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Introduction 

The central subject of this paper is an extension of the following result: 

Theorem 1 ([2], [3]). Let f be in the disc algebra (more generally in H 1) and 
let z o be a point in the open unit disc. Then there is an interval I on the unit circle T 
with length I[[, 0 <  IZl <_--2re, such that f(Zo) = 1/llI f ~ f da, where a denotes the Lebesgue 
measure on T. 

We extend the above theorem to the general case of finite strictly positive con- 
tinuous measures on T, under the supplementary restriction that f (zo)r  ). In 
the particular case where /l is the Lebesgue measure, Theorem 1 implies that the 
hypothesis '3r(z0)r ' '  is not needed. However, this restriction is not superfluous 
in the general case; see w 4, prop. 19 for a relevant counterexample. 

The above extension is purely topological in nature. We prove that for any 
complex continuous func t ionfon  T and any complex number w Cf(T), the following 
are equivalent: 

a) For every finite strictly positive continuous measure # on T, there is an 
interval I c T  such that w= 1//z(I) fxfdl~. 

b) f has non-zero winding number with respect to w. 
This equivalence enables us to determine the range of the BMO norm of 

q~o U, where q~ is any given continuous unimodular function on T and U varies in 
the set of all homeomorphisms of T onto itself. In the case where r has non-zero 
winding number with respect to 0, we show that (0o U has BMO norm equal to 
1 for all U. If  q9 has zero winding number with respect to 0, then the BMO norm 
of q)oU can be made arbitrarily close to zero and does not exceed 

1 - - -  sup [<p(e ix) - r (e~Y)[. 
2 ~,y 

The basic background needed in this paper can be found in [7], [12], [9]. 
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w 1. Averages of holomorphie functions 

In this section we prove the extension of theorem 1 mentioned in the intro- 
duction. 

We denote by C = R  2 the plane and by T the unit circle. M denotes the set 
of finite strictly positive measures on T, which are continuous in the sense that 
they do not have point masses. We recall that a Borel measure p is called strictly 
positive on a topological space X, if p(V)>0 for all non-empty open subsets V 
of X. We refer to [8], [11], [12] for basic information concerning measures. 

By the term interval of T we mean any arc of T with strictly positive length 
less than or equal to 2zr. We reserve the letter I for such intervals and II[ denotes 
the length of L 0< [I[=<2n. 

If a function f defined on T, or on a larger set, is integrable with respect to 
some measure pEM (i.e. fEL~u)), thenft," denotes the p-average o f f  on the interval 
1 of T: f~,~= I /p( /)f i fdp.  The set of all interval averages o f f  with respect to 
p is denoted by A~(f): Au(f )=  {fx.~: I c T  interval with length II1, 0<lll~_2n}. 

If f is a complex continuous function on T and w a complex number in 
CX,,f(T), then the winding number o f f  with respect to w is an integer counting 
how many times f wraps around w; see [4], [9], [13]. 

The winding number of a constant function is obviously zero. Any two func- 
tions which are homotopic in C\{w} have the same winding number with 
respect to w. 

Now we prove: 

Proposition 2. Let f be a complex continuous function on the unit circle T and 
w a point in CX,,f(T). I f  f has non-zero winding number with respect to w, then w 
is a p-interval average of  f for all pE M. 

Proof. Let pEM. For eE(0, zc] and e~XET we denote by I,,x the interval 
Ix,~={ei~ x -~<O<x+~} .  We define F(~,ei~)=fz .... ~ for 0<e_-<2n and 
F(O, ei~)=f(ei O. Since pEM and f is uniformly continuous on T, the map F is 
continuous on [0, 2rc]• Therefore it defines a homotopy between the constant 
function F(n, e ix) and F(0, ei~)=f(e~). 

