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Introduction 

The cohomology groups of the moduli space of complex vector bundles of  
coprime rank n and degree d over a compact Riemann surface M have been com- 
puted by Harder and Narasimhan [H & N] and also by Atiyah and Bott [A & B]. 
The basic idea of Atiyah and Bott is to apply equivariant Morse theory to the Yang-- 
Mills functional on the infinite-dimensional Mfine space of connections on a fixed 
C a bundle. I-Iawever they avoid the analytic problems involved in infinite-dimen- 
sional Morse theory by giving an alternative definition of the Morse stratification 
in terms of the canonical filtrations introduced by Harder and Narasimhan. This 
stratification turns out to be equivariantly perfect relative to the gauge group of 
the bundle, which means that the equivariant Morse inequalities are in fact equal- 
ities. These then provide an inductive formula for the equivariant cohomology of 
the minimal or semistable stratum, from which the cohomology of the moduli 
space can be calculated. 

Atiyah observed that the same idea could be applied to the action of a com- 
plex reductive group G on a finite-dimensional nonsingular complex projective 
variety X. Such a variety has a symplectic structure which is preserved by a maximal 
compact subgroup K of G. To this symplectic action there is associated a moment 
map. The Yang--Mills functional can be regarded as an analogue of the norm- 
square of the moment map. In [K] it is shown that the norm-square of the moment 
map always induces an equivariantly perfect stratification of X. In good cases when 
every semistable point of X is stable, this stratification can be used to obtain a for- 
mula for the Betti numbers of the geometric invariant theory quotient of X by G. 

One method of constructing the moduli spaces of vector bundles over M is 
to identify them with quotients of certain finite-dimensional quasi-projective varieties, 
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which are spaces of holomorphic maps from M into Grassmannians. The question 
arises whether Atiyah and Bott's formula for the cohomology of the moduli space 
can be rederived by applying the theory of [K] to these varieties. One of the two 
aims of this paper is to show that this can be done. 

The major obstacle is that we are dealing with varieties which are not projec- 
tive. This causes technical problems of convergence. Moreover a property of projec- 
tive varieties which was important in [K] is that their equivariant cohomology is 
easy to compute. In fact it is just the tensor product of the ordinary cohomology 
of the variety with that of the classifying space BG. This fails in general for quasi- 
projective varieties. 

Another problem is that the stratifications of these varieties do not correspond 
precisely with Atiyah and Bott's stratifications using canonical filtrations. How- 
ever they correspond outside a subset whose codimension tends to infinity with 
the degree d. Such a subset will only affect cohomolo~y in high dimensions. We 
then observe that the moduli space of bundles of rank n and de~ree d can be iden- 
tified with the moduli space of bundles of rank n and degree d+ne for any integer 
e by tensoring with a fixed line bundle of de~ree e. By choosing e large we get an 
approximate solution giving the cohomology of the moduli space up to some arbi- 
trarily high dimension. 

The inductive formula which we obtain in this way involves the cohomology of 
a space /~ of holomorphic maps of de~ree d+ne from the Riemann surface M 
to an infinite Grassmannian G(n, oo). The inductive formulas of Atiyah and Bott 
look very similar except that they involve the cohomolo~y of the entire space of 
continuous maps from M to G(n, oo). From this it is p~ssible to deduce inductively 
that /~ and the space of all continuous maps have the same cohomology up to an 
arbitrarily high dimension provided the degree is high enough. 

This is not an entirely unexpected result. Indeed Graeme Segal has shown 
in IS] that the inclusion of the space of all holomorphic maps of degree d from M to 
any complex projective space I'm into the space of all continuous maps of the same 
degree is a homology equivalence up to dimension (d-2g)(2m-1) where g is 
the genus of M. He conjectures that analogous results hold for maps into a much 
larger class of algebraic varieties including Grassmannians and flag manifolds. The 
first part of this paper gives a proof of this conjecture in the case of Grassmannians 
G(n, m) for finite n and m. (For related results about maps into flag manifolds 
see [G].) The proof is by induction and relies heavily on fegal's original theorem. 
It uses the fact that any nonsingular variety has the property that its cohomology 
groups in low dimensions are unchanged when a closed subvariety of high codimen- 
sion is removed. This follows trivially from the existence of the Thom--Gysin 
sequence. Moreover it is necessary to know that certain singular varieties have a 
similar property (see w 6). 
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In the case m = co one finds that the inclusion of the space/~ mentioned above 
in the space of all continuous maps is a cohomology equivalence up to some high 
dimension depending on d but one does not obtain the same result about the space 
of all holomorphic maps. The space/~ is an open subset of the space of all holo- 
morphic maps, but is not dense (see w 7). 

Thus we have a triangle of results, any two of which imply the third, but which 
can all be proved independently. The first is Atiyah and Bott's inductive formula 
for the cohomology of the moduli space. The second is the formula obtained by 
finite-dimensional methods, involving the cohomology of a space of holomorphic 
maps from M to G(n, co). The third is the special case m=~o of the extension of 
Segal's theorem to maps from M to a Grassmannian G(n, m). 

I would like to express my gratitude to Michael Atiyah and Graeme Segal to 
whom many of the basic ideas of this article are due, and to M. S. Narasimhan for 
some very helpful comments. 
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I. THE EXTENSION OF SEGAL'S THEOREM 

1. Statement of results 

Let M be a compact Riemann surface of genus g. Let Mapd (M, Pro) be the 
space of continuous maps of degree d from M into the complex projective space Pro" 
Let Hola (M, Pro) be the subset of Mapd (M, I'm) consisting of holomorphic maps, 
which is a quasi-projective variety. Segal shows ([S] prop. 1.3) that the inclusion of 
this subset is a cohomology equivalence up to dimension (d-2g)(2m-1) .  Note 
that this dimension tends to infinity with d. 

Our aim is to extend Segal's result to the case when the projective space is 
replaced by an arbitrary Grassmannian G(n, m). However difficulties arise because 
Hol d (M, G(n, m)) is a singular variety. Therefore it is technically simplest to show 
first that the result holds for a certain nonsingular open subset An(n, m) of 
Hol a (M, G(n, m)). It turns out that the codimension of the complement of this 
subset tends to infinity with d. From this together with some conditions on the 
singularities we can deduce that the cohomology of Ad(n, m) is isomorphic to 
the cohomology of Hol a (M, G(n, m)) up to some dimension which tends to infinity 
with d. 

The subset Ad(n, m) will reappear in II. 
Without any loss of generality we may consider quotient Grassmannians instead 

of the ordinary ones. 

Definition. Let G(n, m) be the Grassmannian of  n-dimensional quotients of  C m. 
Then there is a natural one-one correspondence between holomorphic maps 

h: M ~ G(n, m) 
and holomorphic quotients 

M x C  m ~ E 

with rank n of  the trivial complex bundle of  rank m over M. The fibre of  E at x is the 
quotient h(x) of  C m. 

Let Ad(n, m) be the space of all those holomorphic maps h such that the induced 
bundle E has degree d and satisfies 

H i ( M ,  E) = 0. 
We shall prove 

1.1. Theorem. Let k be a positive integer with k>-n-2g. Then the inclusion 

Ad(n, m) -~ Mapd(M, Cfn, m)) 

induces isomorphisms in cohomology up to dimension k, provided that d~do(k, n) 
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where 
do(k, n) = 2n (2g+k+  1)+n max (k+ 1 + n ( 2 g + k +  1), 41-- n~g). 

We shall deduce 

1.2. Theorem. Let k be a positive integer with k>=n-2g. Then the inclusion 

Hold (M, G(n, m)) ~ Mapd (M, a(n, m)) 

induces isomorphisms in cohomology up to dimension k-2m2g, provided that 
d>-do(k, n) where do(k, n) is defined as in theorem 1.1. 

1.3. Remark. Of course by the universal coefficient formula it is equivalent to 
consider homology instead of cohomology. 

1.4. Remark. There is an anti-holomorphism between the complex manifolds 
G(n, m) and G(m-n, n) which one obtains by choosing a hermitian inner product 
on C m and taking orthogonal complements. This anti-holomorphism induces a 
homeomorphism 

Uapd ( g ,  a(n,  m)) -- Mapd (M, a (m--n ,  m)) 

which restricts to a homeomorphism from Hold(M, G(n, m)) to the complex con- 
jugate of Hold(M, G(m-n, m)) in Mapd(M, G(m-n, m)) and also to a homeo- 
morphism from Ad(n, m) to the complex conjugate of Ad(m--n, m). Therefore 
the inclusion of Ad(n, in) (or of Holg(M, G(n, m))) in Mapa(M, G(n, m)) is a 
homology equivalence up to dimension k if and only if the same is true when n is 
replaced by m-n .  

1.5. Remark. When d:~2g-1 where g is the genus of M then every line 
bundle L on M satisfies Hi(M, L)=0 and hence Ad(1, m)=Hold(M, G(1, m)). 
Thus both theorems follow immediately from Segal's result in the cases n=  1 and 
n=m-1 .  

1.6. Remark. The fact that the bound do(k, n) in theorem 1.1 depends only 
on k and n but not on m will be important later when we consider what happens 
as m--oo (see w 7). We shall be able to deduce that the inclusion of Ad(n, co) in 
Mapd(M, G(n, ~o)) is a homology equivalence up to any dimension k provided 
that d is large enough. The fact that in theorem 1.2 one only has isomorphisms up 
to dimension k-2m~g will prevent us from deducing a similar result about the 
inclusion of Hold(M, G(n, m)). 

Note that Segal proves that the inclusion of Hold(M, Pm) in Mapd (M, P, )  
is a homology equivalence up to dimension k if d>-2g+(k+ 1)/(2m-1). In partic- 
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ular the same is true if d>=2g+k+l, and 2 g + k + l  is independent of re. Of course 
when m and k are large the bound 2g+(k+l)/(2m-1) is much better than the 
bound 2 g + k + l .  In the same way one can obtain better bounds than do(k, n) 
which depend on m. 

2.  R e d u c t i o n  o f  T h e o r e m  1.1 to  four  l e m m a s  

Theorem 1.1 will be proved by induction, using four lemmas. In order to state 
these we need some definitions. 

If m>=n>=l let G(n, m) be the subset of G(n, m)• m) consisting of 
all pairs (V, W) where V is an n-dimensional quotient of C m and W is an (n-1)- 
dimensional quotient of V. Then (7(n, m) is a nonsingular complex projective 
variety, and a holomorphic map h: M~G(n, m) may be identified with a sequence 
of surjective holomorphic maps between holomorphic vector bundles over M 

M •  m ~ E -~ E '  

where the ranks of E and E'  are n and n - 1 .  Let Hola, a,(M,G(n,m) ) be 
the space of all holomorphic maps h: M~G(n,m) such that the associated 
holomorphic vector bundles E and E'  have degrees d and d' respectively. Define 
Mapa.n,(M, G(n, m)) similarly as the space of all continuous maps h: M--,-G(n, rn) 
such that the associated topological vector bundles E and E" have degrees d and d' 
respectively. 

The obvious maps from G(n, m) to G(n, m) and G(n-1, m) are locally 
r fibrations with fibres P,-1 and Pro-, respectively. They induce maps 

and 
P: Mapa.a, (M, G(n, m)) -~ Mapa(M, G(n, m)) 

q: Mapa, a, (M, G(n, m)) ~ Mapa, (M, G(n-  1, m)). 

These restrict to maps between the appropriate spaces of holomorphic maps. 
Let -da, a,(n, m) be the space of holomorphic maps h: M-~G(n, m) such 

that the associated holomorphic vector bundles E and E" over M have degrees d 
and d" and satisfy 

Ha(M, E) = 0 = Hi(M, E'). 

Then p and q restrict to maps 

and 
P.,I: Aa, a,(n, in) --,- Aa(n, m) 

qA: Aa, a,(n, m) ~ Aa, (n-I ,  m). 
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Recall that any continuous map g: X-,-Y has a canonical factorisation 

X s p 

Y 

as the product of a homotopy equivalence s: X-~P and a fibration re: P~Y.  
Let I be the unit interval and let y t  be the space of continuous paths in Y; then 

P = {(x, co)CXXYtlco(O) = g(x)}, 

co) = coO) 
and 

s(x)  = (x, coo(x ) 

where coy denotes the constant path at y for any y in  Y. The fibre g-l(y) of g at 
any y in Yis embedded in the fibre of lr at y by s. The fibre of rc is called the homotopy 
fibre of g. When it is necessary to specify the map g we shall write P(g) for:P, ng 
for zc and I-IF(g, y) for the homotopy fibre n-l(y) .  

Associated to the fibration re: P-~Y is a spectral sequence E~,q with E~,q 
given by the pth homology group of Y with respect to a local coefficient system 
with stalk Hq(HF(g, y)) at y. This spectral sequence abuts to the homology of P 
which is isomorphic to the homology of X. 

2.1. By standard homotopy theory the inclusion of every fibre of 

p: Mapd, a,(M, O(n, rn)) -*- Mapa(M, G(n, m)) 

into the homotopy fibre is a homotopy equivalence. 
The same is true of 

q: Mapa, d,(M, G(n, m)) -~ Mapd,(M, G ( n - 1 ,  m)). 

In particular the homotopy fibres of p and q are homotopically equivalent to 
Mapd-a, (M, P,_I) and Mapn_4, (M, P,,_,) respectively. 

Suppose that one knew that the restrictions Pa and qa to the appropriate spaces 
of holomorphic maps had the same property. Then one could hope to prove Theo- 
rem 1.1 by induction, first using the spectral sequences associated to q and qa as 
above to deduce that the inclusion 

An, a, (n, m) ~ MaPd,4, (M, (7(n, m)) 

induces isomorphisms of homology up to some dimension, and then using the 
spectral sequences associated to p and Pa to deduce that the same is true of the 
inclusion 

Aa(n, m) ~ Mapa(M, G(n, m)). 
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In fact Pa and qa do not possess this property. However it will be shown that they 
satisfy a weaker condition which ensures that there exists a spectral sequence abutting 
to the homology of the domain, with E~,~ term given by the homology of the range 
with twisted coefficients in the homology of a suitable fibre for p, q<=k, where 
k can be taken to be arbitrarily large by appropriate choice of d and d'. This will 
enable us to prove Theorem 1.1. The basic idea is to show that PA and qA behave 
like fibrations outside a subset of codimension k, and then to use the fact that remov- 
ing a subset of codimension k from a manifold does not change the homology in 
dimensions less than k. 

We shall call a continuous map g: X~  Y a homology fibration up to dimen- 
sion k if for each yE Y the inclusion of the fibre over y in the homotopy fibre at y 
induces an isomorphism of homology groups in dimensions i < k  and a surjec- 
tion for i=k.  This definition coincides with the definition given in [G] and cor- 
responds to the definition of a homology fibration given in [McD]. Alternatively 
one might generalise the definition of a homology fibration given in [McD & S] 
(see also [S] definition 4.4, p. 50) by defining g to be a homology fibration up to 
dimension k if every yE Y has arbitrarily small contractible neighbourhoods U 
such that the inclusion of g-l(y) in g- l (U)  induces isomorphisms of homology 
in dimensions less than k and a surjection in dimension k. The latter is a stronger 
condition; any map which satisfies it is a homology fibration up to dimension k 
in the sense of this paper (see [G] lemma 4.9). 

Given any continuous map g: X--*Y we shall call a fibre g- l (y )  k-clean if 
its inclusion in the homotopy fibre HF(g, y) induces isomorphisms of homology 
in dimensions less than k and a surjection in dimension k. Thus g is a homology 
fibration up to dimension k if and only if every fibre of g is k-clean. 

Definition. A representation of a group n on a vector space V is nilpotent i f  V 
has a n-stable filtration such that ~ acts trivially on the associated graded module. 

