamber a+ 
in a and let R + be the corresponding set of positive restricted roots. The multipli- 
city of ~ER + is written m(~) and we set Q=(1/2)~,~R.  m(~)~. The Weyl group 
is denoted by w. The Lie algebra of G has the Cartan decomposition f@p and we 
equip p with the inner product (.I.) coming from the Killing form. In particular, 
functionals 2Ea* are viewed as elements of p* which take the value of zero on the 
orthogonal complement of a in p. For each ~ER + fix H,  Ea so that (H, IH)=~(H) 
for all HE a. The vector field determined by H ,  is denoted by ~,. The Lebesgue 
measure on a and a* is normalized so that the Fourier transform 

~,f(2)  = f f (X)e  -~a(x) dX, VfES~(a*), )~Ea*, 

has a s  its inverse 

~,-lg(X) = f , .  g(2)e i~(x) d2, VgESa(a*), XEa. 

Then normalize the Haar measures on A, N, K and G in the usual manner, see 
[16], section 8.1.3. 

For each 2Ea* there is the zonal spherical function 

(1) q~x(x) = f K e(i'~-e)~ VxEG, 
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and the generalized Bessel function 

(2) ~t'a(X) = f r e*~tAa~k~x~ dk, VXEp. 

The properties of  these functions are described in [3, 7 and 11]. 
The spherical transform is defined by 

f(2) = f f(x) q)a (x-X) dx, gfE rCc (G) r, 

and the Abel or horospherical transform is 

F ;  (H) = e ~ fN f (exp  (H). n) dn, VfE xCc (G) r, HE a. 

It is known that f-~Fj, defines an isomorphism between rC~ (G) r and " C ~  (a), 
and that 

(3) f(2)=,~a(F$)(2), VfEKCc(G) K, keg*. 

See [7] for details. For each HEa let VH be the probability measure on a defined by 

f. fdvn = f ( H  (exp (H) .  k)) dk, VfE C~ (a). 

It follows from a theorem of  Kostant that the support of vn is the closed convex 
hull of  to. H. In addition, [6], if H is regular in a then v n is absolutely continuous with 
respect to Lebesgue measure. Equation (1) shows that 

(4) (Px (exp (H)) = ~r,(e-~ V2Ea*. 

Let C denote the function on a* which yields the inverse spherical transform [7], 

(5) f ( x )  = Itol-lf,, f(2)e (x)IC(2)1-3 d;,. 

The function II(A)=lC(2)l -z  is smooth and of  polynomial growth on a*, so that 
~,-111 is a well-defined tempered distribution on a, see [5], section 3.8. 

Combining equations (3), (4) and (5) we see that if HEa + and fErC~(G) K 
then 

f (exp  (H)) = Ito1-1 f., (F,) (2) (e-Q vn) ( -  2) I~ (2) d2 

= Ito 1-1Fs �9 (e-~ vn)" * (~-,- 1 II) (0). 

The convolution is well-defined since (e-QvH) has compact support. Note that 
p(-~)=p(~). 

6. Lemma. The inverse of  the Abel transform is given by 

f (exp  (H)) = Iwl -~ (Fs, (e-avn) *(-~'s 

for all FIE'*C~ (a) and HE a. 
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Theorem 3.5 in [10] summarizes this inversion when G has only one conjugaey 
class of  Cartan subgroups. See also [1] for the case of SL(3, R) and [9] for some 
calculations of ~,-111. In the next section we will explicate Lemma 6 for G = SU(p, q) 
and K=S(U(p)• U(q)). 

It is possible to make a similar remark concerning the Radon transform on p, 
as defined on p. 306 of [11]. First, let Go denote the Cartan motion group K X p  
and q the orthogonal complement of  a in p. Translates of  q by elements of Go are 
called planes in p. I f  fECc(p) and ~ is a plane in p then the value of the Radon 
transform o f f  at ~ is 

 f(O := f(Y) dr, 

where dY is Lebesgue measure on 4. From [11] we know that if f~rC*~ (p) then 

(7) ?(z) := f. f(X) 7t_a(X) dX = ~ ' , ( ~ f ( .  +q))(2). 