If wCAu(f), then the homotopy F takes values in C\{w}. It follows that 
F(n, e ~x) and f have the same winding number with respect to w. Since F(n, e i~) 
is constant, f must have zero winding number with respect to w. This contradicts 
the hypothesis. 1 

A complex function belongs to the disc algebra A(D), if it is continuous on 
the closure /9 of D and holomorphic in D; see [5], [7], [10], [12] for information 
concerning the disc algebra, Blaschke products, inner function and H = functions. 
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Suppose fEA(D). If z o is a point of D such that f(zo)~f(T ), then according 
to the argument principle, f ir  has non-zero winding number with respect to f(Zo). 
Proposition 2 implies now f(zo)EAu(f) for all pEM. Thus, we obtain the desired 
extension of  theorem 1 : 

Theorem3. Let fEA(D) and zoED such that f(zo)r ). Then for every 
finite strictly positive continuous measure It on T, there is an interval l e T  such 
that f(z0)= 1/#(I) f l f dp .  I 

For all pEM, zET and all continuous functions f o n  T, the averagefi,~ con- 
verges to f(z), as I shrinks to z. This observation together with theorem 3 proves 
the following 

Corollary 4. f (D)~A~(f)  for all pEM and f6A(D). 1 

Another corollary of theorem 3 is the fact that the p-BMO norm of non-con- 
stant finite Blaschke products equals 1. 

For pEM, q~ELI~) and pE[1, +~o) the p-BMO norm of q~ with respect to 
p is defined by 

f 1 11[P 
. . i l l , I l l  = sup d ,  1 

If q~ is unimodular p-almost everywhere (i.e. l~(e~')[=l p-a.e.), then an 
easy computation shows that 

~,.111~III -- {1 - [ i n f  I~,.I]~} x/~. 

On applying the triangular inequality we also find 

1,~111~111--> 1 - i n f  k0,,,[ �9 

Since p,~l[l~olll increases with p we have 

inf[ I IIl~olll <{1 inflq~ I~} 1/~'< 1, 

for all pE[1, 2] and unimodular functions (p. 
Suppose that B is a non-constant finite Blaschke product. Then BEA(D) and 

OEB(D)\B(T). Theorem 3 implies that mini [Bt,~] =0 for all pEM. Since B is 
unimodular on T we obtain: 

1 -- 1 - i n f  IB~ 1,~ -~ p,.lllBlll < {1- inf  I n ~ - -  ,~lz}l/2 = 1, 1 <-p <= 2. 

Thus we have proved: 

Proposition 5. ~,.IllBIII=I for every non-constant finite Blaschke product B, 
pE[1,2] and ITEM. I 
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The proof of Proposition 5 applies more generally to any continuous uni- 
modular function ~0 on T with non-zero winding number. Therefore p,.[l[~0[[[=l 
for any such ~p,/zEM and pE[1, 2]. 

In the particular case, where/z is the Lebesgue measure on T, the hypothesis 
'f(Zo)r is not neededin theorem 3 and proposition 5 holds for any non con- 
stant inner function (see [2], [3]). 

In w 4 below we offer counterexamples related to the results of the present 
section. In particular we show that the hypothesis "f(zo)r is not superfluous 
in theorem 3. 

w 2. The converse of proposition 2 

In this section we prove the converse of proposition 2. 

Proposition 6. Suppose that a complex continuous function f on the unit circle 
T has zero winding number with respect to some point wECX,,f(T). Then for 
every ~<inflzl=lIf(z)-w [ there is #EM such that ]w-fi ,~]>z for all averages 
fi,g on intervals I c  T. l 

Propositions 6 and 2 imply theorem 7. 

Theorem 7. Let f :  T-+C be a continuous function and w a point in C",,.f(T). 
Then wE A~(f)  for all pEM i f  and only i f fhas non-zero winding number with respect 
to w. I 

For the proof of proposition 6 we approximate the function / - -w / [ f -w ]  by 
unimodular step functions, that is, functions of the form: g=ZNo eiZkx~, where 
2kER, X~ denotes the characteristic function of I and IKcT, k = 0  . . . .  , N is a finite 
family of two-by-two disjoint intervals covering T. 

We omit the elementary proofs of lemmas 8 and 9 below, which will be used 
in the proof later on. 

Lemma 8. Let g be a complex unimodular step function and ITEM. Then we have: 
a) The set A~(g) is a compact subset of  D. 
b) I f  ]g~,~] >6 for all intervals L then there is 3>~ such that [gx,~] =>3 for all 

l 's .  i 

Lemma9. Suppose _4EC, 0ER, 6<3_--<[-41~_1 and 0<=t<1/2(~-6). Then 
IA+te'~ >6. I 

Let 0<r<l r /4  and N=>I be an integer. Then AN(r ) will denote the set of com- 
plex unimodular step functions ~p=Z0 N-1 ei~kZtK such that lk = {el~ Yk<--O< Yk+l} 
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with Y o< Y I< . . .<YN_I<YN=Yo+2n ,  2kER , 12O--2N_ll<r and I,Zk--~k+~l<r for 
all k=O . . . .  , N - 2 .  

