Wiener's theorem, the Radon—Nikodym theorem, and $m_0(\mathbf{T})$

Russell Lyons

1. Introduction

Let $M(\mathbf{T})$ denote the class of complex Borel measures on the circle $\mathbf{T}=\mathbf{R}/\mathbf{Z}$ and $M_0(\mathbf{T})$ the subclass $\{\mu: \lim_{n\to\infty} \hat{\mu}(n)=0\}$. It was recently proved [5, 6] that $M_0(\mathbf{T})$ is characterized by its class of common null sets. To make this more precise, we use the following notation. For any subclass $\mathscr{C}\subset M(\mathbf{T})$, we let

 $\mathscr{C}^{\perp} = \{E \subset T: E \text{ is a Borel set and } \forall \mu \in \mathscr{C} \mid \mu \mid (E) = 0\}$

be the class of common null sets of \mathscr{C} . Likewise, if \mathscr{E} is a class of Borel subsets of T, we write

$$\mathscr{E}^{\perp} = \{ \mu \in M(\mathbf{T}) \colon \forall E \in \mathscr{E} | \mu | (E) = 0 \}$$

for the class of measures annihilating \mathscr{E} . Then by definition, the class of sets of uniqueness in the wide sense, U_0 , is equal to $M_0(\mathbf{T})^{\perp}$ and [6] shows that $U_0^{\perp} = M_0(\mathbf{T})$. That is, $M_0(\mathbf{T})^{\perp \perp} = M_0(\mathbf{T})$.

Now notice that we can write $M_0(\mathbf{T})$ in another way. Let *PM* be the pseudomeasure topology on $M(\mathbf{T})$: $\|\mu\|_{PM} \equiv \sup_{n \in \mathbf{Z}} |\hat{\mu}(n)|$. If \mathcal{P} denotes the trigonometric polynomials and λ Lebesgue measure on **T**, then $M_0(\mathbf{T})$ is the *PM*-closure of $\mathcal{P}.\lambda$.

If *M* denotes the usual norm topology on $M(\mathbf{T})$, then the *M*-closure of $\mathscr{P}.\sigma$, for any $\sigma \in M(\mathbf{T})$, is $L^1(\sigma) = \{f.\sigma: \int |f| d |\sigma| < \infty\}$. It is clear that $L^1(\sigma)^{\perp} = \{E: |\sigma|(E)=0\}$, whence the Radon—Nikodym theorem is equivalent to the assertion $L^1(\sigma)^{\perp\perp} = L^1(\sigma)$. This leads us to ask if the analogous theorem holds for *PM*. In other words, if $L^{PM}(\sigma)$ denotes the *PM*-closure of $\mathscr{P}.\sigma$, is $L^{PM}(\sigma)^{\perp\perp} = L^{PM}(\sigma)^2$.

Consider now Wiener's theorem [3, p. 42], which says that for all $\mu \in M(\mathbf{T})$,

(1)
$$V(\mu) \equiv \lim_{N \to \infty} \left(\frac{1}{2N+1} \sum_{|n| \le N} |\hat{\mu}(n)|^2 \right)^{1/2}$$

exists and equals (2)

(2)
$$V(\mu) = \left(\sum_{\tau \in \mathbf{T}} |\mu(\{\tau\})|^2\right)^{1/2}.$$

In particular, $V(\mu)=0$ if and only if μ is a continuous measure: $\mu \in M_c(T)$. Let us introduce the "Wiener norm"

$$\|\mu\|_{WN} \equiv \sup_{N \ge 0} \left(\frac{1}{2N+1} \sum_{|n| \le N} |\hat{\mu}(n)|^2 \right)^{1/2}.$$

Then $V(\mu)=0$ if and only if μ belongs to the WN-closure of $\mathcal{P}.\lambda$, which we denote $L^{WN}(\lambda)$. In other words, $L^{WN}(\lambda)=M_c(\mathbf{T})$, from which it immediately follows that $L^{WN}(\lambda)^{\perp\perp}=L^{WN}(\lambda)$. Again, we ask if this holds with λ replaced by any $\sigma \in M(\mathbf{T})$.