This is analogous to (3). Here II--,.~f(H+q) is an element of "C~ It is well- 
known that the inverse spherical transform for (Go, K) is given by 

(8) f(H) ---- l l-lfo. I (HDI 

for all frEC~*(p) and H6a.  

For each HC a let r/n be the probability measure on a with support co (m. H)  
and Fourier transform e_~(H) .  Furthermore, let 

9. Lemma. I f  fE tCh(p )  and HEa then 

f(H) = ( ~ f ( .  +q), ~/H*~,-~B). 

In the rank 1 case the K-invariant functions on p are just radial functions and 
this formula becomes a special case of results in 1.4 of [8]. As with the Abel transform, 
we will explicate Lemma 9 when K=S(U(p)X U(q)) and p=Mp, q(C), the space 
of p • q complex matrices. 

H. T h e  c a s e  G=SU(p, q) 

In this section we fix q>=p>=l and let G=SU(p, q). We use the Iwasawa 
decomposition described in [12], so that K=S(U(p)XU(q)), k=q-p>-O, 

{ I~176 / 
.... t '" ' i  ............... : t = d i a g ( q ,  . . . ,  t~) ,  t l  . . . .  , t p C R  , 

a =  H t =  . ......... i 0 q x q  

t O k x p  [ ) 
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at = exp (Hi), and 

Fix the Weyl chamber a+ = {Ht: tl >t2 > . . .  >tp >0} and identify a* with R p via 

Z(Ht) = Z p ~jt j .  /=i 

The Weyl group to is the semidirect product of  69,  acting as permutations 
t-~(tso),,..,t~(p)), and {-4-1}/' acting via t ~ ( e l q  . . . . .  %tp) with ej=__+l. Each 
function f~  w C~O (a) is even as a function of  each particular coordinate and invariant 
under all permutations of  coordinates. The positive restricted roots, in the notation 
of[12],  p. 71, are ~j,2gj (l<=j<=p) and gi-4-gj (l<=i<=p). 

We abbreviate 0 j = 0 ~  for l<=j<-_p. For each t~R let (see (2.2) in [13]) 

Ak, o(t) = I ( e ' - e - t ) z k + l ( e  t + e - %  
For tER p set 

a (n t )  r = g j = l  Ak, o(tj ) 
and 

o9(at) = 2 "("-1)/2/7 (cosh (2t i ) -cosh (2tj)). 

Note that if (s, a)~to then 

(10) o9 (a(~, ~)t) = sign (s)o9 (at). 

The integrand in equation (8) involves /LcR+ 2(H~) "(~), which in this case is equal 
to 

(11) c o n s t ( / / , < j ( 2 , -  9 )  ,=1 

In order to describe the zonal spherical functions and generalized Bessel func- 
tions we must recall some special functions. For each A~R and t > 0  the Jacobi 
function of  index (k, 0) is equal to 

r (t) = 2Fl((k + 1 + iA)]2, (k + 1 -- iA)/2; k + 1 ; - (sinh t)2). 

Furthermore, set 
2 k +1F ((iA)/2) F ((1 + iA)/2) 

Ck, o (A) = (F ((k + 1 + iA)/2)) 2 " 

as in (2.6) of[13]. It is known [15] that i f  A # 0  and t > 0  then 

(12) lim q~;t ~ (t/N) = const. (At)-kJk(At), 
N ~ t ~  

where ark is the classical Bessel function and the constant depends only on k. Let 
J~(s)=s-~A(s). 
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The formulae of  Berezin and Karpelivich [2] state that if XC a* is such that (11) 
is not zero then 

q~x(at) = const, det ~,e~t'̂ (k'~ (tj))l~_id~_p/{og(at). 1-[t<m (~l~" --2m)}2 (13) 

and 

(14) {(tt -- tin) (21 --2m)} ~ ( H t ) = c o n s t .  det(Jk(2,tj))l~_,.m~/1-[,<m 2 ~ 2 2 

for all Ht~a + . Equation (13) is proved in [12] and equation (14) follows from (12), 
(13), and [4]. 