Now the four lemmas needed for the proof of Theorem 1.1 can be stated. Let k 
be any positive integer and suppose that n_->2. 

2.2. Lemma. Let dl= max (2g-  1, 0) and 

1 d~(k, n, d - d ' )  = n(2g + k + 1 + d - d ' +  max (k+ 1 + n ( d - d ' ) ,  wn~) ). 

If d-d '>:dl  and d>-d~(k, n, d - d ' )  then the map 

Pa: Xa,a,(n, m) --,- Aa(n, m) 

has a k-clean fibre whose inclusion in the corresponding fibre of 

p: Mapa, a,(M, a(n, "0) -" Mapd(M, G(n, m)) 
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induces isomorphisms of homology in dimensions less that k. Moreover 
nl(Ad(n,m)) acts nilpotently on the homology of this k-clean fibre in dimensions 
less than k. 

2.3. Lenuna. If d - d ' > 2 g + k  and d'>(n-1)(2g+ l) then the map 

qa: -4a, a,(n, m) ~ Ad,(n--1, m) 

is a homology fibration up to dimension k. Moreover there is a fibre of qa whose inclu- 
sion in the corresponding fibre of 

q: Mapa, a,(M, G(n, m)) -,- Mapa,(M, G(n-1,  m)) 

induces isomorphisms of homology up to dimension k. Finally nx(A,v(n-1, m)) acts 
nilpotently on the homology of any fibre of qa up to dimension k. 

2.4. Lemma. I f  m>2 then nl(Mapa(M, G(n, m))) is abelian. 

2.5. Lemma. I f  m > 2  and r e > n > 0  then rq(Hola(G(n,m)) is abelian for 
d>2g+l. The same is true of ~l(Aa(n, m)). Moreover when d>2g+l the inclu- 
sion of An(n, m) in Mapa(M, G(n, m)) induces a surjection of fundamental groups. 

Proof of Theorem 1.1 given these four lemmas. The proof is by induction on n. 
For n = 1 note that any line bundle L on M of degree strictly greater than 2 g -  1 
has HI(M,L)=O. Thus Aa(1, m)=Hola(M,G(1, m) )when  d > 2 g - 1 .  As in 
Remark 1.4 we may identify Hola(M , G(1, m)) with the complex conjugate of 
Holn(M, Pro-0 in Mapa(M, P,n-1) and thus we find that the case n=  1 follows 
immediately from Segal's theorem ([S] 1.3). 

Now assume that n is greater than 1. We can thus also assume that m>2.  
Suppose that k~_n-2g and let K = k + l .  Suppose also that 

d >= do(k, n) -- 2n(2g+ k+  1)+n max(k+ 1 +n(2g+k+ 1),+ n~g) 

and let d' = d -  (2g + K + 1). Then d' -> d o (K, n - 1), the conditions of Lemmas 2.2 and 
2.3 are satisfied for k and K respectively and d' satisfies the condition d ' > 2 g + l  
of Lemma 2.5. We have a commutative diagram 

Xa, a,(n, m) qa ~- Ad,(n--1, m) 

Mapa, a,(M, a(n, m))--~- Mapa, (M, G(n -  1, m)) 

where il and /2 are the inclusions. Associated to qa and q are spectral sequences 
E~.~ abutting to the homology of Xd, a,(n, m) and Mapa, d,(M, a(n, m)) respectively 
such that the Eff,~ term is given by thep  th homology group of Ad,(n--1, m) and 
Mapa,(M, G(n-1, m)) respectively with twisted coefficients in the qtn homology 
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group of the homotopy fibre of qa and q respectively. It follows immediately from 
2.1 and 2.3 that the inclusion of the homotopy fibre of qa in the homotopy fibre 
of q induces isomorphisms in homology up to dimension K. Moreover since d ' =  > 
do(K, n-1), by induction i2 induces isomorphisms in homology up to dimension K. 

By Lemmas 2.4 and 2.5 the fundamental groups of Mapn,(M, G(n-l,m)) 
and An,(n-1, m) are abelian, and hence in particular they are nilpotent. Moreover 
by Lemma 2.3 zq(An,(n-1, m)) acts nilpotently on the homology of the homotopy 
fibre of qa up to dimension K. Since the action of ~rl(Mapn,(M, G(n-1, m))) on 
the homology of the homotopy fibre of q up to dimension K is determined by the 
surjection 

n~(An,(n-1, m)) ~ nl(Mapn, (M, G(n -1 ,  m))), 

the isomorphisms 
n,(nF(q~, y)) -, It,(ICF(q, y)) 

for i~_K and the action of 7h (An, (n - 1 ,  m)) on Hi(HF(qa, Y)), this action of 
nl(Mapn, (31, G(n-1, m))) is also nilpotent. Therefore it follows immediately from 
Hilton and Roitberg's extension to quasi-nilpotent fibrations of Zeeman's comparison 
theorem for spectral sequences (see [H & R]) that the inclusion/1 induces isomor- 
phisms in homology up to dimension K - 1  = k. 

We also have a commutative diagram 

.4n, n,(n, m) P-* , An(n, m) 
!'1 1'3 

Mapn, n,(M, G(n, m)) -s  Mapn(M, G(n, m)), 

where/1 and i3 are the inclusions. We have shown that il is a homology equivalence 
up to dimension k. By 2.1 and 2.2 and the definition of a k-clean fibre, the 
inclusion of the homotopy fibre of PA in the homotopy fibre of p induces isomor- 
phisms in homology in dimensions less than k. Therefore by the argument used 
above for qx and q we may apply Hilton and Roitberg's comparison theorem again 
to deduce that i3 induces isomorphisms of homology up to dimension k. This 
completes the induction step and the proof of the Theorem. 

Remark. For the case M =  S 2 Segal proved that the inclusion of Hold(M, Pro) 
in Mapn(M, Pm) is a homotopy equivalence up to dimension (d-2g)(2m-1), 
and he conjectured that the same holds for all Riemann surfaces M. Theorem 1.2 
and Lemma 2.5 tell us that the inclusion of HoI~(M, G(n, m)) in Mapn(M, G(n, m)) 
is a homology equivalence up to some dimension k which tends to infinity with d, 
and hence also that it induces an isomorphism of fundamental groups since these 
are both abelian. Therefore to show that the inclusion is a homotopy equivalence 
up to dimension k it would be enough (by [H & R]) to show that the fundamental 
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group of each space acts nilpotently on the higher homotopy groups up to dimen- 
sion k. It seems likely that one could prove this by induction using methods similar 
to the proof of Theorem 1.1 if the result was known for maps into projective spaces. 

To complete this section there follow some results about homology fibrations 
and k-clean fibres which we shall need later. 

2.6. Proposition. Let g: X-~ Y be a smooth map between connected manifolds X 
and Y, and let k be a non-negative integer. 

a) Suppose h: X ~ Z  is such that (g, h): X ~ Y •  is a homology fibration 
up to dimension k. Suppose also that for each yE Y the restriction of h: X ~ Z  
to the fibre g-l(y) is a homology fibration up to dimension k. Then g is a homology 
fibration up to dimension k. Moreover if zrl (Y) acts nilpotently on the homology 
of the homotopy fibre of the map (g, h) up to dimension k then the same is true of 
the map g. 

b) Suppose that Zc=X is a closed submanifold of codimension d in X with 
orientable normal bundle such that the restriction 4: Z ~  Y of g to Z is a fibra- 
tion up to dimension k - d +  1. Suppose also that the derivative of g is surjective 
everywhere on Z so that g-l(y) is smooth near g-X(y)=g- l (y)nZ and g-l(y) 
is a closed submanifold of codimension d in g-l(y) for every yE Y. Then g: X ~  Y 
is a homology fibration up to dimension k if and only if the restriction of g to X - Z  
is a homology fibration up to dimension k. Moreover if zq(Y) acts nilpotently on 
the homology of the homotopy fibres ofg  (up to dimension k) and ofg  (up to dimen- 
sion k - d + l )  then Irl(Y) acts nilpotently on the homology of the homotopy fibre 
of the restriction of g to X - Z  up to dimension k. 

c) Suppose that A and B are closed submanifolds of codimension at least k +  1 
in X and Y respectively, such that g-X(B)=A. If y~ Y - B  then the fibre of g 
at y is k-clean if and only if the fibre at y of the restriction of g to X - A  is k-clean. 

Proof. To prove (a) first note that there is a homotopy equivalence between 
P(g) and P(g, h) such that the diagram 

X .- P(g, h)---* P(g) 

commutes. This is because 

Y X Z  
"x 

Y 

P(g, h) = {(x, ~o, ~,)1 x~X, ~ocr ' ,  ~ ( z ' ,  co(0) = g(x), ~(0) = h(x)} 

and a homotopy equivalence P(g, h)~P(g) is given by 

(x, co, ~ )  - (x, co) 
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with homotopy inverse 
(x,  co) -- (x,  co, '0hcx~). 

For each y in Y this restricts to a homotopy equivalence between the homotopy 
fibre HF(g, y) and the inverse image 

A = {(x, co, &)leo(0) = g(x), r = y, ~(0) = h(x)} 

of {y}XZ under zr(o,h ). There is a fibration cp: A ~ Z  given by 

(x, o,  oh) ~ ~(1) 

whose fibre at z is the homotopy fibre HF((g, h), (y, z)) of (g, h) at (y, z). Under 
the inclusion 

g-l(y) ~ HF(g, y) --,- A 

this fibration restricts to the map h: g- l (y)~Z.  By assumption this is a homology 
fibration up to dimension k. Its fibre at any zEZ is (g, h)-X(y, z). By assumption 
the inclusion of this in HF((g, h), (y, z)) is a homology equivalence up to dimen- 
sion k. So the inclusion of the homotopy fibre of h: g-aO,)-Z in the homotopy 
fibre of r A ~ Z  is a homology equivalence up to dimension k. Therefore there 
are spectral sequences abutting to the homology of g-~(y) and of A (or equivalently 
of the homotopy fibre HF(g, y)) such that the natural map between the spectral 
sequences induced by the inclusion induces isomorphisms on the Ev2,q terms with 
q<-k. This is because when q<=k the E~,q terms are given by the pth homology groups 
of Z with respect to the same local coefficient system. Therefore it is easy to deduce 
that the inclusion of g-X(y) in HF(g, y) is a homology equivalence up to dimen- 
sion k (see [Z] or [H & R]). This proves (a), since the part about nilpotent actions 
is now obvious. 

Now consider (b). There is a diffeomorphism from a neighbourhood U of 
Z in X to the normal bundle N to Z in X, which implies by use of the Thom iso- 
morphism that 

Hq(X, .Y-Z)  = Hq-a(z) 

for all q->_0. Since the derivative of g: Z--,-Y is surjective everywhere in Z the 
fibres g-l(y)c~Z of ~ are all closed submanifolds of the fibres g-a(y); and by 
using the exponential maps associated to the restrictions of some metric on X to 
these fibres we may choose the diffeomorphism U--,-N such that the diagram 

U ~ , N  
\ / 

Y 
commutes. 
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For each y in Y 
HF(g, y) = {(x, ~o)~HF(g, y)IxCZ} 

so the subset 
U' = {(x, to)E HF(g, y)[xE U} 

is a neighbourhood of HF(g, y) in HF(g, y), and the diffeomorphism U--,N 
induces a homeomorphism of U" with the pull-back to HF(g, y) of the bundle N. 
Hence by the Thorn isomorphism again we have 

Hq(HF(g, y), HF(g, y ) -He(g ,  y)) = Hq-a(HF(g, y)). 

Since HF(g, y) -HF(g,  y) is the homotopy fibre of the restriction g" of g to X - Z  
we have two long exact sequences of cohomology 

. . . .  H~-a(HF(g, y)) ~ Hq(HF(g, Y)) ~ Hq(HF(g ", y)) ~ Hq-a+ a(HF(~,, y)) . . . .  
Ji~ [i~ [t~ ~i~ 

. . . .  Hq-a(g-X(y)) --,- Hq(g-a(y)) -,- H~(g"-X(y)) -,. H~-a+l(~,-~(y)) . . . .  

where ix, i2 and i3 are the inclusions. By assumption i~ is an isomorphism for q-d<= 
k - d + l ,  so i~" is an isomorphism for q<=k if and only if /~' is an isomorphism 
for q<=k by the five lemma. Finally note that the first of these two long exact sequences 
is compatible with the action of zq(Y) on the cohomology of the three homotopy 
fibres. By assumption the action on Ha(HF(g, y)) and on Hg-a+x(I-IF(g, y)) is 
nilpotent for q<=k. Hence the action of rh(Y) on Ha(HF(g ", y)) is also nilpotent 
for q<=k. This completes the proof of (b). 

The proof of (c) involves a similar and straightforward use of Thom--Gysin 
sequences. 

3. Facts about holomorphie bundles 

The space Hola(M, G(n, m)) is a quasi-projective variety of which Aa(n, m) 
is a Zariski open subset (cf. [Se] w 6 and also IN] Theorem 5.3). The Zariski tangent 
space at an element h corresponding to an exact sequence of bundles 

0 --~ K ~ M X C  m ~ E--~ 0 

can be canonically identified with H~ K* | 
The variety Hola(M, G(n, m)) parametrises in an obvious way a family of 

bundles of rank n and degree d over M. More precisely, there is a quotient/~ of 
the trivial rank m bundle over Hola(M, G(n, m))XM such that for every h the 
restriction of E to {h} X M is just h. (See e.g. [Se] w 6.) 

Suppose that h~Aa(n, m), so that Hi(M, E)=0.  Then K*| is a quotient 
of (MXCm)*| which is isomorphic to the sum of m copies of E and so has 
vanishing first cohomology. It follows that Ha(M,K*| Therefore the 



234 Frances Kirwan 

dimension of the Zariski tangent space H~ K*| is independent of h in 
Ad(n, m). In fact Seshadri has proved that the variety Ad(n, m) is nonsingular 
(see [Se] Remark 6.1). 

We next need some facts and definitions from [H & N] and [A & B]. 

3.1. A holomorphic bundle E over M is said to be semistable if it has no proper 
sub-bundle E '  with 

cl(E')/rk(E') > cl(E)/rk(E). 

Here c 1 is the first Chern class or degree, and rk is the rank. 

3.2. Every bundle E has a canonical filtration 

O = E o ~ . . . C = E s = E  
with semistable quotients 

D i = EflEj_I 
such that 

Cl(Oj)/,'k (D j) > cl (Dr + 1)/rk (D r + 1) 

for l<=j<=s-1. The degrees d r and ranks nj of the quotients D r determine the 
t ype / t  of the bundle E, which is an element of the positive Weyl chamber of  the 
group GL(n) for n=rk(E). In fact/z is the vector 

(dl/nl, ..., d,/n~) 

in which each ratio di/n j appears nj times. If  Cl(E)=d and rk(E)=n we say that 
# is an (n, d) type. (See [A & B].) 

3.3. I f  L is a line bundle on M with degree e then the type of  E|  is /z+e, 
where by abuse of notation e stands for the n-vector all of  whose coefficients are 
equal to e. I f  q~ is a set of types we write ~ + e  for the set (/~+e[pE~). 

3.4. I f  d>n(2g-1)  is a positive integer and E is a semistable bundle of  rank 
n and degree d on M then E is generated by its sections and Hi(M, E ) = 0  (see 
IN] Lemma 5.2). We deduce that for any fixed type/z there is some integer m 0 such 
that if m>=mo and E is of type /~+m, then 

Hi(M, E) = 0 

and E is generated by its sections. 