2. Statements of results

The problem appears quite difficult for the *PM* topology. In view of the following theorem, $L^{PM}(\sigma)^{\perp \perp} = L^{PM}(\sigma)$ for discrete σ ($\sigma \in M_d(\mathbf{T})$) and the general problem is reduced to the case of continuous σ :

Theorem 1. If σ_c and σ_d are the continuous and discrete parts of any $\sigma \in M(T)$, then

$$L^{PM}(\sigma) = L^{PM}(\sigma_c) + L^1(\sigma_d)$$

and $L^{PM}(\sigma_c) \subset M_c(\mathbf{T})$.

On the other hand, the Wiener norm is fully tractable. Let $\operatorname{supp} \sigma$ denote the support of σ and let $M_c(E)$ be the class of continuous measures supported in E. Then the fact that $L^{WN}(\sigma)^{\perp \perp} = L^{WN}(\sigma)$ follows from

Theorem 2. For all $\sigma \in M(\mathbf{T})$,

$$L^{WN}(\sigma) = M_c(\operatorname{supp} \sigma) + L^1(\sigma_d).$$

The proof of Theorem 2 is based on a reduction to the weak* topology. For it will be easy to show that the weak*-closure $L^{w^*}(\sigma)$ of $\mathscr{P}.\sigma$ is given by

Proposition 3. For all $\sigma \in M(\mathbf{T})$,

$$L^{W^*}(\sigma) = M(\operatorname{supp} \sigma).$$

Of course, it follows that $L^{w^*}(\sigma)^{\perp \perp} = L^{w^*}(\sigma)$. The reduction to this topology will be effected by means of a surprising

Lemma 4. If $\{\mu_m\}$ is a sequence of positive measures converging weak^{*} to a continuous measure v, then $\|\mu_m - v\|_{WN} \rightarrow 0$.

In words, this says that pointwise convergence $\hat{\mu}_m(n) \rightarrow \hat{v}(n)$ implies uniform Cesaro convergence! This lemma, interesting in its own right, has the following extension.

278

Proposition 5. Let $\{\mu_m\}$ be a sequence of positive measures converging weak^{*} to v. Let $E = \{\tau \in \mathbf{T} : v(\{\tau\}) \neq 0\}$. Then the following are equivalent:

i)
$$\|\mu_m - v\|_{WN} \to 0;$$

ii) $\lim_{m\to\infty} \sup_{\tau\in\mathbf{T}} |\mu_m(\{\tau\}) - v(\{\tau\})| = 0;$

iii)
$$\lim_{m\to\infty} \sup_{\tau\in E} |\mu_m(\{\tau\}) - \nu(\{\tau\})| = 0.$$

Easy examples show that the hypothesis $\mu_m \ge 0$ is indispensable.

The reader has surely wondered whether a general result holds for all "reasonable" topologies: if \mathscr{C} is a "reasonable" topology on $M(\mathbf{T})$ and $L^{\mathscr{C}}(\sigma)$ denotes the \mathscr{C} -closure of $\mathscr{P}.\sigma$, is $L^{\mathscr{C}}(\sigma)^{\perp \perp} = L^{\mathscr{C}}(\sigma)$? If σ is a discrete measure with finite support, the answer is trivially "yes" because of the well-known fact that finite-dimensional vector spaces have a unique topology, which is hence complete. Therefore $L^{\mathscr{C}}(\sigma) = L^{1}(\sigma)$. In general, however, even for discrete measures or Lebesgue measure and even for norm topologies, the answer is "no".

Theorem 6. Define

$$\|\mu\| = \sup\left(\left\{\frac{|\hat{\mu}(n)|}{|n|+1}: n \in \mathbb{Z}\right\} \cup \{|\hat{\mu}_{sc}(n)|: n \in \mathbb{Z}\}\right),$$

where μ_{sc} is the continuous part of μ singular to λ . Then

$$L^{\parallel\parallel}(\lambda) = M_d(\mathbf{T}) + L^1(\lambda)$$

and for discrete σ ,

$$M_d(E) \subset L^{\texttt{W}}(\sigma) \subset M_d(E) + L^1(\lambda|_E),$$

where $E = \operatorname{supp} \sigma$.