Now suppose that f~KC~(G)K and that X is a regular element of  a*. Then, the 
spherical transform o f f  is given by 

(15) 

(9~, (tj))IIj=xAk, o(t~)dtx...dtp �9 // ,<m (2~- 2L)fO.) = const, fo f (a t )  09 (at) det (k. 0) p 

The right-hand side of  (15) is the sum over all permutations s e e p  of  integrals 

{gox~ (t,(j))Ak, o(t,(j))} dh. . .d tp  (16) f. f(at)o~(a,) sign (s) //~.=x (k,O) 

fo f(at)og(a,) I I j=x (k,o) = n {rpG (tj)Ak, o(t i)}dtl . . .dtp,  

the left-hand side of  (15) is equal to 

(17) ~, (//,<j O~- 0,9F~)(~). 

In (16) the integrand is invariant under the action of { + 1 }n and anti-invariant under 
the action of  Sp. Let us set 

C+ = {HtEa: tj >- O, j = 1, ..., p}. 

Then the integral (16) is 2 J' times the integral 

1, (k,O) t (18) f c+ f(at)ro(at) / /  j=l (rp~j ( j)Ak, o(tj) } dh. . .dtp.  

To proceed from here we need the results of Koornwinder [13] on the Jacobi trans- 
form. For positive real numbers # and a and g a compactly supported smooth func- 
tion on C+ set 

(W~(g))(HO = r ( , ) - , f ,~ . . ,  f,~ g(H.)• 

• {(cosh (~s~) -cosh (otj))"-~ ~ ~inh (~s~)}dSl... d~,. 
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Furthermore, for a as above, n=0 ,  1,2 . . . .  , and # > - n  let 

(W~(g) ) (Ht )=(-1) '~ 'F( .+n) -"  f~S f '  ~' "'" , / /k=l  O(coshask). g(H~) X 

X ElP 1 {(cosh (O'S/) - c o s h  (at,)) "+"-1 a sinh (6st)}dSl... dsp. 

These are p-fold tensor products of  the operators flU* in [13]. Combining (18) with 
(3.7) and (3.12) of [13] we see that if fEKCOj(G) K and kEa* then 

(19) f(2)  = const, fc§  W~~176176176 (2jti) dq ... dt r 

Rewriting equation (17), taking into account its invariance under { + 1} p, f(X) is also 
equal to 

(20) const, fc+ (/-/'<J (0~-  0F)FI)(Ht)/-/~.=l cos (2j t j) dtx.., dtp. 

We can invert the cosine transform one variable at a time and similarly the transforms 
W:. 

21. Theorem. For G, K, and a+ as above and fEKCc(G) x, the Abel transform 
F I satisfies 

/ / f<y (0~ - 0F) F I (Ht) = const. W~ o WlZ/~ ((fo exp). (co o exp)) (Ht) 

for all HtCa + . Furthermore, the inverse Abel transform is 

f (a  t) = const, co (at)-I W~ 1/2o Wl...k ( E  i<j (03 g' -- 0F) FI) (Hi) 

for all Ht6a + . 

This last formula can be thought of  as a higher rank version of  section V.2.4 in 
[8]. We now turn our attention to Radon transform in Lemma 9. We know that if 
f6 Xc~ (p) and L is a regular element of  a* then 

z * z * = const, fo  f (Ht)  ( t~-  t~) det ( A  (s t j)) X H , < m  ( , - ,.).f(X) 1I, . :~ 

P •  It~l ~k+a dq... dtp. 
Let us write 

(2  z 0(0 = l~,<j t~--t~). 

Arguing as for equation (16) above, we rewrite this as 

f ,  ( / / , < ,  (0~ - OF) ~ f ( .  + q)) (k) 

= const, fc§ f (Ht)  0 ( t) / /~=a {,St ()~j ty)Ityl 9"k+ 1} dfi.., dtp. 
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Using (5.5) of [13] this becomes 

const. L + / / ~ = '  cos (2,sj) s ' f,7 f(H,)O (t) •  ((t,=- sD ~-'1/=' t,) X 

•  dtpds,.., dsp. 