3.5. From [A & B] we know that there is an infinite-dimensional affine space 
cg whose points can be regarded as unitary connections on some fixed C ~ bundle 
over M, or equivalently as holomorphic structures on this bundle. Atiyah and Bott 
show that there is a smooth stratification of  ~ by types so that a holomorphic struc- 
ture lies in the stratum ~ if and only if it is of type/z. 
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3.6. Let E be any holomorphic bundle on M representing a point in cg and let 
End E be the bundle of endomorphisms of E. Then the normal in cg at E to the 
submanifold consisting of  all bundles isomorphic to E can be identified with 
Hi(M, End E). I f  E is of  type #, let End" E denote the bundle of endomorphisms 
of E which preserve the canonical filtration, and define End" E by the exact sequence 

0 ~ End'  E ~ End E ~ End" E ~ 0. 

Then H i ( M ,  End" E)  can be identified with the normal to the stratum ~g, at E 
(see [A & B] w 7). So 

d~ = dim Hi(M, End" E )  

is the complex codimension of cg~ in cg. 

3.7. I f  we take the dual of the exact sequence 

0 ~ K-~ M X C "  ~ E ~ 0 

corresponding to an element h of Ad(n, m) and then tensor with E we obtain 

0 ~ E n d E ~  E@E@...@E--,- K*| O. 

This gives us a homomorphism 

9; H~ M, K*| ~ Ha(M, End E)  

which is surjective because Hi(M, EOE| @E)=0 .  This homomorphism is the 
infinitesimal deformation map at h. It can be interpreted as follows in terms of 
the space c~ described at 3.5. 

There is a small neighbourhood N of  h in An(n, m) such that the restriction of 
the bundle/~ to NXM is differentially isomorphic to NXE. If  we fix a hermitian 
metric on E this gives us a family of unitary connections on the underlying C ~ 
bundle of E, parametrised by N. So we get a map ~ of  N into the space cd of all 
unitary connections. By [A & B] Lemma i5.5, the infinitesimal deformation map 
9 is the projection of the differential d~ (h) of $ at h onto the normal to the sub- 
manifold of (g consisting of bundles isomorphic to E. 

Remark. Define a stratification (A~) of  An(n, m) by 

A~ = {h I the corresponding bundle E has type ~}. 

Then since ~p is surjective for all h in Ad(n, m), it follows from 3.5 and 3.6 that 
each stratum Au is nonsingular, and if it is nonempty then it has complex codimension 
d~in An(n, m). 

3.8. By [A & B] 7.16 we have 

d/t = 2 i > j  ( n i d j - r l j d i + r l i n j ( g  - 1)) 
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if p is the type ( d l / n  1 . . . . .  ds/ns) defined as at 3.2 by integers dl . . . .  , ds and 
na . . . .  ,n~>0 such that dl+. . .+ds=d,  nl+. . .+n~=n and dl/nl>. . .> dJn~. From 
this it is easy to see that 

dt~+m = d~ 

for any (n, d) type # and any integer m. It is also easy to see that given any integer 
k there are only finitely many (n, d) types / t  such that 

d.<=k. 

3.9. Lemma. Let k and e be any positive integers. Then i f  

d >= n(2g+e+max(k,  -~n2g, n ( 1 - g ) ) )  

there exists a finite set ql o f  (n, d) types such that 

a) i f p  is an (n,d) type and #r  then du>k; 
b) if E is a bundle of type p ~  and L is a line bundle of  degree at most e on 

M then Ha(M, L * |  
c) the union of the strata {c~u[#~q/} is an open subset of c~; and 
d) if da . . . . .  d, are integers such that d l + . . . + d , = d  and [d/n]<=dj<-[d/n]+l 

for 1 <=j<-n then the type p of any sum of line bundles on M of degrees dl, ..., d, 
is an element of ~.  

Proof. It is well known that if E is a semistable bundle of rank n and degree 
d then there are no nonzero holomorphic bundle maps from E to a line bundle L of  
degree less than din (see e.g. [N] w 5). Hence if /-1 . . . .  , L,  are line bundles on M 
each of degree [d/n] or [d/n] + 1 then the type /1 = (dl/na, ..., dJn~) of L1 0 . . .  @L, 
satisfies dl/nx<-[d/n]+l. From this it follows that s is at most 2 and that 
dJn, ~_[d/n]. Hence 

(d )) , 2 d l, = nln2 1/nl-dJn2 + ( g -  1 -<- nan2g <= T" n g. 

Without loss of  generality we may assume that k >- ~ n2g. Therefore if we define q/ 
to be the set of all (n, d) types/~ such that d~,<=k then it remains only to check 
that (b) is satisfied. 

By 3.4 it suffices to show that if lt=(dl/nl . . . .  , d~/ns) is an (n, d) type such 
that d~<=k then d j / n j - e > 2 g - 1  for l<-j<-s. Since dj/nj>-dJn, for all j it is 
enough to show that dJns>=2g+e. We have 

d~ = ~ >  J n~n~ (dfln~ - -  d i / n  i + g - 1) ~ k. 

Moreover dflnj>dJn, when i>j, and if g = 0  then each dj/n I is an integer because 
every semistable line bundle on P1 is a sum of line bundles all of  the same degree. 
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Hence 
d t / n i - d J n i +  g -  1 >= 0 

whenever i>j ,  and therefore 

dl/nl -d~/ns+s(g  - 1) _<- Z~>j  (dt/nt - d J n i  + g -  1) <= k. 

But dl/nl>=d/n>=2g+k+e, so 

dJn s >= 2 g + e + s ( g - 1 )  => 2g+e 

if g=>l. Finally when g = 0  then d/n>=k+e+n so djn,>=e+n-s>=e=2g+e.  
This completes the proof. 

We also need a technical lemma. 

3.10. Lemma. Suppose that T is a nonsingular quasi-projective variety which 
parametrises a family o f  bundles o f  rank n>-2 over M,  in the sense that there is a 
holomorphic bundle E over T •  such that for any t in T the restriction E t o f  E to 
( t ) •  is the bundle parametrised by t. Let k be any non-negative integer. Suppose 
that for every t in T and every line bunale L over M of  degree at most k + l ,  we have 

H ~ (M, L* | Et) = O. 

Then there is a bundle W over T such that the fibre ~ at any tE T can be naturally 
identified with H~ Et). Let re: P(W)-+T be the projective bundle associated 
to IV. Let So be the image in P(W) of  the nowhere-vanishing sections in W under 
the identification of  points in IV, with sections o f  E t. Then the restriction o f  zc to So 
is a homology fibration up to dimension k. Moreover tel(T) acts nilpotently on the 
homology o f  the homotopy fibre o f  7r: So-+T in dimensions less than k. 

Proof. The existence of the bundle W is well known (see e.g. [HI III Corol- 
lary 12.9). The proof of the rest of the Lemma is by induction on k. First note that 
7q(T) acts trivially on the homology of the fibre of the projective bundle P(140 
over T because the homology of any projective space in any dimension has rank at 
most 1 and GL+(1, Z) is trivial. 

For any t ~ T  and s E W  t, let 

D(s) = xx + ... + xj 

be the zero-divisor of s regarded as a section of the bundle E t over M. For each 
j=>0, let S t be the image in P(W) of those sections s which vanish at precisely j 
points of M with multiplicity. Then the sets {Stlj=>0} form a stratification of 
P(W). We shall see that the strata Sj for j<=k are all smooth, and that the strata 
S t for j > k  have real codimension at least k-t-1 so we shall be able to ignore 
them. 

Let M O) be the jth symmetric power of M, which is a smooth projective variety. 
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Elements of M (j) can be thought of as positive divisors of degree j on M. So for 
each j > 0  there is a map 

~j; Sj ~ M (J) X T 

whose first component sends a point of Sj represented by sC W to the zero-divisor 
D(s) of s, and whose second component is the restriction of zc to Sj. 

The fibre of zcj at (D, t) consists of the image in P(H~174 of 
the nowhere-vanishing sections of the bundle Et| ). The variety M(J)• 
parametrises the family of bundles EtQ(~(-D ) over M, and we know that 

HI(M, L* Q EtQ(~(-D)) = 0 

for any line bundle L of degree at most k + 1 - j ,  because the degree of (V ( -  D) is 
- j .  Therefore it follows by induction that if k>-j>O then 

is a homology fibration up to dimension k - j ,  and ~I(M(i)XT) acts niIpotently 
on the homology of the homotopy fibre of ~zj in dimensions less than k - j .  Simi- 
larly for every fixed tET the variety M (J) parametrises the family of bundles 
EtQO(-D), and the fibre at D of the map S jn~- l ( t )~M <i) given by restricting 
the first component of z~j is the image in P(H~174 of the nowhere- 
vanishing sections of Et| Therefore by the same argument this map is 
also a homology fibration up to dimension k - j .  Hence by 2.6(a) the restriction 
of zc to Sj is also a homology fibration up to dimension k - j ,  and ~I(T) acts nil- 
potently on the homology of the homotopy fibre of zc: Sj-~T in dimensions less 
that k - j .  Of course this is also trivially true when j>k. 

Our aim is to apply 2.6(b) to the strata Sj of P(W) for each j > 0  in turn in 
decreasing order of j. (There are only finitely many j such that Sj in nonempty.) 
For this we need to check that when O<j<=k then Sj is smooth of real codimen- 
sion at least j + l  in P(W) and when j > k  then S i has real codimension greater 
than k + l .  It does not matter whether Sj is nonsingular for j>k  since we can 
always refine the stratification so that this becomes true. 

If k>=j>O then Sj is an open subset of a smooth projective bundle over M (j) • T 
and hence it is smooth. Moreover the derivative of %. and hence also of ~ at any 
point of Sj is surjective. In particular the intersection of Sj with the fibre P(Wt) 
of rc at any tET has the same codimension in P(Wt) as Sj has in P(W). But if 
DEM (j) and k + l - > j > 0  then H~ Et| has complex codimension nj 
in H~ Et) by Riemann--Roch, because the first cohomology of both .E t and 
Et| ) vanishes and the degree of Et| ) is deg Et-nj. Since M (j) 
has dimension j it follows that the real codimension of SinP(Wt) in P(Wt) is 
2 (n -1 ) j  for k>-j>O, and at least 2 ( n - 1 ) ( k + l )  for j>k. By assumption n=>2 
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so 2 (n -1 ) j  is strictly greater than j for all j ~ l .  Repeated application of 2.6(b) 
now shows that the restriction of n to S o is a homology fibration up to dimension k 
and that nl(T) acts nilpotently on the homology of the homotopy fibre of n: 
S0-~ T in dimensions less than k. This completes the induction. 

4. Proof of  Lemma 2.2 

An element h of Xa, a,(n, m) can be identifed with a pair of bundles E and 
E'  of rank n and n -  1 and degree d and d' respectively, with surjective maps 

M X C  m - , -  E -* E" 

satisfying H~(M, E)=O=HI(M, E'). The kernel of the quotient map E ~ E "  is 
then a line bundle L(h) of degree d - d ' .  Let 

p" : -~d,a,(n, m) ~ Aa(n, m)XPicd-d,(M) 

be the map whose first component is Pa and whose second sends h to the isomor- 
phism class [L(h)] of L(h) in the Picard variety of M. We shall show that p" has a 
k-clean fibre (in fact that the generic fibre of p' is k-clean) provided that d - d ' >  
max (2g-1, 0) and d>-_n(2g+k+l + d - d ' + m a x  (k+ l  +n(d-d ' ) ,  ln~g)). More 
precisely we shall show that there is an open subset U of Ad(n, m) such that the 
complements of U in Aa(n, m) and of P~I(U) in Ad, d,(n, m) have codimension 
strictly greater than k and such that the restriction 

p" : p2l(U) --,. U• ) 

is a homology fibration up to dimension k. We shall also show that the restriction 

P'" P2a(g) -" {g}• (M), 

is a fibration up to dimension k for every g in U. By 2.6(a) and (c) this will be enough 
to prove that for every g~ U the fibre of Pa at g is k-clean. 

Let g be any element of Ad(n, m) represented by a quotient bundle E of the 
trivial bundle of rank m. Let L be any line bundle of degree d - d ' .  Since 
Hi(M, E)=0,  if 

O~L- - , -E~E ' - - , -O  

is an exact sequence then Hi(M, E')=0.  Moreover embeddings L--,-E correspond 
to nowhere-vanishing sections of L*| and the group of automorphisms of L is 
C* acting as mukiplication by scalars. Therefore the fibre of p' at (g, [L]) can be 
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identified with the image in the projective space 

P(H~ L*| 

of the nowhere-vanishing sections of L* | 
The nonsingular variety A n (n, m)• Pica-d, (M) parametrises a family of bundles 

L*| on M, obtained by tensoring the dual of the universal line bundle on 
Pica_n,(M)• with the tautological bundle /~ on Aa(n, m)XM. Similarly for 
any fixed E the variety Picn_a,(M ) parametrises the family L*| where now 
only L varies. Therefore by Lemma 3.10 and the remarks made at the beginning 
of this section, to prove that the fibre ofpa at every g in some nonempty open sub- 
set U of Aa(n, m) is k-clean, it is enough to show that the complements of U 
and of p~l(U) both have codimension strictly greater than k and that (*) for any 
bundles E and L representing elements g of U and [L] of Pica_a,(M ) and any line 
bundle H of degree at most k + l  we have 

H1(M, H*|174 = O. 

These conditions also imply that the action of gl(Aa(n, m)) on the homology of 
the homotopy fibre of Pa is nilpotent in dimensions less than k. We shall show 
that it is possible to find such a U provided that d-d" and d are sufficiently large. 

First choose d-d" positive and strictly greater than 2g-1 .  Then every line 
than or equal to d-d" has a nonzero section. By 3.9 if bundle of degree greater 

d is at least 

n(2g+d 

there is a finite set qz' of 
a) whenever # is an 

- d' + k + 1 + max(k + 1 + n (d - d'),@ n2g)) 

(n, d) types such that 
(n, d) type not lying in q/then 

d u > k + l + n ( d - d ' ) ;  

b) whenever E is a bundle of type #(q/  and L is a line bundle of degree at 
most d - d ' + k + l  then HI(M,L*| and 

c) the type # of any sum of n line bundles whose degrees lie between [d/n] and 
[d/n] + 1 and add up to d lies in q,/. 

By 3.7 there is a smooth stratification of An(n, m) into strata A, where an 
element lies in A, if the corresponding bundle E is of type p. Moreover if A, is 
nonempty then its codimension in An(n, m) is d,. So (a) implies 

d) if #r then the codimension of A~, is greater than k + l  +n(d-d').  

Let U be the union of those strata A, such that/ t  belongs to q/. By enlarging 0g 
if necessary we may assume that U is open in Ad(m, n). Then since d-d" is posi- 
tive, by (d) the complement of U has codimension at least k + l  in Ad(n, m) and 
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by (b) the condition (*) is satisfied. Therefore it suffices to show that the codimension 
of the complement o fp~ l (U)  in Xd, d,(n, m) is greater than k + l .  

Suppose that L is a line bundle of degree d-d"  over M and g in A~(n, m) 
corresponds to the bundle E. Then by our assumption L has a nonzero section s. 
Tensoring by s gives us an embedding of 1-1~ L*| into HO(M, E). Since 
/-P(M, E)=0,  by Riemann--Roch we have 

dim HO(M, L* |  <- dim HO(M, E) = d + n(1 - g). 

So the fibre of p'  at (g [L]) has dimension at most d + n ( 1 - g ) - I  because it is 
contained in P(H~ L*| 

On the other hand, if E is of type #C://, then 

dim H~ L*| = n (d ' -d )+d+n(1  -g) ,  

because of (b). Also if x ~ M  then 

dim H~ * |174 ql( - x)) = n(d ' -d)+d+n(1 - g ) - n  

by the same argument. Since n=>2 and d '<d  and d i m M = l ,  it follows that 
there do exist nonvanishing sections of L*| Hence the dimension of the fibre 
of p' at (g, ILl) is exactly 

dim P(H~ L*| = n (d ' -d )+d+n(1  - g ) -  1 
when g~ U. 