Let qgEAN(r), N>-3. Without loss of generality we may assume that 2N_I-->Ak 
for all k=O . . . . .  N - 1 .  Then we consider the maps: 

~o(0) = YN-,+(0--YN-=) Y~-I-YN-, 
Y N - - r ' N - =  ' 

F(e i~ = e ~~176 for YN-~ =< 0 =< YN, 

F(e ~~ = e iO for I1o <-- 0 < YN-2. 

We observe that F maps I k onto itself for k = 0  .. . . .  N - 3  and F maps IN_2u 
IN_ 1 onto IN_ ~ . 

Lemma 10. Let ~OEAN(r ), N_->3 and F be the map associated to q~ as above. 
Then we have: 

a) F: T~T',,,IN_ 1 is a measurable bijection. 
b) For any interval I o f  the form I={e~~ q<_-0<r q<r 

i = F - I ( I ) = F - I ( I - - I N _ I )  is either an interval or the empty set. 
c) The function g=q~oF belongs to AN_I(r ). 

the set 

Proof. Parts a) and b) can be easily verified. We prove part c). 
The function g has the form g=~No-2eiX~Xr~, where lk={ei~ ~k=<0<Yk+l}, 

~k=Yk for O<-k<=N--2 and ~N_I=YN=Yo+2rC. The inequalities [2k--2k+ll<r 
for 0<-k=<N-3 hold because ~oE As(r). Since 12N-Z--2N-l[<r and 
I;tN-1-20l<r the assumption 2N_l-->2k for all k = 0  .. . . .  N - 1  implies that 
2N-2,2oE(2N-l--r, 2N--1]. Therefore 12N_2--20[<r. It follows gEAN_I(r). | 

Lemma 11. Let ~OEAN(r ), 0<r<rc/4, N_->3 and g=q~oF as above. We suppose 
that there is a measure vC M such that [g~,vl>cos r for all intervals I c T .  Then 
the measure p defined by d#(ei~ dv(F-l(e'~ Z,~_ dO belongs 
to M r  or all v>0. I f  v>0 & close enough to O, then I~o~,~l>cosr for all inter- 
vals L 

Proof. The map F -1" T'NIN_I~T is a measurable bijection by lemma 10a. 
Since vEM, the measure /q, dpl(ei~ ~ dv(F-l(ei~ is strictly positive 
on T",,IN_ 1 and does not have any point masses. Since d~=dm+v/IZN_ll Z~N_, dO 
it follows that p~M for all v>0. 

By hypothesis cos r<]gi,  v[<=l for all l's. H~nce, using lemma 8b, there is 
~ > c o s r  such that [gl.v[-->~ for all I's. Let iN_2=IN_2UIN_I, ik=lk for 
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k = 0 ,  . . . , N - 3  and let Q=min {V(iK) ;0=<k-~N-2}>0.  We shall show ]~p~,,l> 
cos r for all I 's,  provided that 0 < v < l / 2  (~5-cos r)o. 

First we consider the case where the interval 1 contains at least one Ij with 
O<=j<-N-2. Thenthese t  i = F - I ( I ) = F - X ( I \ I N _ x )  contains I j=F-I( I j ) ;  it follows 
that v(i)>=v(ij) >=Q. We also have Ig7,ol-->3, because ~r is an interval (lemma 10b). 

One can easily verify that: 

IIc~IN-1I veU~_x 
f r gdv4 II~-11 

~ l , t ~  - -  V(i)+ II~IN-I[ 
II~-11 v 

It follows that 

gt, v q- teiZN- 1 ~PI'"= l + t  with O<t=[InlN_l[__ V 1 (  ' IIN-11 v ( ~  " <  ~ -  cos r). 

< z  - < :  Since ~[_[gr, v[=l  lemma 9 implies I~,,.l>cos r. 
We consider now the case where the interval 1 does not contain any Ij with 

O<=j~_N-2. Then either 1CIKUIk+ 1 with O<-k<=N-3 or IclN_2WIN_IU1 o. In 
both cases tpl,~ , is of  the form 

~ei~176176176 with ~, fl, ? _-> O, f l>O 

and 10o-011 < r, 101--021 < r. 