22. Theorem. For G, K, a+ and p as above and for every fErC~'(p) the Radon 
transform ~ f  satisfies 

/ / i<j  (a~ - a~) ~f(Ht + q) 

= c~ ~ "'" f,7 f(H,)O(s) II,~=, ((s~--t~'-O/2)st)ds,...ds,; 
for allHtEo+ 

F i x f a s  in the statement of the theorem. We know that t-~f(Ht) is a smooth 
function of (tl . . . . .  tp) and so we can view the integral in the theorem as a p-fold 
tensor product of Weyl fractional integrals. The inversion formulae for these are well 
known, see [13]. 

23. Corollary. For G, K, a+ and p as above and fEKC*~(p), 

f(H,)O(O --- const, f ~ . . .  f ,7  {//~=1 (xt-'lOt)k+"//'<i (0y-0~)~f(H,,+q)} X tp 

X P ~ ~ -i12 17,.=, {x.,(X,.--t.,) } dx, . . .dx, ,  
for all HtEa + . 

3. Local regularity for K-invarlant Fourier transforms 

Maintain the notation of section 2 and identify p and p* using the Killing form. 
Let -~p denote the Fourier transform acting on L' (p), normalized by the same require- 
ments as in section 1. We are interested in the properties of ~,~(KL'(p)), the sub- 
algebra of K-invariant elements of the Fourier algebra of p. For each gEL 1(t0) set 
II~gllA(~) = fl glh. In particular, if fECc (O) is K-invariant and an element of ~r~L1 (p) 
then 

t[ftlA(p) = Iwl-lfo, [~,(&f(" +q))(2){//~ea+ 12(H=)I m(~) d2. 

24. Lemma. Let fECc(p)n~(KL'(p)).  Then the distributional derivative 
(//~eR+0 m(')) ~f("  +q) is an element o f  ~,- ' (L'(a*))  and 

sup [/-/ OmC')~f(H+q)[ -~ const. [IfI[A(~)- 
HEa ~ E R +  ~--" 

Recall that ~f("  + q) is an element of ~Cc (a) whenever fE KCc (t0). Now fix a compact 
K-invariant subset E c p  and ~pEKCT(p) such that tp(X)=l for all XEE. For 
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every fESrp(KLX(p)) we can apply Lemma 24 to the function q).f. Furthermore, 
arguing as on p. 54 of  [14], we see that if n is an integer valued function on R + with 

O~n(00~=m(~) ,  V~ER + 

then there is a constant c>O, depending only on m, E, and 9 such that 

(25) sup I / L  E R + O~ (`') ~ (q~ "f) (H + q)] <---- c .  ]lfllA(p) 
HE., 

for aU 
We can feed these estimates into the equation in Corollary 23, and observe that 

- -  ( d / d y ) ~ t ~  (g) (y) = ~ _ l ( g )  (Y) = ~r g') (Y), 

in the notation o f  (3.9) of  [13]. 

26. Theorem. Let K, p, and a + be as above and suppose that q >=p > 1 or q >p ~= 1. 
For all f E ~ ( r L l ( ~ ) )  the distributional derivative 

I I  p 0 k ( ,=t , I I , < j ( j - O ~ ) ' f ( H , )  

is a continuous function on o+. Furthermore, for each m-invariant compact subset E, 
contained properly in the set o f  regular elements o f  a, there is a constant CE>O such 
that 

sup /-/~ Ok IIi<j(a~-O~)f(H,)[ < Cg. [[fliA(~). 
nts =1 = 

27. Corollary; For q>-p>l or q>p>-I consider the action o f  K = S ( U ( p ) X  

U(q)) on Mv, q(C ) given by (A O). X =  AXB." Then every regular K-orbit is not a 

set o f  synthesis for the Fourier algebra o f  My, ~ (C). 

This is proved in the same manner as Theorem 4.3 in [14]. See the references 
cited in [14] for details concerning spectral synthesis for ~ L a ( R 0 .  
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Note added in proo f  In  a recent paper  "The  Four ier  t ransform of H a r i s h - -  

Chandra ' s  c-function and  inversion of  the Abel  t ransform",  R. J. Beerends describes 

~r**(/~) for arbi t rary  noncompac t  G/K. 