So the dimension of a generic fibre of p '  is d + n ( 1 - g ) - n ( d - d ' ) - l ,  and 
the dimension of any fibre is at most d + n ( 1 - g ) - l .  Therefore it follows from 
(d) that the codimension of the complement of p- l (U)  in Ad, a,(n, m) is greater 
than k + l .  This shows that U has all the properties we wanted it to have. 

To complete the proof of Lemma 2.2 it is now enough to show that for some 
particular quotient bundle E of M •  m of type # belonging to ~ the inclusion 
of the space of all holomorphic line sub-bundles of E in the space of all continuous 
line sub-bundles is a homology equivalence up to dimension k. The following lemma 
is needed for this and for the proof of Lemma 2.3. 

4.1. Lemma. Let m, n and d be positive integers such that m>-n+l and 
d>=n (2g + 1). Then there exists an exact sequence 

0 --~ HI~  ... ~Hm_ n -* M X C  m --~ L ~ . . .  @L~ -~ 0 

where HI . . . .  ,Hmn are line bundles on M such that d e g H j ~ 0  for l<=j<-m-n, 
and Ls . . . . .  L~ are line bundles on M such that [d/n]<=deg Lj<=[d/n]+ 1 for 1 ~-j~_n 
and deg (LI@... @Ln)=d. Moreover HX(M~ Zl~... ~Ln)=0. 

Before proving this lemma, let us use it to complete the proof 2.2. Let E=L~ @ 
�9 . .~Ln where L~ . . . . .  Ln satisfy the conditions of  4.1. By (c) above the type of E 
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lies in q/. Therefore the exact sequence of 4.1 defines a point of the open subset U 
of Ad(n, m). 

Clearly if L is any line bundle of degree [d/n], then line sub-bundles of E of 
degree d-d"  correspond one to one with line sub-bundles of L*| of degree 
d-d ' -[d/n] .  But L*NE is a sum of line bundles each having degree 0 or 1. So 
the result follows provided it can be shown that if E "  is a sum of line bundles with 
degrees 0 or 1 then the inclusion of the space of all holomorphic line sub-bundles 
of E "  of degree - e  in the space of all continuous line sub-bundles of the same 
degree is a homology equivalence up to dimension k provided that e is 
at least 2 g + k + l .  We then only have to set e=[d/n]-(d-d ' )  and note that if 
d>=n(2g+k+l+d-d  ") then e~=2g+k+l. 

Holomorphic (respectively continuous) line sub-bundles of degree - e  of the 
trivial bundle of rank n correspond exactly with holomorphic (respectively con- 
tinuous) maps of degree e from M to P,_I .  Therefore when E "  is the sum of trivial 
line bundles the result we want is just Segal's theorem. But in fact Segal's proof 
can be adapted without difficulty to the case when E "  is any sum of line bundles 
to give the following result. 

4.2. Theorem. Let N be a non-negative integer and for 0 <j <= N let L] be a holomorphic 
line bundle of  degree d] on N. Then the inchtsion of  the space HLe(LoO...OLu) 
of  all holomorphic line sub-bundles of Lo@...OL N of  degree - e  in the space 
CLe(Lo~)... (~LN) of  all continuous line sub-bundles of the same degree is a homology 
equivalence up to dimension 

(e+min  {djl0 <_-j <= N } - 2 g ) ( 2 N -  1). 

In particular i f  dj>=O for O<-j<=N then this inclusion is a homology equivalence up 
to dimension ( e - 2 g ) ( 2 N -  1). 

Proof. This theorem is exactly Segal's result in the case when every L~ is the 
trivial line bundle. To prove the theorem in general one adapts Segal's proof as 
follows. 

Let Xo be any basepoint of M and let M'=M--{x0}.  Let (m , Qe ( M )  be the 
space of all sequences (40 . . . .  , IN) of positive divisors of degree e in M" with 4o n 
�9 .. n~N=~o. Let j :  Div (M)~P ic  (M) be the homomorphism from the group of 
divisors on M to the Picard variety of M which associates to any divisor the iso- 
morphism class of the line bundle which it determines. Then j restricts to a map 
j: Divo(M)~J(M) where J(M)=Pico(M) is the Jacobian of M and Divo(M) 
is the group of divisors of degree 0. Segal identifies the space of basepoint preserving 
holomorphic maps f :  M-~P~r of degree e with the fibre at 0 of the map Q(~m(M')--, 
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J ( M )  N which takes (40 . . . . .  4N) t o  ( J ( 4 o - - 4 1 ) , J ( ~ 2 - - 4 1 )  . . . .  ). He shows that this 
map is a homology equivalence up to dimension ( e - 2 g ) ( 2 N - 1 ) .  

Let us choose a fixed 1-dimensional complex subspace Vo of (L0)x0@... �9 
(LN)xo such that the projection of V0 onto (Lj)xo is an isomorphism for each j.  Let 
Q be the space of all sequences (C0 . . . .  ,4N) of positive divisors of degrees 
e + d  o . . . .  , e + d  N in M" with empty intersection. Given a holomorphic line sub- 
bandle L of degree  - e  in LoG.. .@LN such that Lxo=V o define an element 
(40, ..., ~N)of  Q by taking ~j to be the sum (including multiplicities) of those points 
x in M such that the projection of L~ onto (L~)x is zero. In this way we can identify 
the space of holomorphic line sub-bundles of degree - e  in Lo~).. .@L~ with 
fixed fibre at the basepoint (as above) with the fibre at the point 

([L0| [LI| . . . . .  [Lu-lQL~v]) 
of the map 

Q ~ Pied0- dl (M) X Pied1- d~ (M) X...  X Picas,_1- d~ (M) 

which takes (40 . . . .  , ~N) to (J(~0-~.0, j(~l-4~). . . ) .  Segal's proof that this map 
is a homology fibration up to dimension ( e - 2 g ) ( 2 N - 1 )  when each Lj  is the trivial 
line bundle extends with only the most trivial modifications to show that in general 
this map is a homology fibration up to dimension 

(e+min  {ds] 0 <-j <= N } - 2 g ) ( 2 N - 1 ) .  

The proof of Theorem 4.2 then follows exactly as in the case studied by Segal. 
We have thus completed the proof of 2.2 except that it remains to prove 

Lemma 4.1. 

Proof of  Lemma 4.1. First note that if L1, ..., L ,  are line bundles each of 
degree at least [d/n] and if d>=n(2g+l) then H I ( M ,  LI@. . .@L,)=O by 3.4. 
Moreover if 

0 -~ H -~ M •  "+i ~ L t d . . .  GL,  -* 0 

is an exact sequence with the properties required in the Lemma when m = n + l ,  
then the exact sequence 

0 -- H @ ( M x C  . . . .  1) _ M •  m _~ LI@. . . (3L ,  -- 0 

has the properties required in the general case m>=n+l. Therefore it suffices to 
consider the case re=n+ 1. 

Since dim M =  1, it follows from Riemann--Roch that if H is any line bundle 
of degree e>2g  then there is a nowhere-vanishing section of H |  Equivalently 
there is an embedding of At* in the trivial rank 2 bundle on M whose quotient 
is a line bundle L of degree e. Then L is generated by two sections sl and s~ say. 
By the same argument there is a line bundle L" of degree e + l  generated by sec- 
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tions s~ and s~. Let S be the finite set of points x in M such that either sx(x) or s~.(x) 
is zero. We can find a, b, c, d i n  C such that a d - b c  is nonzero and so are as'x(x)+ 
bs~(x) and cs~(x)+ds'~(x) for all x in S. Therefore without loss of generality we 

P �9 may assume that s 1 and s~ are both nonzero if either sa or s2 is zero. 
Now write d=ne+p  with O~_p<n and define a holomorphic map of vector 

bundles q~ from M X C  m to the sum L a O . . . ~ L  n where L j = L  if j ~ n - p  and 
L t=L'  if  j > n - p  as follows. Let el . . . . .  em be the standard basis of C ' .  It is 
enough to specify ~p(x, ej) for each x ~ M  and l~_j<-m. For  l<=j<-n let 

Zj: L1 - L~@... OL.  

be the embedding of  L i as the jth factor of the sum. 
Then let 

q~ (x, el) = Z~ (s~ (x)) 

ej) = 2 < - j  n - p  

~o(x, e.-p+ a) = Z._,(s ,(x))+ Z.-.+ a(s~(x)) 

(p(x, ej) = Zj_a(s~(x))+ Zj(s~(x)) n - -p+  1 < j <= n 

~p(x, e.+~) = Z.(S~(X)). 

(Recall that by assumption m = n + l ) .  Since s~ and s2 generate L they never vanish 
simultaneously, and nor do s~ and s~ for the same reason. Therefore the assumption 
that s~ and s~ are both nonzero whenever either s~ or s~ vanishes implies that for all 
x E M  either sl(x)#O and s~(x)#O or s~(x)#O and s~(x)#O. From this it is 
easy to see that ~p is surjective. The result follows. 

5. Proof of Lemmas 2.3, 2.4 and 2.5 

The proof  of 2.3 is similar to the proof  of 2.2, but easier. Assume that d - d "  > 
2g + k. Let 

q' : ,4a, a,(n, m) ~ Aa , (n -1 ,  rn)• 

have first component qa and second component the map which sends a point re- 
presented by a sequence 

O ~ L ~ E ~ E ' ~ O  

to the isomorphism class of  L in Pica_a,(M), as described in w 4. Then points of  
the fibre of q" at a point (h, [L]) represented by a quotient 

M X C  m ~ E '  

and a line bundle L can be identified with isomorphism classes of  commutative 
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diagrams 
M X C  m 

l \  
O ~ L ~ E - ~ E ' - - . - O  

such that HI(M,E)=O. But HI(M,E')=O because h lies in A a , ( n - l , m  ) and 
HI(M,L)=O because d - d ' > 2 g - 1  so the condition HI(M,E)=O is satisfied 
automatically. Hence by arrow-chasing we see that elements of the fibre correspond 
simply to quotient maps K-~L or equivalently to embeddings L*-,.K*, where 
K is the kernel of the quotient map M x c m " E "  defining h. Therefore the fibre 
of q" at (h, [L]) can be identified with the image in P(H~ L| of the no- 
where-vanishing sections of L| 

Thus to prove the first part of 2.3 it is enough by 2.6(a) and 3.10 to show that 
Hi(M, L|174 for any line bundle H of degree at most k. But this fol- 
lows from the long exact sequence of cohomology associated to the exact sequence 

0 --~ L |174  -.- (H*| ~ L|174 -..0, 

on the assumption that d - d ' > k + 2 g .  
The first and last parts of 2.3 now follow immediately from 2.6(a) and 3.10. 

To complete the proof we repeat the argument used in the proof of 2.2. 
First note that if d' > ( n - 1 ) ( 2 g +  1) then by Lemma 4.1 there exists an element 

of An, (n-- 1, m) represented by an exact sequence 

0 --~ g--~ M X C  m "-~ E" "-~ 0 

where K* is a sum of line bundles whose degrees are all non-negative. To prove 
2.3 it now suffices to show that the inclusion of the space of all holomorphic line 
sub-bundles of K* of degree - ( d - d ' )  in the space of all continuous line sub- 
bundles of  the same degree is a homology equivalence up to dimension/c provided 
that d-d"  is at least 2 g + k + l .  But this follows immediately from Theorem 4.2. 

The proof of Lemma 2.3 is now complete. 

Proof of  Lemma 2.4. We need to prove that 7q(Mapa(M, G(n, m))) is abelian 
when m>2. Clearly we may assume that 0 < n < m .  

First consider ~q(Mapa(M, I'm)) where m=>2. Let p be a point of P~. By 
standard approximation arguments any element of lq(Mapa(M, Pro)) may be re- 
presented by a smooth map S~• . Since the real dimension of SX• is 
3 and the real codimension of p in Pm is at least 4, by a general position argument 
we see that we may assume that the image of S I •  in I'm does not contain p. 
(First choose the base-point of Mapa(M, Pro) to be a smooth map whose image 
does not contain p,) A similar argument shows that if m=>3 then two smooth maps 
M-*Mapa(M, PIn-{P}) are homotopic as maps into Mapa(M, Pro-{P}) if and 
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only if they are homotopic as maps into Mapd(M, Pro). Hence rq(Mapd(M, Pro)) 
is isomorphic to 7zx(Mapa(M, Pm-{p))) when m=>3. As PIn--{P} retracts onto 
Pro-1 we deduce that rci(MaPd(M, Pro)) is independent of m when m=>2. 

By 1.4. Mapd(M, G(n, m)) is homeomorphic to Mapd(M, G'(n, m ) where 
G'(n, m) is the Grassmannian of n-dimensional subspaces of C m. There is an open 
subset W of G'(n, m) defined by 

W = {V~G'(n, m)l dimV~C m-"+l = 1} 

where C m-n+ 1 is a fixed (m-n  + 1)-dimensional linear subspace of C m. The comple- 
ment of W in G'(n, m) has complex codimension at least 

n ( m - n ) - ( 2 ( m - n - 1 ) + ( n - 2 ) ( m - n ) )  = 2 

and so the argument used above shows that the inclusion of Mapa(M, W) into 
Mapd(M, G'(n, m)) induces a surjection from nl(Mapd(M, W)) to 

lrx(Mapd(M, G" (n, rn))) 

The map W~Pm_, given by sending Vto V n C  m-'+~ is a locally trivial fibration 
with fibre C (m-")("-x) so Mapd(M, W) retracts onto Mapd(M, Pm_,). Therefore 
if Mapd(M, Pn- , )  is abelian, so is Mapd(M, G(n, m)). We may assume that 
m-n>-2 since otherwise G(n, m) is a projective space itself, so it is now enough 
to show that zq(Mapn(M, P2)) is abelian. 

Let Map* denote based maps. Then since ~ (Pz )=0  the fibration sequence 

Map~(M, P2) ~ Mapd(M, P~) ~ P2 

induces a surjection rca(Map~(M, P2))~zq(Mapd(M, P2)). Therefore it suffices to 
show that zq(Map~(M, P~)) is abelian. Map~(M, P2) is independent of d up to 
homotopy, so we may take d=0.  The 1-skeleton of M is a wedge VS 1 of 2g copies 
of S ~, and the resuk of collapsing it to a point in M is S 2. Therefore there is an exact 
sequence 

f2~P2 = Map~ (S 2, P~) ~ Map~(M, P~) ~ Map~' (VS ~, P2) 

which gives an exact sequence 

~l(O2P2) ~ ~l(Map~(M, P2)) -~  7~ l (~Qa(P2 ) )  2g 
because 

Map~ (VS ~, P2) = Map~ (S 1, P2) 2g = (O~ (P2)) 2g. 

Therefore as ~I(Q2P2)=zc3(P2)=0 and zq(QI(P2))=zc2(P2)=Z the result follows. 

Proof of Lemma 2.5. We need to prove that if m>2  and 0 < n < m  and 
d > 2 g §  then ~l(HOld(G(n,m))) and zq(Ad(n,m)) are abelian and the inclu- 
sion of Ad(n, m) in Mapd(M, G(n, m)) induces a surjection on fundamental 
groups. 
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Let W be the open subset of G(n, m) defined by 

W = {Cm/VEG(n, m)ldim VnC m-1 = m - n - l }  

where C m-1 is a fixed hyperplane in C m. The complement W c of W has complex 
codimension 

dim G(n, m)-d im  G(n-1, m - l )  = m - n  

in G(n, m). By standard approximation arguments any element of 

~I (Hole (M, G (n, m))) 

may be represented by a smooth based map S 1 *Hole(M, G(n, m)), or equivalently 
by a smooth map 9: SI•  n, m) such that the restriction 9t: M~G(n, m) 
of 9 to {t}• is holomorphic of degree d for any tE S 1, and when t is the base- 
poin t of S 1 then 9t is the chosen basepoint of Hol~(M, G(n, m)). 