It follows that tpi,~ belongs to the convex hull of an arc of T with opening strictly 
less than 2r. Therefore I~0,,~1 >cos  r and the proof  is complete. I 

Proposition 12. Suppose ~pEAN(r ) for some N>=I and 0<r<zc/4.  Then there 
is pCM such that 1 oi, 1 >cos  r for all intervals T i c .  

Proof. For  N =  1 the function r is unimodular and constant on T. Therefore 
[~p~,.l=l>cos r for all #EM and all I 's. For  N = 2  the function cp takes at most 
two values e uo, e ul with ]~.o-).l[<:r, 20, A1ER. Therefore for any pCM and any 
interval I we have k0~,~[ >cos  r /2>cos  r. 

Let N->3. By induction we assume the lemma to be true for N - 1  and we 
prove it for N. 

Let qgEAs(r) and F: T~T"xIN_I be associated to cp as in lemma 10. Then 
g=qgoFEAN_l(r ) according to lemma 10c. 

By the induction hypothesis there is v~M such that ]gl, v[ >cos  r for all I 's .  
Now lemma 11 gives a measure pEM such that [~pl,u[>cosr for all I 's  and the 
proof  is complete. 1 

We are ready now to prove proposition 6. 
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Proof of proposition 6. Without loss of generality we may assume w=0. We 
also have f(eit)=if(Jt)[e ib(~ with b some real function continuous on [0,2r0. 
Since f has zero winding number with respect to w=0, we have b(0)=b(2n). 

Obviously lim~_.0 ( - 8  +cos 28) = 1 >~/inf [fl. Therefore we may choose 0 < 8 <  
~/8 such that - 8 + c o s  2e>~/inf I f  l- 

Let 2 be a real step function on [0, 21r) such that 

2(0) = lim 2(0 = b(O) and [2(ei~176 < 8 
t ~ 2 ~  

for all 0E[0, 2~). We may also assume that 2 is right continuous. 
We consider the unimodular step function cp(eit)=e u(~ One can easily check 

that ~OEAN(28) for some N->I. By proposition 12 there is a measure vEM such 
that [q~z.d>cos 28 for all intervals I c T .  

Since If/Jfl-cp[<=lb-2]<8, it follows that 

I )1 " 
1 d,, ~- fq,,. v l -  1 - ~ d v  > cos 2 8 - e  > i n f  If----I" 

We consider now the measure #EM defined by d#=dvllfl. Then p ( I )=  
fx 1/if[ dv<v(I)/inf If[. It follows that 

Ifs,~l = ~-osfx WI (inf 1 

and the proof is complete. I 

Remarks. a) A slight modification in the proof shows that the measure/z in 
proposition 6 can be chosen so that dkt(ei~ dO, with h a C ~* strictly positive 
2n-periodic function. 

b) Let f :  T ~ C \ { 0 }  be a continuous function and pEM. We define T(0)= 
0 i t  i t  Sof(e )dp(e ), 0ER. Obviously ?(2rcn+O)=n~(2rc)+v(O) for every integer n and 

0_~0<=2n. The map T defines a continuous (locally) rectifiable curve whose length 
s satisfies ds(O)= If(d~ d~(d~ We also have d?/dO=f(e ~~ dp/dO, d0-almost every- 
where. Since #EM, wehave dlUdO>=O. Therefore Arg dv/dO=Argf(ei~ d0-almost 
everywhere on the set O#d#(ei~ In particular Arg dv/dO=Argf(e i~ for all O's, 
provided that/t  is of the form dla=h dO, with h a strictly positive 2n-periodic con- 
tinuous function. Therefore the tangent of ? follows the argument o f f  

We also have the inequalities: 

1 r (0~)-T(0x) < 1 
Ilfll.. If,,.I--< s(O.)-s(OO = inflf-----~ If,,.I 

for all intervals 1= {el~ 01<0<02}, 01<02<=01+2rc. 
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It is obvious now that the condition [ft, u] > a > O  for all I 's  is equivalent to a 
local chord-arc condition 

(02)-r (01) ] 
s(O2)-s(01). > ~7 > 0 for all 01 ~ 02 -<- 01+2rc. 

Thus, proposition 6 and remark a) imply that for every continuous 2re-periodic 
real function b, there are C 1 curves 7 such that Arg ~ '=b  and 

1 _->1'(02)-7(01)1 S ( 0 2 )  - -  S ( 0 1 )  > 0~ > 0 for 01 < 02 < 01 + 2re. 