It follows that $L^{\parallel\parallel}(\lambda)^{\perp\perp} = M(\mathbf{T}) \neq L^{\parallel\parallel}(\lambda)$ and that $L^{\parallel\parallel\parallel}(\sigma)^{\perp\perp} = M(E) \neq L^{\parallel\parallel\parallel}(\sigma)$ for $\sigma \in M_d(\mathbf{T})$.

3. Proofs

We note first the following trivial facts. For any topology \mathscr{C} , $L^{\mathscr{C}}(\sigma) \subset L^{\mathscr{C}}(\sigma)^{\perp \perp}$. If $\mathscr{C}_1 \subset \mathscr{C}_2$, then $L^{\mathscr{C}_1}(\sigma) \supset L^{\mathscr{C}_2}(\sigma)$. If \mathscr{C} is weaker than the *M*-topology, as all our topologies are, then $L^{\mathscr{C}}(\sigma)$ is the \mathscr{C} -closure of $L^1(\sigma)$. We denote the dual of $M(\mathbf{T})$ when equipped with the topology \mathscr{C} by $(M(\mathbf{T}), \mathscr{C})'$. For $c \subset M(\mathbf{T})$, let $\operatorname{ann}_{\mathscr{C}} c$ be the annihilator of c in $(M(\mathbf{T}), \mathscr{C})'$. For $\mathscr{U} \subset (M(\mathbf{T}), \mathscr{C})'$, let ker \mathscr{U} be the kernel of \mathscr{U} in $M(\mathbf{T})$. Then a well-known consequence of the Hahn—Banach theorem says that for any locally convex \mathscr{C} and any subspace $c \subset M(\mathbf{T})$, the \mathscr{C} -closure of c is equal to ker $(\operatorname{ann}_{\mathscr{C}} c)$. In particular,

(3)
$$L^{\mathscr{C}}(\sigma) = \ker (\operatorname{ann}_{\mathscr{C}} L^1(\sigma)).$$

Proposition 3 follows immediately from this. For we have $(M(\mathbf{T}), w^*)' = c(\mathbf{T})$,

so that

$$L^{w^*}(\sigma) = \ker \left(\operatorname{ann}_{w^*} L^1(\sigma) \right)$$

= ker {
$$f \in (\mathbf{T})$$
: $f = 0$ on supp σ } = $M(\text{supp } \sigma)$.

The next lemma is useful in proving Theorems 1 and 2.

Lemma 7. If $\mu \in L^{WN}(\sigma)$, then $\mu_d \in L^1(\sigma_d)$.

Proof. With $V(\mu)$ as in (1), we see by (2) that for all τ , $|\mu(\{\tau\})| \leq V(\mu) \leq ||\mu||_{WN}$, so that $\mu \mapsto \mu(\{\tau\})$ is WN-continuous. Thus, if $\sigma(\{\tau\})=0$, also $\mu(\{\tau\})=0$ for all $\mu \in L^{WN}(\sigma)$.

From the well-known fact that $\|\sigma_d\|_{PM} \le \|\sigma\|_{PM}$ for any σ (see [2, p. 110]), we deduce

Lemma 8. $\sigma \mapsto \sigma_d$ and $\sigma \mapsto \sigma_c$ are PM-continuous. $M_c(\mathbf{T})$ and $M_d(\mathbf{T})$ are PMclosed.

We may now proceed to the

Proof of Theorem 1. By Lemma 8,

$$L^{PM}(\sigma) = L^{PM}(\sigma_c) + L^{PM}(\sigma_d)$$

and $L^{PM}(\sigma_c) \subset M_c(\mathbf{T}), \ L^{PM}(\sigma_d) \subset M_d(\mathbf{T})$. Also, by Lemma 7, $L^{WN}(\sigma_d) \cap M_d(\mathbf{T}) = L^1(\sigma_d)$. Since $\|\mu\|_{WN} \leq \|\mu\|_{PM} \leq \|\mu\|_M$, we have

$$L^1(\sigma_d) \subset L^{PM}(\sigma_d) \subset L^{WN}(\sigma_d) \cap M_d(\mathbf{T}) = L^1(\sigma_d),$$

from which the theorem follows.