Let S be the subgroup of the complex general linear group GL(m) given by 

S = {gE GL(m)lgW = W}. 

Then S contains every gEGL(m) which preserves C m-1 so S is a parabolic sub- 
group of GL(rn) and hence GL(m)/S is compact. Consider the subset 

{gSEGL(m)/SI 9(SIXM) ~ gW} 

of GL(m)/S. This is the image of the submanifold 

{(t, x, gS)E S~ •215 GL(m)/S l g,(x) ~i gW} 

of S~•215 under the projection to GL(m)/S. For any tES 1 and xEM 
we have 

{gSE GL(m)/S I 9,(x) ~ gW} = {gSE GL(m)/S I q~t(x) c= g(Cm-1)} 

and it is easy to see that this has complex codimension m - n  in GL(m)/S. If 
m-n>=2 this means it has real codimension at least 4. Since SI•  is compact of 
real dimension 3 it follows that the subset 

{gE GL(m) ) 9(S~ • c= gW} 

is open and dense in GL(m). In particular we see that by replacing the basepoint 
90 of Hole(M, G(n, m)) by gq~0 for a suitable g we may assume that 90 lies in 
I-Lla(M, W). Moreover we may then choose a continuous map t~gt from S ~ to 
SL(m) which is homotopic to the identity, sends the basepoint of S 1 to 1 and sat- 
isfies gd&(M)~W for all tESt. Since g9t: M~G(n,m) is holomorphic of 
degree d for a n y  gEGL(m) and any tES 1 we deduce that the inclusion of 
Hole(M, W) in Hole(M, G(n, m)) induces a surjection 

el(Hole(M, W)) -,- n,(Hole(M, G(n, m))). 
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Moreover a similar argument involving homotopies between maps St>< M--,-G(n, m) 
shows that if m-n>=3 then this surjection is an isomorphism. 

The map W~G(n, m -  1) given by V--- VnC "-x is a holomorphic vector bundle 
with fibre C", so Hold(M, W) is homotopy equivalent to Hold(M, G(n, m - l ) ) .  
It follows that 

rq(Hola(M, G(n, m))) ~ rq(Hol a (M, G(n, r n -  1))) 

when m-n>-_3, and there is a surjection 

rq(Hola(M, G(n, m - I))) -- rq(Hola(M, G(n, m))) 

when m-n=2.  In particular since by 1.4 

~(Hola(M, G(1, m +  1))) = ~(Hola(M, em)) 

for all m we have that ~l(Hold(M , Pro)) is independent of m when m:>2. More- 
over by Remark 1.4 we have 

ul(Hola(M, G(n, m))) _~ rq(Hola(M, G(m-n ,  m))). 

<::1 Therefore it is now enough to consider those G(n, m) such that n = y  m. If n > l  
then m - n + l  =>n+l >2 and there is a surjection 

rq (Hold(M, G(1, m - n +  1))) ~ rq(Hold(M, G(n, m))). 

Hence in order to show that rq(Hold(M, G(n, m))) is abelian when m >2 it suffices 
to show that ZCl(HO]a(M, G(1, m))) is abelian for all m>2. Moreover since 
~l(Hola(M , P~)) is independent of m when m=>2 the same is true of 

rq(Hola(M, G(1, m))) 
when m>2. 

Let G(1, ~ )  be the Grassmannian of l-dimensional quotients of a separable 
complex Hilbert space C ~ (see w 7). Let Hold(M, G(1, oo)) be the union of the sub- 
sets Hold(M , G(1, IT)) of Mapa(M , G(1, co)) over all finite-dimensional subspaces 
V of C ~, where G(1, V) is embedded in G(1, ~ )  by using the orthogonal projec- 
tion of C ~ onto V. Then Hold(M , G(1, ~o)) has the induced limit topology (see 
w 7 again). The proof that 7Zl(Hola(M , G(I, m))) is independent of m when m>2  
shows also that hi(Hold(M, G(1, m))) is isomorphic to nl(Hold(M, G(1, ~))) when 
m>2. Therefore it suffices to show that the latter is abelian. 

Let/2 be the subspace of Hold(M, G(1, ~o)) consisting of all those maps h: M ~  
G(1, V) for some finite-dimensional subspace V of C ~ which induce a quotient line 
bundle L of M •  V such that the corresponding map of sections V-,-H ~ (M, L) is sur- 
jective. If d > 2 g - 1  then H~(M,L)=O and dimH~ where p=d+ 
1 -g .  Similarly define R to be the subspace of Hold(M, G(1, p)) consisting of those 
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h: M~G(1,p) such that the corresponding map of sections CP~H~ L) is an 
isomorphism. 

The proof of Corollary 7.2 below shows immediately that the inclusion of /~  
in Hola(M, G(1, oo)) is a weak homotopy equivalence and in particular 

Ztl(Hold(M, G(I, oo))) ~ 7h(~). 

(Note that when d>2g- 1 then Hold(M , G(1, ~))=Aa(1, ~o)). 
Let EGL(p) be the space of all quotient maps e: Coo~C p. This is a contractible 

space on which GL(p) acts freely and the quotient BGL(p) is the infinite quotient 
Grassmannian G(p, ~ )  (cf. w 7 and w 10). If we identify elements of R with quotient 
bundle maps CP• where L is a line bundle and elements of/~ with quotient 
bundle maps C~176215 then there is a map 

R• -)- 1~ 

which sends an element of R• represented by $: CP• and e: C ~~ 
C p to the element of -g represented by the composition ~ p o ( l d M •  C ~ •  
It is not hard to check (cf. w 10) that this induces a homeomorphism from 
R• to _~. 

GL(p) acts freely on R and R/GL(p) is the moduli space of line bundles of 
degree d on M, so it is isomorphic to the lacobian J(M). (See w 9, noting that a 
line bundle is always semistable.) Thus we have a fibration 

..~ RX~L(p)EGL(p) --)- J(M) 

with contractible fibre EGL(p). Hence 

~1(~) ~ ~I(J(M)) = Z 2g. 

(To make this argument more precise by replacing R and GL(p) by a compact 
manifold acted on freely by a compact group see e.g. [K].) 

This completes the proof that zq(Hold(M, G(n, m))) is abelian for m>2.  One 
can check that exactly the same arguments go through for the open subset Ad(n, m) 
of Hold(M, G(n, m)), or alternatively use the arguments of w 6 to deduce that the 
inclusion of Ad(n, m) in Hola(M, G(n, m)) induces an isomorphism of their funda- 
mental groups. 

It remains to prove that the map 

rtx(Aa(n, m)) -,- ~h(Mapa (M, G(n, m))) 

induced by the inclusion is surjective when d > 2 g + l .  When n=1 it follows 
immediately from SegaI's theorem that the map is an isomorphism since we know 
that both fundamental groups are abelian and hence are isomorphic to the cor= 
responding first homology groups. When n > l  we may assume n<=m/2 as above 
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and we have a commutative diagram 

.l(A,(n. m)) -- .l(Map,(M. C(n. m))) 
t t 

~I(Aa(1, m--n+ 1)) _~ rq(Mapn(M, G(1, m - n +  1))) 

where the two vertical maps are surjective by the argument used earlier in the proof 
of this lemma. The result follows immediately. 

This completes the proof of Theorem 1.1. 

6. On removing subvarieties of high eodimension from singular varieties 

It is well-known that the removal of a closed subvariety of codimension k from 
a nonsingular variety does not change the cohomology in dimensions less than k. 
In order to deduce Theorem 1.2 from Theorem t.1 we need to show that a similar 
result holds for singular varieties satisfying certain conditions. (Clearly some con- 
ditions are necessary.) 

6.1. Theorem. Suppose X is of the form 

X = {xEUIA(x ) . . . . .  fro(X) = O} 

where U is an open subset of C N and ./'1 . . . . .  fm are analytic complex-valued func- 
tions on U. Suppose that Y is a closed analytic subvariety of U of complex codimen- 
sion k. Then 

Hq(X, X-- Y) = 0 = Ha(X, X -  Y) 

where Hq and H a denote homology and cohomology with integer for q < k - m ,  
coefficients. 

6.2. Remark. By a theorem of Lojasiewicz ([L] thm. 1) there is a locally finite 
triangulation of C N such that both X and Y are simplicial. In particular the simplicial 
cohomology groups of X and Y coincide with the ~ech and Alexander cohomology 
groups. So we may take either kind of cohomology in 6.1. 

Proof of the theorem. By the universal coefficient theorem it is enough to con- 
sider homology. Moreover a standard Mayer--Vietoris argument shows that it is 
enough to prove the result when U is a sufficiently small neighbourhood of any 
point x of Y (cf. [Sp] 5.7.9). 

If the case m= 1 is true, then the other cases follow by induction as follows. 
Suppose that m >  1 and that the result is true for 1 and m - 1 .  Let 

{xcur (x)=O, l j m-l} 
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and 
X~ = {xC Ulfm(X) = 0}. 

Then 
XluX= = {xE U[f,,(x)fi(x) = O, 1 ~ j ~ m -  1} = Xa, 

say. So by induction if i =  1, 2 or 3 then 

Hq(X,, X,--Y)  = 0 

for  O<-_q<=k-m+l. But since 

xlnx  = x ,  

there is a Mayer--Vietoris sequence 

. . . .  Hq+I(X3, X a - Y )  --,- Hq(X, X - Y )  --,- 

Hq(x . XI-Y)eHq(X,. X,-Y)  -* H,(X,. X -Y) . . . .  

Hence Hq(X, X -  Y)=O for O ~ q ~ k - m .  
So we need only consider the ease 

X--- {xE U If(x) = 0}. 

We may assume without loss of generality that Xc~ Y= Y. There is a stratifica- 
tion of  Y into nonsingular strata (the Whitney stratification). By removing strata 
one by one we may assume that Y is nonsingular in U with codimension k. Thus 
without loss of  generality 

Y = {(zl . . . . .  zN)E U[O = zl . . . . .  zk}. 

Given a convex open subset V o f  C u-k and a real number t>O, let A(V, t) be the 
set of all points (z 1 . . . .  , zN) in C N satisfying 

lZ112+... +]Zkl2 < t and (gk+ 1 . . . .  , ZN)E V; 

and let X(V, t )=A(V, t )c~X.  Then those X(V, t )  for which A(V,t)c=U form 
an open cover of  X, and the intersection of any two sets of this form is also of the 
same form because 

A(V1, q)nA(V~, t2) = A(V~nV~, min (tl, t~)). 

Hence by the Mayer--Vietoris sequence argument of  [Sp] 5.7.9 it is enough to show 
that for any xE Y and any sufficiently small V and t such that A(V, t) is a neigh- 
bourhood of  x in C N, the relative cohomology 

H (X(V, O, x(v, O-Y) 
vanishes for q < k -  1. 

Without loss of generality x=O. It is enough to prove that 

a) ITq(X(V, t ) - Y ) = 0  
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and 

b) ~q (X(V, t)) = 0 

for sufficiently small V, t and O<=q<k - 1, where/-7 is reduced homology. 
To prove (a) let 

w(v ,  0 = (o, 0 • v 

and define h:A(V, t )~W(V,  t) by 

h(zl . . . . .  zN) = ([z112-t - ... + IZk[ 2, Zg + l . . . . .  zN). 

Let f~:X(V, t ) -Y -+W(V,  t) be the restriction of h to X(V, t ) - Y  and let F be 
any fibre of ~. Then by [M] Theorem 5.2 we have 

# q ( r )  = 0 

for O<=q<=k-2. (It should be noted that in [M] Milnor only considers the case 
when the function f is a polynomial. However the only time he uses this is in the 
proof of his Curve Selection Lemma. Here he needs the fact that any one-dimen- 
sional real or complex algebraic variety is locally the union of finitely many branches 
intersecting at one point, each branch being homeomorphic to R or C. This is 
true for analytic spaces too by resolution of singularities so his proof is valid for 
any analyticf)  

Milnor's proof that /Tq(F)=0 can be adapted to give the following 

6.3. Lemma. Each point of W(V, t) has a base of neighbourhoods U in W(V, t) 
satisfying /-Tq(~-l(U))=0 for O<=q<-k-2. 

Before proving this lemma let us use it to complete the proof of Theorem 6.1. 
The direct image sheaf R~(Z) is the sheaf on W(V, t) associated to the presheaf 

and hence by 6.3 it is 0 when q>0  and is Z when q=0. There is a spectral sequence 
(the Leray spectral sequence) abutting to H*(X(V, t ) -  Y) with 

Z when p =  q = 0  
E~ 'q = HP(W(V, t), R~(Z)) = 0 otherwise. 

Hence (a) holds. 
Applying (a) with Y as the origin we see that H~(X(V, t ) - ( 0 ) ) = 0  for t suffi- 

ciently small and O<=q<-k-2. Hence by excision every inclusion 

X(V, 0 C. X(V,t') 

is a homology equivalence up to dimension k - 2 .  
On the other hand by Theorem 1 of [L] X can be triangulated, which implies 

that there is a base of contractible neighbourhoods of 0 in X. Hence for any V, t 



On spaces of maps from Riemann surfaces to Grassmannians and applications 253 

such that X(V, t) contains 0 we can find a contractible open neighbourhood A 
of 0 in X and V', t '  such that 

x(v ' ,  t') c= .4 c= x(v ,  O. 

So there are homomorphisms 

_0.(.4) = o iT . (x ( r ) )  

whose composition is an isomorphism for O<-q<-k-2 if V, t are small enough. 
Thus (b) holds, and the proof of 6.1 is complete except for the proof of Lemma 6.3. 

Proof of  6.3. The proof that /~q(F)=0 for any fibre F of h: X ( t ) -  Y-+W(t) 
given in [M] by Milnor runs as follows. He considers the function If[ on the fibre 
containing F of the extension h of h to V(t). This fibre is a sphere S of dimension 
k - l ,  and the subset of S on which If[ takes its minimum value 0 is Sc~X=F. 
Milnor shows that every critical point of If l: S~R+ in S - F  has index at least 
k - 1  ([M] 5.6). He also shows that the critical points of If] outside F are contained 
in a compact subset of S - F  ([M] 5.7). Using [Mo] Theorem 8.7 he deduces that 
there is a smooth mapping s: S - F ~ R  + all of whose critical points are isolated 
and nondegenerate of index at least k - 1 ,  such that s=  ]ff in some neighbour- 
hood of F ([M] 5.8). From this it follows that /Tq(F)=0 for q<=k-2. 

The deduction of the last statement is standard Morse theory. One method of 
proof is to put a Riemannian metric on the sphere S and consider the gradient 
flow of the smooth function s: S - F - * R  +. The union of F with the set of all 
points in S - F  whose trajectories under the flow -grad  lfl have limit points 
in F is an open subset So of S. For each critical point x in S -  F there is a locally- 
closed submanifold Sx of S - F  consisting of the points whose forward trajectories 
under the flow -grad  Ifl converge to x. The codimension of Sx in S is the index 
of s at x which is at least k -  1 for each x. The subsets S~ together with So form a 
smooth stratification of S. This means that we can remove the subsets S, from S 
one at a time so that at each stage we are removing a closed submanifold of codimen- 
sion at least k - 1  from an open subset of S, until eventually we are left with the 
open subset So. At each stage the Thom--Gysin long exact sequence of cohomology 
tells us that the cohomology in dimensions up to k - 2  remains unaltered. We 
deduce that 

flq(So) = flq(S) = 0 

for q<~k-2. Finally since So retracts onto arbitrarily small neighbourhoods of F 
and t~ech cohomology is continuous, by 6.2 we have that 

I7" (So) = I7" (F). 
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Now let M be a smooth manifold and let g: S •  + be a continuous 
function whose restriction to the complement of g-t(0) is smooth and satisfies the 
following property. For each x in M every critical point not belonging to g-l(0) 
of the restriction of g to S •  {x} is isolated and nondegenerate of index at least 
k - 1  and there is a neighbourhood of g-l(0) in S •  whose complement con- 
tains all such critical points for every x. Consider the flow on S•  given 
on S •  {x} by the projection of -grad  g along S •  {x}. The fact that the Hessian 
of g at such a point is nondegenerate in the direction of S •  {x} and that no such 
point lies in some neighbourhood of g-l(0) shows that the set of atl fixed points 
is a disjoint union of closed submanifolds N of S •  each locally diffeomorphic 
to M. Moreover the nondegeneracy condition and the assumption on indices imply 
that S •  decomposes as the disjoint union of an open subset So together with 
locally closed submanifolds S N of codimension at least k -  1 in S, where (s, x) 
belongs to So if its forward trajectory T(s, x) under the flow has a limit point in 
g-l(0) and to S n if T(s, x) converges to a point of N (see e.g. [H] IX w 5). Then 
using Thom--Gysin sequences again we see that Hq(S• when q is 
at most k - 2 .  