Conversely, an alternative proof of proposition 6 could be based on the existence 
of a curve 7 with the above properties. This is more or less the approach in the 
proof of proposition 19 (w 4). 

c) A slight modification in our proofs yields the best possible inequality kot,.[ > 
cos r/2instead of [qb,ul>cos r (proposition 12), which is actually enough for our 
purposes in proposition 6 and theorem 7. 

w 3. BMO norm of unimodular functions 

For any p E M  and q)ELI(#) the 2-BMO norm of ~0 with respect to p is defined 
as follows: 

.llkolll = ~,.lllq~lll = sup -ygfif, [q~-~Px'"12d/~] x/~" 

In the particular case of the Lebesgue measure a on T we write ][[~0][] instead of 
~lllq0111 We refer to [1], [6], [7] for information about BMO. 

Let L be the set of topological homeomorphisms of T onto itself. For q~ any 
continuous function on T, we denote L~0= {[llq)oUHl; UEL}. Then one can easily 

see that L~0= {~111~o111; ~CM}. 
Our purpose in this section is to determine the set Lq~ for any continuous uni- 

modular function ~0 (see prop. 15). Towards this end we use results from the previous 
sections and lemmas 13 and 14 below. 

Let ~o be a continuous unimodular function on T and let pEM. As in w 1, 
.l[l~olll={1-1inf/I~p~,.[[2} 1/~ and 0<-.l[l~olll<_-l, i.e. Lq~c[0, 1]. 

Lemma 13. Let q~ be a continuous unimodular function on T and ~, vE M. For 
any rE[0, 1] we denote p t = t v + ( 1 - t ) l l .  Then the map t~g . , . ( t )= in f~  Icp~,u,I is 
continuous on [0, 1]. It follows that L~o is a subinterval o f  [0, 1]. 

Proof  Obviously ptEM. Suppose that for all p, vEM the function gu,. is 

continuous on [0, 1]. Then the map t-+u, ll[~oI[[=I/1-[gu,v(t)l~EL~o is also con- 
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tinuous. The intermediate value theorem implies that the range of this map is an 
interval containing the values ~lll~olll= olll~lll and olll~olll=~llkolll. Since L~o= 
{~!11~o111; ~M}=[0, 1], it follows that L~o is a subinterval of  [0, 1]. 

The proof  will be completed if we show the continuity of the map g~, ~. 
Let e>0.  The uniform continuity of ~o on T implies the existence of a positive 

integer n such that I~o(ei~ for all lO-t]<-2n/n. For such an n, we 
split T into 2n intervals /1 . . . .  , I~ of equal lengths n/n. Let 6 be the minimum of 
p(I1) . . . . .  #( I~) ,  v(I1) . . . . .  v(I~). Since # and v are strictly positive measures, ~ is 
strictly positive. We denote 

~(T)+v(T)  I~Cr)+vCr)l ~ 
K = t~ ~ 63 ~(0, + ~ ) .  

We shall show that for all intervals I c T  and all h,  t~C[0, 1] with I t l - t~ l<e /K the 
following inequalities hold: 1~o~, %1 - e < ]~ol, ut, I < I cPl, %1 + e. Then taking the infima 

over all l ' s  we obtain 

gu (tl) gu (t2)< gu (tl)+e , v  - - ~  ~ , v  = , v  

which proves the continuity of gu,,. 
Let I c T  be an interval of length II], 0<]I]<-2n. 

O<II[<2rc/n and 2n/n<=lll<-2n. 
In the first case, we choose a point ~ in L Then 

zE I and 

for all tE[0, 1]. 

It follows that 

We distinguish two cases: 

I~o(z)-~o(~)l<~/2 for all 

1 e 
I~o,, . ,-~o(01 <-- ~,(l------Y f , ko(~)-~0(z) l  d~,(z) < 

Therefore 

k0., . , , -  ~ , , . , I  <= I~. , . ,1-~(~)l  + I~ . , . , . -  ~o (~)1 < ~. 

In the case 2n/n<= [I[<-2n, the interval I contains at least one of the intervals 
/1 . . . . .  Is,. It follows that pt(I)=>6 for all rE[0, 1]. Therefore 

, f  , , y 

Itl-t~l p(T)+v(T)6 + Itl - t211~ (T) + vfT) I ~ 1# (T)-b v(T) l = g(tx - t~). 