Proof of Lemma 4. Let

 $\Omega_{\mu}(h) = \sup \{ |\mu I|: I \text{ is a closed arc of } \mathbf{T} \text{ of length } h \}$. Then Wiener showed (see [1, Chap. II, § 2]) that for all μ ,

$$\frac{1}{2N+1}\sum_{|n|\leq N}|\hat{\mu}(n)|^{2}\leq \frac{\pi^{2}}{4}\|\mu\|_{M}\Omega_{\mu}\left(\frac{1}{2N}\right).$$

Hence if $\Delta_m = \sup_h \Omega_{\mu_m - \nu}(h)$, we have

$$\|\mu_m-\nu\|_{WN}^2 \leq \frac{\pi^2 C}{4} \Delta_m,$$

where $C = \sup_m \|\mu_m - \nu\|_M < \infty$. But $\Delta_m \to 0$ as $m \to \infty$ (see [7, p. 317] or [4, Chap. 2, Theorem 1.1, p. 89] for the case $\nu = \lambda$; the proof is the same for all $\nu \in M_c$).

Theorem 2 now follows from Lemma 7, Lemma 4, and the following two propositions.

Proposition 8. If $0 \leq v \in M(\text{supp } \sigma)$, then there exist positive $\mu_m \in L^1(\sigma)$ converging weak^{*} to v.

280

Proof. That the result holds when v is concentrated on a point τ is trivial: $\|v\|_M/|\sigma|(I_n) |\sigma||I_n \xrightarrow{w^*} v$, where $I_n = (\tau - 1/n) \cdot \tau + 1/n$. Hence the result holds when v is discrete. But it is well-known that we can use positive discrete measures to approximate any positive measure.

Proposition 9. If $\mu \ll v \in L^{PM}(\sigma)$, then $\mu \in L^{PM}(\sigma)$.

Proof. It is clear that if $v \in L^{PM}(\sigma)$, then $\mathscr{P}.v \subset L^{PM}(\sigma)$. Therefore $L^{PM}(\sigma)$ contains the *PM*-closure of $\mathscr{P}.v$, which in turn contains the *M*-closure, namely, $L^{1}(v)$.

We now show how Proposition 5 follows from Lemma 4.

Proof of Proposition 5. That (i) \Rightarrow (ii) follows from (2), and (ii) \Rightarrow (iii) is trivial. Assume (iii). Write $E^{C}=T \setminus E$, $\sigma_{m} = \mu_{m}|_{E^{c}}$, and $\varrho_{m} = (\mu_{m|E}) - v_{d}$. Then $\sigma_{m} + \varrho_{m} = \mu_{m} - v_{d} \xrightarrow{w^{*}} v_{c}$. Splitting $\varrho_{m} = \varrho_{m}^{+} - \varrho_{m}^{-}$ into its positive and negative parts, we claim it suffices to show that $\|\varrho_{m}^{-}\|_{M} \rightarrow 0$. For then we would have $\sigma_{m} + \varrho_{m}^{+} \xrightarrow{w^{*}} v_{c}$. But $\sigma_{m} + \varrho_{m}^{+} \ge 0$, so that Lemma 4 implies $\sigma_{m} \varrho_{m}^{+} \xrightarrow{WN} v_{c}$. Since $\varrho_{m}^{-} \xrightarrow{wN} 0$, we conclude that $\sigma_{m} + \varrho_{m} \xrightarrow{WN} v_{c}$, whence $\mu_{m} - v_{d} \xrightarrow{WN} v_{c}$, or (i).

To show that $\|\varrho_m^-\|_M \to 0$, pick $\varepsilon > 0$. Choose a finite set $F \subset E$ such that $\sum_{\tau \in F} v(\{\tau\}) < \varepsilon$. Let m_0 be such that $\sup_{\tau \in E} |\mu_m(\{\tau\}) - v(\{\tau\})| < \varepsilon/|F|$ for $m \ge m_0$. Write $E_m^- = \{\tau: \mu_m(\{\tau\}) < v(\{\tau\})\}$. Then we have

$$\|\varrho_m^-\|_m = \sum_{\tau \in E_m^-} |\mu_m(\{\tau\}) - v(\{\tau\})| \le \sum_{\tau \in F} + \sum_{\tau \in E_m^-/F} |F| \le |F| \frac{\varepsilon}{|F|} + \sum_{\tau \notin F} v(\{\tau\}) < 2\varepsilon$$

for $m \ge m_0$.