If we no longer require that the critical points of g restricted to each submani- 
fold S•  {x}-g-a(0) are nondegenerate, the result still holds with M replaced by 
any sufficiently small neighbourhood U of any x in M. For the proof of [Mo] Theo- 
rem 8.7 shows that if Uis small enough there is a continuous function s: S •  U~R + 
which is smooth away from g-~(0) and satisfies s=g in a neighbourhood of 
g-a(O)nS• such that for each y in U the restriction of s to S• has only 
finitely many critical points and these are all nondegenerate of index at least k -  1. 
If we choose U to be contractible then it follows that for (2ech cohomology we have 

~q~(SX Ung-X(O)) =/7~(SX VnSo) =/7~(SX U) = 0 

for q~-k-2. 
There is a dilTeomorphism of V(t) onto the product of S and W(t) such that 

the composition of its inverse with h is projection onto W(t). So if we take M to 
be W(t) and g to be If] it follows from 6.2 and the last paragraph that every point 
of W(t) has a base of neighbourhoods U in W(t) such that 

I~q(h-l( U)c~ f -l(O)) - = -  0 

for q~=k--2. Since h-l(U)c~f-~(O)=h-~(U)c~X=~-l(U) this completes the proof 
of 6.3, and hence also of 6.1. 

6.4. Corollary. Let X be a quasi-projective variety and m a non-negative integer 
such that every xoE X has a neighbourhood in X which is analytically isomorphic to 
an open subset of 

{x c IA(x) . . . . .  fM(x) = 0} 
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for some N, M and analytic functions fa . . . .  ,fM depending on Xo with M<=m, I f  Y 
is a closed subvariety of  codimension k in X then 

Ha(X, X - - Y )  = 0 = Ha(X, X - Y )  
for q < k - m .  

Proof By the Mayer--Vietoris argument used several times in the proof of 6.1 
it is enough to prove this locally. Hence it follows immediately from 6.1. 

Remark. I f  X is a local complete intersection of pure dimension n such that for 
every x ~ X  the dimension of the Zariski tangent space at x is at most n + m  then 
X satisfies the hypotheses of Corollary 6.4. 

In order to apply this corollary to prove Theorem 1.2 we need the following 
lemma. 

6.5. Lemma. Any point of  Hola(M, G(n, m)) has a neighbourhood which is 
analytically isomorphic to an open subset o f  

{xECUlf~(x) . . . . .  fvt(x) = 0} 
where 

and 
N = (m + 1)(d+ne +n (1 -g ) )  +n  ~ (1 - g )  

M = d + n e ( m + l ) + n ( 1 - g )  

for some positive integer e, and f l  . . . .  ,fM are analytic functions. 

Proof Let ho be an element of Hola(M, G(n, m)) and let 

M X C  m --,- E 

be the corresponding quotient map of bundles over M. Choose a positive integer e 
sufficiently large that HX(M, L |  for every line bundle L of degree at least e. 
By Lemma 4.1 if e is large enough there is a line bundle L of degree e on M and an 
exact sequence. 

0 ~ K -~ M X C  m+l -,- L ~m ~ 0 

where L ~m denotes the sum of m copies of L and K is a line bundle of degree - m e .  
Define a map 

t: Hola(M, G(n, m)) -,. Hola+,,(M, G(n, m+ I)) 

by sending a point represented by a quotient 

M X C  m --" E" 

to the point represented by the composition 

M X C  m+x ~ L ~z -0- L |  
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The image of t consists precisely of those points h of Hola+,e(M, G(n, m + l ) )  
represented by quotients E "  of M •  m+l such that the composition 

K ~ M X C  m+l -~ E "  

is zero. This composition can be identified with a section s(h) of the bundle 
K*| 

Since Hi(M, L |  the point t(ho) which is represented by the quotient 
L@E of M X C  m+~ lies in the nonsingular open subset Aa+.e(n,m+l) of the 
variety Hola+.e(M, G(n, m+l ) ) .  Moreover since HI(M, K*|174 there is a 
holomorphic bundIe over some neighbourhood of t(ho) in Aa+,~(n, m + l )  whose 
fibre at a point h represented by a quotient E "  of M X C  m+l is naturally isomorphic 
to H~ K*@E") (cf. 3.10.) This holomorphic bundle has rank M where 

M = dim H~ K*@L@E) = d+ne(m+ 1)+n(1 - g )  

by Riemann--Roch since K*@L@E has rank n and degree d+ne+nme and its 
first cohomology vanishes. Let a~ . . . .  , a M be holomorphic sections of this bundle 
over an open neighbourhood U of t(ho) in Aa+,e(n, m+ I) such that al(h) ..... aM(h) 
is a basis of the fibre H~ K*| "~) at h for every hC U. Then the components 
f~(h) .... ,fM(h) with respect to this basis of the section s(h) of K*@E" defined 
above are analytic functions of h~ U. Moreover the intersection with U of the 
image of the map 

t: Hola(M, G(n, m)) -,- Hola+.e(M, G(n, rn+ 1)) 

is precisely the subset 
{h C UIf~ (h) . . . . .  fM (h) = 0}. 

But U is an open subset of Aa+,,~(n,m+l) which is a nonsingular variety of 
dimension 

N = (m+ 1)(d+ne+n(1 -g) )+n~(1  - g )  

(cf. the computation in [Se] w 6). Therefore it remains only to show that the restric- 
tion of t to some neighbourhood of h 0 in Hola(M, G(n, m)) is an analytic iso- 
morphism onto its image. 

Clearly given the composition 

M X C  m+l - -* -  L ~" -+ L| 

representing t(h) for any h we can recover the map Lem~L@E" (because M X  
cm+l-~L~m is a fixed surjection) and hence tensoring with L* we can recover the 
map MxCmoE" representing the element h of HoIn(M, G(n, m)). Hence t is a 
bijection onto its image, and in fact it is not hard to see that the process just described 
defines an analytic inverse to t from its image in Hola+,~(M,G(n,m+l) ) to 
Hol,(M, C(n, m)). 
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This completes the proof of the lemma. 

6.6. Corollary. Let k be a positive integer. I f  d>=n(2g +max (k, ff n2g, n(1 -g)) )  
then the inclusion of Aa(n, m) in Hold(M, G(n, m)) is a cohomology equivalence up 
to dimension k-2m*g. 

Proof. First note that if 

0 ~ K ~  M •  E ~  0 

represents any element h of Hola(M, G(n, m)) then 

d imHt (M,  E)  <_- m dim H~(M, g~) = rag. 

Moreover from the exact sequence 

0 ~ E * |  E@...@E~ K * |  0 
we obtain 

dim Hi(M, K*| <- m dim Ha(M, E) <_- m*g. 

The Zariski tangent space to Hola(M, G(n, m)) at h is naturally isomorphic to 
H~ K*| Since the dimension of this is 

dim Hi(M, K*| - g)) + (1 -g)n ~ 

the dimension of the Zariski tangent space at h is at most 

m~g+m(d+n(1 - g)) + (1 -g)n ~. 

By 6.5 we know that there is a neighbourhood of h in Hola(M, G(n, m)) which is 
analytically isomorphic to an open subset of 

{x~CNIA(x) . . . .  = f , ~ ( x )  = 0} 
where 

N = (m + 1)(d+ne +n(1 -g)) +n =(1 -g) 
and 

M = d+ne(m + 1) +n  (1 - g )  

for some positive integer e, and ./1 . . . .  , f ~  are analytic. We may assume that h is 
mapped to the origin in C ~r Then the Zariski tangent space to Hola(M, G(n, m)) 
at h is isomorphic to the linear subspace of C N defined by the vanishing of the deriv- 
atives dfl(0) . . . .  , dfm(O) of f l  . . . .  ,fro at 0. Therefore at least 

N -  (m~g+m(d+n(1 -g))+(1 -g)n ~) = (m+ 1)ne+d+n(1 -g)-m~g= M-m~g 

of these must be linearly independent, say dfl(0) . . . .  , dfM,(O) where M'mZg  ~_ 
M'~_M. Then the intersection, U, say, of some sufficiently small open neighbour- 
hood of the origin in C N with 

{xECNlfl(x) . . . . .  fM,(x) = 0} 
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is nonsingular. Thus there is a neighbourhood of h in Hola(M, G(n, m)) which is 
analytically isomorphic to 

{xEUIfw+,(x) =fu,+z(x) . . . . .  fM(X) = 0} 

and this is a subset of a nonsingular complex analytic variety defined by the vanishing 
of at most m2g analytic functions. It is now enough by 6.4 to show that if 

1 d>=n(2g+max (k, ~ nZg, n(l -g})), then the complex codimension of the comple- 
ment of Aa(n, m) in Hold(M, G(n, m)) is grea~er than k-m~g.  

Consider the infinitesimal deformation map 

H~ K*|  -+ Hi(M, End E) 

at any hEHala(M, G(n, m)) represented by an exact sequence 

O-" K ~  MXCm-+ E ~  0 

as above (see 3.7). From the exact sequence 

0 ~ E* |  -" E@ ,,. @E -" K*|  ~ 0 

we obtain a bound of 
dim Hi(M, E@... @E) <= m~g 

on the complex dimension of its cokernel. This implies that the elements h in 
Hold(M, G(n, m)) which correspond to bundles of any fixed type/z are contained in 
a subvariety of complex codimension at least 

d,-rn~g 
(see 3.7 again). 

By 3.9 if d is greater than or equal to n(2g+max (k, ~ Mg, n( l -g ) ) )  there is 
a finite set all of types such that if /,~[og then 

d , > k  

and if E is a bundle of type #E~ then 

Hi(M, E) = 0 

Since Aa(n,m) consists precisely of those elements hEHgla(M, G(n,m)) re- 
presented by quotient bundles MxCm--"E such that Hi(M, E ) = 0  the result now 
follows immediately from 6.4. 

This completes the proof of Theorem 1.2. 
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7. Maps into infinite Grassmannians 

Let G(n, oo) be the Grassmannian of n-dimensional quotients of a fixed se- 
parable complex Hilbert space C ~ or equivalently the Grassmannian of closed sub- 
spaces of codimension n in Co*. Give G(n, o~) the topology coming from the metric 
5 defined by 

e')  = sup P'), e) )  
where 

~(P, P') = sup (inf (nx'-xl], xEPnS~*), x'EP'nS ~) 

for any closed subspaces P and P '  of codimension n in C. Here S ~ is the unit sphere 
of Co*. Then G(n, ~,) is the classifying space for the group GL(n, C), (see e.g. 
IV & LP], Expos6 no. 3). In fact G(n, ~ ) i s  the quotient of S(C ~, C") by the 
free action of GL(n) where S(C ~, C") is the open subset of the Hilbert space 

(C =, C") consisting of all surjective maps Co* ~C". The projection S(C ~, C") 
G(n,~) given by q~--~ker ~o is a universal principal GL(n)-bundle (IV & LP] Expos6 
3, Throe 2). 

Let Mapa(M, G(n, ~))  denote the space of all continuous maps of degree d 
from M to G(n,~). As in the case of finite Grassmannians, a point of 
Mapa(M, G(n, ~))  defines a surjective map of continuous bundles over M 

MXC'~--~ E --,. 0 

such that E has rank n and degree d. 
We have 

O(n, = uo(n ,  v)  

where the union is over all finite-dimensional subspaces Vof  C a such that dim V~-n, 
and G(n, V) denotes the Grassmannian of n-dimensional quotients of V which is 
embedded in G(n, ~) via the orthogonal projection of C ~ onto V. Therefore if 
we regard the set F of all finite-dimensional subspaces of Co* as a directed set via 
inclusion we obtain a natural continuous injection into Mapa(M, G(n, ~))  of the 
direct limit Map n(M, G(n, V)) of the spaces Mapd(M, G(n, V)) as V runs over 
all elements of F. 

7.1. Lemma. This map 

Mapd(M, G(n, V))-,. Mapa(M, G(n, ~)) 

is a homology equivalence. 

Proof. Since direct limits commute with homology by [D] 5.20 and 5. 5.23.1, 
this follows immediately from 
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7.2. Lemma. The inclusion 

Mapa(M, G(n, V)) -* Mapa(M, G(n, oo)) 

is a homology equivalence up to dimension 2 m - n 2 - 4  where m=dim V. 

Remark. It is not hard to improve this bound to 2 r n - n - 3 .  

Proof. An element of the homotopy group z~k(Mapd(M, G(n, ~o))) is re- 
presented by a continuous based map 

S k --~ Mapd(M, G(n, ~)) 

or equivalently by a continuous map 

f: S*XM-~ a(n, o~) 

such that the restriction ft: M-,G(n, ~) of f to {t}XM is the chosen base-point 
of Mapd(M, G(n, o~)) when t is the base-point of S k. 

Let }V v be the open subset of G(n, ~) consisting of all closed subspaces U 
of codimension n in C" such that the codimension of Vc~ U in V is n. Let W~ 
be the inverse image of I~," v in the open subset S ( C ' ,  C") of the Hilbert space 
.~q'(C', 12") regarded as a GL(n)-bundle over G(n, ~). Then the complement of 
Wv in S(C ", C") consists of all surjective linear maps from C" to C" whose restric- 
tions to V are not surjective. It is contained in U(n)A where U(n) is the unitary 
group acting on (C ~, C ") and .4 is the closed subspace of ~ (C ,  C n) consisting 
of all maps g: C~-+C" such that g(V) is contained in some fixed hyperplane of 
C". Moreover ,4 has codimension m in L,e(C% C") so ~ ( C  ~, C~)-~-4@C ". 

Locally f :  Sk• oo) can be lifted to f :  Sk• C ~) since the 
quotient map S ( C ' ,  C")~G(n, ~ )  is a principal fibration (see [V & LP]). Using 
the action of GL(n) this extends to a map 

f: U(n)XSkXM-* S(C ' ,  C'). 

In order to ensure that the image of f is contained in W v it suffices to ensure that 
the image of the projection of f onto the orthogonal complement C" to A in 
.s C') does not contain 0. But this can be achieved by standard approximation 
techniques provided that 2m is strictly greater than 

dim(U(n)XSk• = n~+k+2. 

This shows that the inclusion 

Mapd(M, Wv) -- Mapn(M, G(n, ~,)) 

induces surjections on homotopy groups up to dimension 2m-n~-3.  A similar 
argument involving homotopies between maps Sk• co) shows that these 
surjections are isomorphisms up to dimension 2m-nZ-4 .  
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Finally it is clear that the map from Wv to G(n, V) regarded as a subset of 
G(n, co) which is defined by 

U ~  (Uc~V)GV" 

is a retraction. Hence the induced map from Maps(M, Wr) to Mapa(M, G(n, V)) 
is also a retraction. It follows that the inclusion 

Mapd(M, G(n, V)) -,- Maps(M, G(n, co)) 

induces isomorphisms in homotopy up to dimension 2m-n~-4,  and hence by 
Hurewicz's theorem it is a homology equivalence up to dimension 2m-n2-4.  