Since ltl-t~J<e/K, we have ko,,u,i-~ot, %l<e,  which implies I~i,~,11-~< I~,,, I< 
1~i,., I+~. I 
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Lemma 14. Let ~p be a complex continuous unimodular function q~ on T. We 
denote A={wEC: [wl<l ,  and w=l//z(T) fT~Pd/z for some /ZEM} and B= 
{w~c: Iwl<] and w =  1//z(I) f ,  tp d/z for some/ZEM and some interval I c T } .  Let 
r be the interior of  the convex hull of  the arc ~p(T). Then A = B = F .  

Proof The inclusion A c B  is obvious. To show B c F  let w=q~1,,EB. 
We consider v the measure defined by v(X)=#[~o-x(X)] for all Borel sets 
X c T .  Then v is supported on ~0(T) and it is strictly positive on it. We also have 
w= 1/v(q~(I))f~(r~ z dr(z). Therefore w belongs to the convex hull of  ~p(1). Since 
Iwl-~l, the arc r  must have strictly positive length. The bary-center w of 
a strictly positive measure vt~(o on an arc q~(I) with strictly positive length, belongs 
always to the interior of  the convex hull of  q~(I)ctp(T). Thus wEF and we proved 
B c F .  

It remains to show r c A .  Let wEF. Then there are points w~=~p(z.,), z~ET, 
i =  1, 2, 3 such that w is in the interior of  the triangle with vertices wz, w2, w3. One 
can easily find discs D~ centered at w~, i =  1, 2, 3 with the following property: for any 
choice w~ED~, i=1 ,  2, 3, the point w is in the interior of the triangle with vertices 

p �9 �9 
W 1 ~ W 2 , W 3 �9 

For any zED we denote by /Z~ the (normalized) Poisson kernel associated 
with z (see [5], [7], [10], [12]). We extend q~ from T to ~ setting q~(z)~- f (p d/zz for 
all zED. This extension is the harmonic extension of (p and is continuous on D. 
Therefore there are points z~ED close enough to z i such that q~(z;)ED i, i =  1, 2, 3. 
It follows that w is a convex combination of  q9 (z;), i =  1, 2, 3: 

w = ~ = x  t,r with 0 <= t , ,  , ~ = 1  t i  = 1. 

Consider the measure / Z = ~ = I  tl/zz~. Then/ZEM,/Z(T)= 1 and 1//Z(T) f r d/z-- 
z~=xt~q~(zi)=w. Since wEE we have lw[<l.  It follows that wEA. Thus we 
proved E t A .  I 

Proposition 15. Let (p: T-~T be a continuous unimodular function on T. I f  9 
has non-zero winding number with respect to O, then Lq~= {1}. I f  q~ is constant then 
Lq~ = {0}. In the case where q~ is non-constant with zero winding number with respect to 
O, we denote by eE(0, 2rr] the length of  the arc q~(T). Then Lop=(0, sin e/2) for 
0<e-<~/2 and Lq~=(0, 1] for ~<e<_--2rc. 

Proof Obviously L(p= {I)} when tp is constant. If  rp has non-zero winding 
number, then proposition 2 implies that mint ko~.,[=0 for all /ZEM. It follows 
~lll~olll=] for all /ZEM. Therefore L~p={1}. 

W e  consider now the case of a non-constant q~ with zero winding number 
with respect to 0. Lemma 13 assures that L~0 is a subinterval of [0, t]. Proposition 6 
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implies that for every ~/>0, there is ItEM with ,l[[~o[[[<t/; therefore infL~o=0. 

Lemma 14 implies that supL~o=supw~r 1/1-1wl z. It follows that supL~0=l for 
zc<e<-2n and sup Lq~=sine/2 for 0<~<-n. 

Since q~ is non-constant, we have 0r If 0<e<=n, then cos e/2~ {Iwl: w~r} 
and sin~/2~lll~0[ll for all ItEM; therefore Lq~=(O, sine/2). If z~<~_2~, then 
OEF and .111~0111=1 for some ItEM. It follows that 1EL~o and Lq~=(0, 1]. I 

w 4. Counterexamples 

This section contains comments and couterexamples related to the results of 
w 1. Propositions 16 and 17 give examples of functions f n o t  in A(D) such that for 
some #EM the set A~(f) is not dense in f(D). The example in proposition 16 is 
in H ~*, while the one in proposition 17 is not holomorphic but it is open in D and 
continuous on D. Finally proposition 19 gives an example of a function fEA(D) 
such that Au(f) does not contain f(D) for some #EM, although f(D)EAu(f) as 
expected. 