Our last task is the

Proof of Theorem 6. Let $\Lambda_n(\mu) = \hat{\mu}_{sc}(n)$. Then $\Lambda_n \in (M(\mathbf{T}), || ||)'$, whence by (3), $L^{|||}(\lambda) \subset \ker \{\Lambda_n\}_{-\infty}^{\infty} = M_d(\mathbf{T}) + L^1(\lambda).$

Since $\|\mu\| \leq \|\mu\|_M$, we have $L^1(\lambda) \subset L^{\|\|}(\lambda)$. It remains to show that $M_d(\mathbf{T}) \subset L^{\|\|}(\lambda)$. Now if $\mu \in M_d(\mathbf{T})$ and $D_N(t) = \sum_{|n| \leq N} e^{2\pi i n t}$ is the Dirichlet kernel, we have

$$\|D_N * \mu - \mu\| = \sup_n \frac{|(D_N * \mu)^{\wedge}(n) - \hat{\mu}(n)|}{|n| + 1}$$
$$= \sup_{|n| > N} \frac{|\hat{\mu}(n)|}{|n| + 1} \leq \frac{\|\mu\|_M}{N + 2}.$$

Hence $D_N * \mu \xrightarrow{\parallel \parallel} \mu$. Since $D_N * \mu \in L^1(\lambda)$, it follows that $\mu \in L^{\parallel \parallel}(\lambda)$.

The argument above also shows that for any discrete σ ,

$$L^{II}(\sigma) \subset M_d(\mathbf{T}) + L^1(\lambda).$$

But it is clear that every C^{∞} function belongs to $(M(\mathbf{T}), || ||)'$, whence by (3), $L^{\parallel \parallel}(\sigma) \subset M(E)$. Combining these two inclusions gives

$$L^{\parallel\parallel}(\sigma) \subset M_d(E) + L^1(\lambda_{\mid E}).$$

Finally, in order to prove that $M_d(E) \subset L^{\parallel \parallel}(\sigma)$, it suffices to prove that $\delta_x \in L^{\parallel \parallel}(\sigma)$ for every $x \in E$, where δ_x is the Dirac measure at x. But for every $\varepsilon > 0$, there exists y with $|x-y| < \varepsilon$ and $\delta_y \in L^1(\sigma)$. Since

$$\|\delta_x - \delta_y\| = \sup_n \frac{|\hat{\delta}_x(n) - \hat{\delta}_y(n)|}{|n| + 1} = \sup \frac{|e^{-2\pi i n x} - e^{-2\pi i n y}|}{|n| + 1}$$
$$\leq \sup \frac{|2\pi n x - 2\pi n y|}{|n| + 1} \leq 2\pi |x - y| < 2\pi\varepsilon,$$

the result follows.

References

- 1. NINA K. BARI, A Treatise on Trigonometric Series. Translated from the Russian by M. F. Mullins. Vol. I: New York: Macmillan, 1964.
- 2. COLIN C. GRAHAM and O. CARRUTH MCGEHEE, Essays in Commutative Harmonic Analysis. New York: Springer-Verlag, 1979.
- 3. YITZHAK KATZNELSON, An Introduction to Harmonic Analysis. Second corrected edition. New York: Dover, 1976.
- 4. L. KUIPERS and H. NIEDERREITER, Uniform Distribution of Sequences. New York: Wiley, 1974.
- 5. RUSSELL LYONS, Characterizations of measures whose Fourier-Stieltjes transforms vanish at infinity, Bull. Amer. Math. Soc. 10 (1984), 93-96.
- 6. RUSSELL LYONS, A characterization of measures whose Fourier-Stieltjes transforms vanish at infinity (to appear).
- 7. HERMANN WEYL, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

Received July 26, 1984

Russel Lyons Batiment de Mathematique N° 425 Universite de Paris-Sud F-91 405 Orsay FRANCE