Define Hold(M, G(n, oo)) to be the direct limit of the spaces Hold(M, G(n, IT)) 
where V runs over the set F of finite-dimensional subspaces of Coo. That is, 

r~old(U, a(n, ~)) = Uv_:c- riOld(U, G(n, V)) 

n<-dim V<o~ 

with the induced topology. A point of Hold(M, G(n, o~)) defines an exact sequence 
of holomorphic bundles 

O~ K ~  M •  E ~ O  

where V is a finite-dimensional subspace of C ~ and E is a holomorphic bundle 
of rank n and degree d on M. Conversely any such sequence defines an element of 
I-Iols(M, G(n, co)). We can define an open subset As(n, oo) just as we defined 
Ad(n, m) in w 1 by imposing the condition that Hi(M, E)=0.  Then As(n, oo)= 
u As(n, V) with the induced topology. Since direct limits commute with homology 
and the bound d0(k, n) in Theorem 1.1 is independent of m it follows from 7.2 
that the analogue of 1.1 in the case m=oo is true. 

7.3. Theorem. Let k be any positive integer with k >=n- 2g. Then the natural map 

As(n, ~) ~ Mapn(M, G(n, oo)) 

is a homology equivalence up to dimension k provided that d>=do(k, n) where 

do(k, n) = 2n(2g+k+ 1)+ n max(k+ 1 + n ( 2 g + k +  1),~ n~g). 

Proof. Suppose that d>=do(k, n). Then by 1.1 the inclusion 

Ad(n, V) ~ Mapd(M, G(n, V)) 

is a homology equivalence up to dimension k for every finite-dimensional subspace 
V of C ~176 Moreover if dim V>=k+n~+4 the inclusion 

Mapd(M, G(n, V)) ~ Mapd(M, G(n, ~o)) 

is a homology equivalence up to dimension k by 7.2. It follows that the inclusion 



262 Frances Kirwan 

of An(n, V) in Mapa(M, G(n, oo)) is a homology equivalence up to dimension k 
if dim V>=k+n2+4. Since An(n, ~)  is the direct limit of the subsets Aa(n, V) as 
V runs over F the result follows because direct limits commute with homology by 
[D] 5.20 and 5.23.1. 

Remark. Alternatively one can prove Theorem 7.3 directly using exactly the 
same proof as for Theorem 1.1. This works basically because none of the bounds 
obtained in the course of that proof depend on m. 

Unfortunately in Theorem 1.2 one only has that if d~do(k, n) then the inclu- 
sion of Hola(M, G(n, m)) in Mapa(M, G(n, m)) induces isomorphisms of cohom- 
ology up to dimension k-2m2g. This means that one cannot prove that the inclu- 
sion of Hola(M, G(n, o~)) in Mapa(M , G(n, oo)) is a homology equivalence up to 
any dimension by using the same methods. 

Remark. By Theorem 7.3 the inclusion of Hola(M, G(n, ~o)) in Mapa(M, G(n, co)) 
is a homology equivalence up to dimension k for d>=do(k,n) if and only if the 
same is true of the inclusion of An(n, ~)  in I-Iola(M, G(n, ~o)). It seems unlikely that 
this is true, because the open subset An(n, oo) is not even dense in Hola(M, G(n, o~)) 
when d is large (in contrast with the case rn<o~ : cf. Corollary 6.6). Indeed if 
h~Hola(M , G(n, oo)) let s(h): V-~H~ E) be the map of sections induced by 
the quotient map of bundles corresponding to h. Then if d is large enough the subset 

W = {h [ dim (ira s(h)) >- d+ n ( 1 - g ) +  1} 

is a nonempty open subset of I-Iola(M, G(n, oo)) which is disjoint from An(n, ~). 
In part II we shall consider an open subset /~ of the space An(n, ~)  defined 

as follows. An element of An(n, ~) represented by an exact sequence 

O~ K ~  M X V ~  E ~O 

belongs to /~  if the induced map on sections 

V ~ H~ E) 

is surjective. We shall need the following corollary of Theorem 7.3. 

7.4. Corollary. Let k be a positive integer. Then the inclusion of ~ in 
Mapa(M, G(n, ~o)) is a homology equivalence up to dimension k if  d>=do(k, n). 

Proof. By 7.3 it suffices to show that the inclusion of R in An(n, oo) is a 
homology equivalence up to dimension k. But /~ is the union of its subsets 

n A n (n, m) with the direct limit topology. Since direct limits commute w;th homo- 
logy by [D] 5.20 and 5.23.1, it suffices to show that the inclusion of _RnAa(n, m) 
in Aa(n, m) is a homology equivalence up to dimension k if n is sufficiently large. 
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Therefore since Aa(n , m) is nonsingular it suffices to show that the codimension of  
_~nAd(n, m) in Ad(n, m) tends to infinity with m. 

Let O-~K-*M• be an exact sequence of bundles which defines a 
point of Ad(n, m), and suppose that the map on sections Cm~H~ E) is not 
surjective. Then its kernel contains a subspace U of dimension u in C m such that 
u>-m-d-n(1-g)+l .  So E is a quotient of the trivial bundle M• on 
M. Therefore when m is large the complement of RnAa(n, m) in Ad(n, m) is con- 
tained in the union over all integers u satisfying m>-u>m-d-n(1-g)  of sub- 
varieties V(u) such that 

dim V(u) <- dim G(u, m)+d im Ad(n, m--u) 

= u(m-u)+(m-u)(d+n(1-g))-n~(1-g)  

(see the computation in [Se] w 6). Since 

dim Ad(n, m) = (d+n(1-g))-n~(1-g) 
it follows that 

codim V(u) ~ u(d + n (1 -g ) -m+ u) >= r e + l - d - n ( 1 - g )  

which tends to infinity with m. The result follows. 

II. MODULI SPACES OF BUNDLES OVER M 

8. Using stratifications to compute cohomology 

In [A & B] the moduli space of semistable bundles on M of coprime rank  n 
and degree d is represented as a quotient of an open subset of an infinite dimensional 
affine space by an infinite group. This affine space cg is the space of unitary con- 
nections, or equivalently of holomorphic structures, on a fixed C ~0 bundle on M 
of rank n and degree d. Atiyah and Bott show that there is a stratification {cgu} 
of cg such that the stratum cg~ consists of the holomorphic structures of type # (see 
3.5 to 3.7 above). The unique open stratum ,~ss consists of all semistable holomorphic 
structures. They show that this stratification is equivariantly perfect, in the sense 
that the equivariant Morse inequalities are in face equalities. (The equivariant 
cohomology is taken with respect to the action of the gauge group f#.) That is, 

(8.1) p~(cg) = Z ~  t~d.Pt~ (c~,) 

= et~ ((~ss)q_gu~dln t~d,p~ (cgu) 

where d, is the complex codimension of the stratum cg, in cg, and P~ denotes the 
equivariant Poincar6 series (over any chosen field of coefficients). 
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Atiyah and Bott show that the equivariant Poincar6 series of the unique open 
stratum ~gss is the same as the ordinary Poincar6 series of the moduli space except for 
a factor of (1-t2).  They also show that the equivariant cohomology of the higher 
strata can be computed inductively. In fact if 

It = (dl/nl, ..., dJn~) 

as in 3.2 and if ~g(dj, nj) denotes the space of unitary connections on a fixed C ~~ 
bundle of rank nj and degree dj, then the equivariant cohomology of cg~, is iso- 
morphic to the tensor product of the equivariant cohomology of the semistable 
strata of the spaces ~'(dj, n j) with respect to the appropriate gauge groups. More- 
over since the total space ~g is contractible its equivariant cohomology is just the 
ordinary cohomology of the classifying space of the gauge group. By [A & B] 2.4, 
this is homotopy equivalent to the space Mapd(M, G(n, oo)), and its Poincar6 
series is given at [A & B] 2.15 as 

//l~_k~_, (1 + t*k-1)2o/(//l~_k~n_ 1 (1 -- fk)2(1 -- t'"). 

Thus Atiyah and Bott are able to compute the cohomology of the moduli space 
from the inductive formula 

(8.2) P,(Mapd(M, G(n, 0o))) = p~t (cg~)+ ~u ,d l ,  t2", f f  l~_j~=s Pt~(C(nj , dJ)SO 

where Pt denotes the ordinary Poincar6 series and 

(8.3)  d ,  = Zi j ((n, aj--nja,)+ninj(g- 1)) 
by [A & B] 7.16. 

On the other hand the moduli space can also be represented as the geometric 
invariant theory quotient of a reductive action on a nonsingular quasi-projective 
variety R (see w 9 below). The results of [K] show that this variety can also be 
stratified, and that the equivariant cohomology of the unique open stratum is the 
same as the ordinary cohomology of the moduli space. Moreover this stratification 
is also equivariantly perfect over any field of coefficients, at least in an approximate 
sense (see w 12 below for more details). 

The variety R pararnetrises in a natural way a family of holomorphic bundles 
over M. We shall see that outside a subset of codimension k(d, n) the stratifica- 
tion of R corresponds precisely with the stratification given by the types of these 
holomorphic bundles. Moreover outside the subset of codimension k(d, n) the 
strata have the same codimension in R as the corresponding strata have in if, and 
their cohomology can be computed inductively just as the cohomology of the strata 
cg~ can be (see w 11 below). Therefore we shall find that the finite-dimensional strati- 
fication gives a formula for the equivariant cohomology of R in terms of that of 
the semistable stratum and the higher strata which corresponds precisely with the 
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right hand side of 8.2 up to dimension k(d, n). Moreover k(d, n) tends to infinity 
with d. 

In w 10 we find that the equivariant cohomology of R can be identified with the 
ordinary cohomology of the space /~ defined in w 7 above. We saw there that the 
inclusion o f /~  in Mapa(M, G(n, ~o)) induces isomorphisms in cohomology up to 
some dimensions which tends to infinity with d. 

We then use the fact that the moduli space of bundles of rank n and degree d 
is isomorphic to the moduli space of bundles of rank n and degree d+ne for any 
integer e. (An isomorphism is obtained by tensoring with a fixed line bundle of degree 
e). By taking arbitrarily large values of e we find that the finite-dimensional stratifica- 
tions give the same inductive formula for the cohomology of the moduli space as 
does Atiyah and Bott's infinite-dimensi0nal stratification. 

9. Reduction of the moduli problem to finite dimensions 

Let us recall how the moduli problem is reduced to a problem of geometric 
invariant theory, following [N] chap. 5. 

By [N] 5.2, if E is a semistable bundle of rank n and degree d greater than 
n(2g-1)  over M, then 

9.1. E is generated by its sections, and 

(9.2) Hi(M, E) = 0 

By Riemann--Roch, 9.2 implies that 

dim H0(M, E) ----- d-l-n(1 -g ) .  

Let p=d+n(1-g). Then it follows that there is a holomorphic map from M to 
the Grassmannian G(n,p) such the induced quotient bundle of M •  p is iso- 
morphic to E. 

Now define R to be the subset of Hold(M, G(n, p)) consisting of those maps h 
such that if E is the induced quotient bundle of M •  p then /-/I(M, E ) = 0  and 
the map on sections 

C p ~ H~ E) 

is surjective. (Equivalently we could require that the map on sections be an iso- 
morphism.) This is an open subset of the space Aa(n,p) defined in w 1 above. There- 
fore it is a nonsingular quasi-projective variety. Provided that d>n(2g-1) there 
is a quotient ~ of the trivial bundle of rank p over R • M with the following prop- 
erties (see IN] 5.3 and 5.6). 
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9,3. (i) /~ has the local universal property for families of bundles over M of 
rank n and degree d satisfying 9.1 and 9.2. That is, if F is a family of such bundles 
parametrised by a variety S, then any s in S has a neighbourhood V such that the 
restriction of F to V is equivalent to the family induced from ~ by some morphism 
V~R.  

(ii) I f  h belongs to R then the restriction E h of /~  to {h}•  is the quotient 
of M• p induced by h. 

(iii) I f  h and g belong to R then E h and E g are isomorphic as bundles over 
M if and only if h and g lie in the same orbit of the natural action of GL(p) on R. 

Moreover by Theorem 5.6 and the remark (a) before Theorem 5.8 of IN], if N 
is any large integer then R can be embedded as a quasi-projective subvariety of the 
product (G(n, p))N by a map of the form 

h (h (xl) . . . . .  h (xN)) 

where xl . . . . .  x~r are points of M. This embedding gives us a linearisation of the 
action of SL(p) on R. If  N and d are large enough then the following condition is 
also satisfied. 

(iv) A point h of R is semistable in the sense of geometric invariant theory 
for this linear action of SL(p) on R if and only if E h is a semistable bundle. More- 
over if a point h of the closure of R in (G(n,p)) ~ is semistable then hER. 

Since n and d are coprime by assumption, it is not hard to check using the 
definition of semistability for bundles that PGL(p) acts freely on the set R s~ of 
semistable points of R. It then follows from geometric invariant theory that the 
quotient R~/PGL(p) is a nonsingular projective variety, which is the moduli space 
of semistable bundles of rank n and degree d over M. Furthermore its cohomology 
is the same as the PGL(p)-equivariant cohomology of R ~. Thus its Poincar6 poly- 
nomial over the field of rational coefficients is given by 

(9.4) Pt(moduli space) = (1 - t~)P~ L(p) (R~). 

(The factor (1 _g2) occurs because for the sake of convenience later we are using 
equivariant cohomology with respect to GL(p) (cf. [A & B] w 9). 

10. The equivariant cohomology of R 

In order to calculate the equivariant cohomology of R ss, we first need to know 
that of R itself. This is by definition the ordinary cohomology of the space 

R )< GL(p) EGL (p) 

where EGL(p) is the total space of a classifying bundle for GL(p). We can take 
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EGL(p) to be the space of all quotient maps 

e: C ~ C  p 

with the obvious action of GL(p), since this is a contractible space on which GL(p) 
acts freely. (See w 7 and [V & LP] Expos6 No. 3 for more details.) The quotient 
BGL(p) is the infinite quotient Grassmannian G(p, ~). 

By definition R consists of those holomorphic maps h from M to the quotient 
Grassmannian G(n, p) such that the induced bundle E on M has degree d and the 
map on sections 

C p ~ H~ E) 

is an isomorphism. Let Hold(M, G(n, ~)) be defined as in w 7. Given h in R and e 
in EGL(p) denote by f(h, e) the element of Hold(M, G(n, co)) which sends x 
in M to the quotient C~/K where K is the kernel of the composition of the 
quotient map 

e: C ~* -+ C p 

with the projection of C p onto its n-dimensional quotient h(x)~G(n,p). Equiv- 
alently when elements of  Hold(M, G(n, ~))  are identified as in w 7 with quotient 
bundle maps V •  for suitable finite-dimensional subspaces V of C ~ then 
f(h, e) is given by the composition 

M X V  ~ MXC p --+ E h, 

where V is chosen so that the restriction of e: C~-~C p to V is surjective. Thus 
f(h, e) belongs to the set /~ (which by definition consists of  all elements of 
Hold(M, G(n, co)) such that the associated bundle E satisfies 1t1(M, E)=O and 
the map on sections from C a to H~ E) is surjective). This gives us a well- 
defined map 

f :  RX ~L(p)EGL(p) -'- -R. 

Now suppose that g: M-,-G(n, co) belongs to/~.  Then the associated bundle E 
is generated by its sections, and by Riemann--Roch dim H~ E)=p. There- 
fore by choosing a basis of H~ E) we can regard E as a quotient of M X C  p. 
This quotient defines an element h of R such that f(h, e)=g for an appropriate e 
in EGL(p). Therefore f is surjective. Moreover it follows from 9.3(iii) t h a t f i s  injec- 
tive. It is now not hard to check that f is an open map, and therefore a homeo- 
morphism. Thus we have proved 

10.1. Lemma. The equivariant cohomology of R under the action of GL(p) is 
isomorphic to the ordinary cohomology of ]~. 
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11. Stratifying R 

We saw in Section 9 that R can be embedded as a quasi-projective subvariety 
of the product (G(n,p)) N for sufficiently large N. So there is a stratification of 
R which is the intersection with R of the stratification of (G(n,p)) N described in 
[K] w 

Recall that an element x=(L1 . . . .  , L  N) of (G(n,p)) N is semistable for the 
natural linear action of SL(p)  if and only if there does not exist a proper subspace 
K of C p such that 

( Z j  dim K~Lj) /d im K > ( Z j  dim Lj)/p 

(see e.g. [Mu] w 4). 
It was shown in [K] w 16 that to each sequence x=(L1 . . . . .  LN) of subspaces 

of C p there corresponds a unique filtration 

0 ---- Ko c= K1C=...C=Ks = C p 
such that 

kl/p~ > kz/p~ > . . . >  kJp~ 
where 

Pi = dim Ki/Ki_ 1 
and 

k~ = ZI~_~_N dim (KinL j + Ki-1)/K~-I, 

and such that for each i the sequence of subspaces 

(K~c~Lj +K~_I)/K~_I 
of KJK~_I is semistable. Then the stratum of (G(n, p))N to which x belongs is 
indexed by the p-vector 

= (k~/px . . . . .  k~/p,) 

in which k]p~ appears p~ consecutive times. 
Hence when h: M ~ G ( n , p )  is an element of R and h(xj)=CP/L~ for each 

of the chosen points x~ . . . . .  XN, then the index of the stratum of R containing h is 
the vector fl just described. We need to link this fl with the type # of the bundle E h 
corresponding to h. 

Recall that p = d + n ( 1 - g ) .  

11.1. Definition. Suppose that 

It = (dl/n~ . . . .  , ds/n~) 

is an (n, d)-type (see 3.2 above). Suppose also that 

d~ > n i (2g-1)  
for l <-i<=s. Let 

ks = N(d i -n ig )  
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and 
Pi = d i + n i ( 1 - g ) .  

Then define fl(p) to be the p-vector 

riot) = (kl/pl, ..., kJp~) 

in which each ki/p~ appears p~ times. 

Note that pi >n~g and so is positive for each i, and that ~ p~=p and ~ ks= 
N ( d - n g ) = N ( p - n ) .  

11.2. Remark. Note that when the denominators are positive 

N ( d -  ng)l(d + n (1 - g ) )  > N(d" - n'g)l(d" + n ' ( 1  - g ) )  

if and only if 
din > d'/n'. 

The crucial lemma is the following. 

11.3. Lemma. (i) Suppose that d>n(2g-1).  Let h lie in the stratum of  R 
indexed by fl, and let/~=(dl/ni . . . . .  ds/n~) be the type of  the bundle E = E  h. Then 
the first component of  fl is greater than or equal to N(dl-nlg)/(dl +nx (1 -g ) ) .  

(ii) Moreover i f  dl . . . .  , ds are all sufficiently large depending only on nl . . . .  , n~ 
and g, and i f  N is sufficiently large depending on dl . . . . .  ds, nl, ..., n~ and g, then 

~Cu) =~. 
Proof. Let 

O=Eo C=E~ C_...C_E~=E 

be the canonical filtration of  E (see 3.2 above). By 9.3(iv) we may assume that E 
is not semistable, so s is greater than 1. Use the map on sections to identify C p with 
H~ E). Then 

0 = H~ Eo) c= HO(M, El) c . . .  c HO(M, E) = C p 

is a sequence of the subspaces of  C p. 
The fibre of  E at xj is h(xj)=CP/Lj. The image (H~ E1)+Lj)/Lx of  

H~ El) in this must have dimension at most the rank of El ,  which is nl. More- 
over by Riemann--Roch 

dim H~ EO >= dl+n~(1 - g ) .  

These two inequalities together with 11.2 and the equality 

dim H~ Ex)~Lj = dim H~ El) - d i m  (1t ~ (M, El)+Lj)/Lj 
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and the fact that d~/nl is strictly greater than din imply that 

(11.4) Z j  dim (H~ E1)nLj)/dim H~ El) 

=> N(1 - n~/dim H~ E~)) 

> N(d 1 - -  l'llg)/(d 1 + nl(1 -- g)) 

> N ( d -  ng)/(d + n (1 - g)). 

It now follows from [K] 16.9 that the filtration 

0 = K o C K 1  c C K , = C  v 

corresponding to h is a refinement of the sequence 

0 =c HO(M, E1 ) C= C p, 

and thus using 11.4 again that the first component of fl is greater than or equal to 
N(dl -n~g)/(d~ +n~ (1 -g)) .  

Now assume that d~>ni(2g-1) for each i. Then by 3.2 and 3.4 each quo- 
tient D~=EJE~_~ is generated by its sections and satisfies Hi(M, D3=0.  By 
induction we see that the same is true of each E~. Therefore if we set 

K, = He(M, E,) 

then we can identify H~ D~) with K.dK~_x and deduce that 

dim KI/K i_ 1 = Pi. 
Moreover the image 

(K,+Lj)/Lj 

of E at each point xj has dimension equal to the rank of of K~ in the fibre (CV)/Lj 
E i. Therefore 

Hence 

where 

and 

dim (KinL i + Ki_l)/Ki_ 1 = dim (KinL y ( K i _ l n L  i) 

= dim K i - r k E - d i m  Ki_l-krkEi_l 

= P l  - n l .  

~I~_j_~N dim (KinL 1 + K~_I)/(Ki_I) = ki 

ki = N ( d i -  nig) = N ( P i -  ni), 

kdpl > k~/p~ > . . . >  ks/Ps 
by 11.2. 

Therefore by [K] 16.9 it remains only to show that for each i if d i and N are 
sufficiently large then the image of the sequence (L1, ..., Ltr in the appropriate 
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product of  Grassmannians of subspaces of  KJKi_I=H~ Dt) is semistable. 
But this follows directly from the semistability of D i and Theorem 5.6 of IN]. 

11.5. Corollary. Suppose ql is any finite set o f  types of  bundles of  rank n and 
degree do. Let e be a large positive integer, and set d=do +he. Let R be embedded 
in (G(n,p)) N as above, where p = d + n ( 1 - g ) ,  so that the action of  SL(p) on R 
extends to a linear action on (G(n,p)) ~. Then i f  e and N are sufficiently large and# 
is any type in qA +e, a point h of  R lies in the stratum indexed by fl(lt) i f  and only i f  
the bundle E ~ is o f  type ~. 

Proof. Consider the set of all (n, d) types (dl/nl . . . . .  dJns) whose first com- 
ponent is less than some fixed bound c. There are only finitely many possible values 
of  s and nl, ..., ns such that a type (d,/nl . . . . .  dJns) belongs to this set because 
each nj is a positive integer and n l+ . . .  +n,=n. Also 

c ~ dl/nl • . . .> ds/ns 

so all the d~ are bounded above. But dl+. . .+d~=d so the d~ are a/so bounded 
below. Therefore the set of such (n, d) types is finite. Thus we may assume that 
if /zEq/ and/z '  is an (n, d) type whose first component is less than that of p, then 
/~'Eq/. The same will then be true of q / + e  for any e. 

Since q / i s  finite, if e and N are sufficiently large then Lemma 11.30) applies 
to all/~ in q/+e.  Therefore if hER and E,  is of type #Eq/+e,  then h lies in the 
stratum indexed by fl(p). Conversely suppose h lies in the stratum indexed by fl(p) 
for lz=(d~/n~, ..., 4/n~), and let p'=(d~/n~ . . . .  , d~/n~) be the type of E h. By Lemma 
11.3(i) the first component (d l -nxg) / (d l+nl(1-g))  of flO) is greater than or 
equal to (d~-nxg)/(d~+n'~(1-g)). This implies that the first component ddnl of 
p is greater than or equal to that o f / t ' ,  by 11.2. Hence/ t '  belongs to q /+e ,  and 
therefore h lies in the stratum indexed by fl(#'). So fl(/0=fl(#') ,  which implies that 
/z=/~'. The result follows. 

Next we need to consider the codimensions of the strata of R. Let k be any 
integer. By 3.9 we can choose a finite set ~ of  (n, do) types such that d , > k  when- 
ever # is an (n, do) type and #E~ Suppose that e and N are large enough that 
Lemma 11.5 applies to ag. Then we have 

11.6. Lemma. Every stratum of  R indexed by fl(p) for some ltEql+e has 
codimension the integer d~, defined at 3.6, and every stratum not indexed by fl (p) for 
some ttEql +e has codimension greater than k. 

Proof. By 3.8 we have 

for every (n, do) type #. The result now follows immediately from Lemma 11.5 
and the Remark at 3.7. 
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12. Some technicalities 

We now have a description of the stratification of R obtained by embedding it 
in a product (G(n, p))U for large N and d, provided that we allow ourselves to ignore 
a subset of dimension k(n, d) in R, where k(n, d) tends to infinity with d. Next 
we would like to show that this stratification is equivariantly perfect, in the sense 
that its equivariant Morse inequalities are in fact equalities. If R were a projective 
variety this would follow from Theorem 5.4 and Section 8 of [K]. Since R is not 
projective we need to check that condition 9.4 of [K] holds. In fact we shall only 
show that it holds outside the subset of codimension k(n, d) previously mentioned. 
This will imply that the Morse inequalities are equalities in dimensions less than 
k(n, d), which suffices for our purposes. 

It is easy to see from [K] 9.4 and 16.9 that the necessary condition can be inter- 
preted as follows. Suppose h is any element of R, represented in (G(n,p)) N as 
the point (h(xO, ..., h(xN)), and suppose that the associated filtration of C p is of 
the form 

o c= Vl c= v~@v2 c= ... c= v1@... @vs = cp 

where each Vj has a basis By such that the union Bx u . . .  w Bs is the standard ordered 
basis of C p. Then there is required to be some h' in R such that, for each L h'(xj) 
is the direct sum over i of the projections of the subspace h (x j) onto the subspaces 
Vi with respect to the decomposition C"=  111 @... @ Vs. 

This condition is satisfied provided that h belongs to a stratum indexed by 
/~(#) for some type/~ in the set q / + e  chosen before 11.6. For it was shown in the 
proof of 11.4 that the filtration of C p associated to h is then of the form 

where 
0 _~ H~ El) c . . .  c HO(N, E) = C p 

OC=E~C_...C_E~=E 

is the canonical filtration of E = E  h. Moreover each subquotient Di=EJEi_ a 
spanned by its sections and satisfies H~ D0=0.  
to check that for each 1 <=i<-s the isomorphism 
morphism 

V i ~ HO(M, Di) 
and that the quotient map 

is 

From this it is straightforward 
CP-+H~ E) induces an iso- 

corresponds to an element h" of R satisfying the required property. 
Thus using 11.6 we conclude that condition 9.4 of [K] holds outside a subset 

of codimension k(n, d), where k(n,d) tends to infinity with d. 

M •  n = (V1~3... @V,)• --,- DI@... @Ds 



On spaces of maps from Riemann surfaces to Grassmannians and applications 273 

12.1. Remark. For general quasi-projective varieties the condition 9.4 of [K] 
only implies that the stratification is equivariantly perfect over the rationals. How- 
ever by Remark 16.11 of [K], the stratification is equivariantly perfect over all 
fields of coefficients when GL(p) acts on a subvariety of a product of Grassmannians 
of the form (G(n, p))N. 

From this, together with 10.1, 11.5, 11.6 and 7.4 we obtain the following for- 
mula for the equivariant cohomology of R ss up to some dimension k(n, d) which 
tends to infinity with d. 

(12.2) Pt(Mapn(M, G(n, co))) = p~L(P)(RSs)+ r,t~d~p~L(P)(Spc~))+O(tk(",d)), 

where the sum is over all types # in q /+  e except for # = e + d/n. Here p~LO) denotes 
the oquivariant Poincar6 series with respect to the action of GL(p), and Sp denotes 
the stratum of R indexed by ft. 

It therefore remains to consider for each type /~ in q /+e  the equivariant 
cohomology of the stratum indexed b y  fl(/0. 

When it is necessary to specify the rank n and degree d then R will be denoted 
by R(n, d). We have 

12.3. Lemma. Let p be an (n, d) type belonging to the set ql +e. Then provided 
that d is sufficiently large the equivariant cohomology of the stratum indexed by fl(p) 
is isomorphic to the tensor product of the equivariant cohomology of the semistable 
strata R(nj, d~) s~ with respect to the action of GL(pj) where pj=ds+njg. Thus 

p~z(p) ( Sa(,)) = lIa~_ i~_s p~z~pi) ( R (ni , aj)ss). 

Proof. It is shown in [K] that the GL(p)-equivariant cohomology of the stratum 
indexed by f l~)  is the same as the equivariant cohomology of a quasi-projective 
subvariety Z ~ )  of the stratum Sa(~ under the action of a subgroup Stab fl(jt) 
of GL(p). By [K] 16.9 this subgroup is isomorphic to the product GL(pl)• • 
GL(p,) where pj=di+njg. Moreover Z~u) consists precisely of the points h' in 
R of the form described just before Remark 12.1 (see [K] 16.9 again). Thus the 
dements of Z ~ )  are those holomorphic maps 

h': M ~ G(n,p) 

which factor through the natural embedding of G(nl, p~)• ... • p~) in G(n, p) 
and which also belong to Sac,). From this it is easy to see that Z~0~) is naturally 
isomorphic to the product 

R(na, d~)S~X ... XR(n~, d,) ~ 

with the natural action of GL(pO• • 
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13. Conclusion 

From 12.2 and 12.3 we know that 

(13.1) Pt(Mapa(M,  G(n, oo))) = p~L~p)(RSS ) 

+ a y 9  

where the sum is over all types 

I~ = (dl /nl ,  ..., d,/n~) # (d/n . . . .  , d/n) = din 

and k(n,  d) tends to infinity with d. Moreover by [A & B] 2.15 the Poincar6 series 
of Mapa(M, G(n, co)) is 

(1 + t (1 - -  ' (1 - -  

13.2. Remark.  The left hand side of 13.1 is thus independent of  d. Moreover 
if e is any integer and # is an (n, d) type then /~+e is an (n, d+ne)  type and 
dt,+e=d u. We also know from 9.4 that provided n and d are coprime the Poincar6 
series PtOZ~ ~) is the product of ( i - t  2) with the Poincar6 polynomial of the 
moduli space of  semistable bundles of rank n and degree d. The latter is unchanged 
up to isomorphism if d is replaced by d + n e  for any integer e. 

The inductive formula 13.1 enables us to calculate the GL(p)-equivariant  
cohomology groups of R(n,  d) ~ up to some dimension which tends to infinity 
with d. Therefore by Remark 13.2 if n and d are coprime and we replace d by d + n e  
in 13.1 for some sufficiently large e we obtain a formula for the dimensions of the 
cohomology groups of the moduli space of  bundles of rank n and degree d up to 
any preassigned dimension. This formula is identical to the one derived by Atiyah 
and Bott using infinite-dimensional stratifications, and by Harder  and Narasimhan 
using number theory. 

Note that even when n and d are coprime there may well be some nj and dj 
occurring in the inductive formula 13.1 which are not coprime. This does not inval- 
idate the computation; compare the argument of [A & B]. 

A & B  

D 
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