Proposition 16. There are an infinite Blaschke product f and an absolutely con- 
tinuous measure It strictly positive on T such that Au(f) is not dense in f(D) and 
2,~l]lflll <1, 

Proof. Consider f an infinite Blaschke product, whose zeros accumulate 
everywhere on T. Let 0 < 6 <  1 and E =  {ei~ Re f(ei~ Then it is known that 
t E n l l > 0  for all intervals I c T ;  see [15], chapter VII for a related result. It 
follows that the absolutely continuous measure It, dIt=XEdO, is a strictly 
positive measure on T. 

Obviously IZ,.I_->Re ft,~>5 for all intervals L Therefore ,,~[llfll[= 
{1-inft  1fI,~[2}1/2~_(1-62)1/~<1. Since 0El(B) and I f j > o > 0  for all I's, we 
see that An(f) is not dense in f(D). l 

The above counterexample, communicated to the author by W. Rudin, shows 
that corollary 4 and proposition 5 do not extend to H ~* functions and to general 
absolutely continuous measures. 

Theorem 3 and corollary 4 extend easily in the case of functions go U with 
gEA(D) and U any homeomorphism of O onto itself. For any non-constant func- 
tion gEA(D) the composition goU is continuous on D, open in D and light, i.e. 
for any wEC the set (go U)-l(w) does not have accumulation points in D (see 
[14]). Our next proposition shows that theorem 3 and corollary 4 are not in general 
true for open-continuous functions which are not light. 
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Proposition 17. There is a function f :  D-~C continuous on ~ and open in 
D such that A~(f)  is not dense inf(D), where r denotes the Lebesgue measure on T. 

Proof. Consider the function h(x+iy)=lyIexp(x+iMyl) for x, yER, y~O 
and h(x)=O for xER. Then without great difficulty, one can check that the map 
h: C ~ C  is continuous and open. It is also easy to see that h(zo)~h(T) for some 
zoED. 

Since h(e-i~ i~ for all 0ER, it follows that hlr has zero winding number 
with respect to any point in C\h(T) .  In particular hit has zero winding number 
with respect to h(zo). Proposition 6 implies now the existence of a measure pEM 

such that h (z0) ~ A t (h). 
Since #EM, there is a homeomorphism U of D onto itself such that 

p(T)dO/2z~=dl~(U(ei~ This implies Au(h)=A,(hoU), where a denotes the 
Lebesgue measure on T. Let f = h o  U and z=  U-I(Zo)ED. Then f is continuous 

on D, open in D and f(D)3f(z)=h(zo)~Au(h)=A~(f). It follows that Ao(f)  is 
not dense in f(D). I 

Theorem 1 shows that in the particular case of the Lebesgue measure the hypo- 
thesis "f(z0)r is not needed in theorem 3. Proposition 19 below gives a counter- 
example of a function fEA(D) and a measure /~EM such that f ~ . ~ 0  for all 
intervals I c T ,  although 0Ef(D). Certainly 0Ef(T), by theorem 3. We see, there- 
fore, that the hypothesis '~C(z0)~f(T)" is not superfluous in theorem 3. Equivalently 
theorem 1 fails in the general case of measures pEM. 

In the example of proposition 19 the set A t ( f )  is dense in f(D), by corollary 4. 
Therefore although A~,(f) avoids 0, it must meet every disc centered at 0. This is 
an essential difference with the previous counterexamples and we expect a more 
delicate construction. The idea of this construction follows from lemma 18 whose 
straightforward proof is ommited, see also remark b in w 2. 

Lemma 18. Let f :  T ~ C  be a continuous function and pEM. We denote 
y(0)=fg f (e  ~t) d/z(e 't) for 0<0-<4n. Then we have: 

a) ~ is continuous on [0, 4~z] and defines a rectifiable curve. 
b)fi,~,~0 for all intervals I c T ,  i f  and only i f  ~(A)r for all 0<-A< 

B<-A+2rc<4~. 
c) l f  7 is one-to-one on [0, 4rc], then fx, u~O for all intervals I c T .  
d) Let I c T  be an open interval and suppose that )~ d#(ei~176 dO with 

h a strictly positive continuous function. Then ~'(O)=f(ei~ i~ for all el~ More- 
over, i f  f(ei~ on L there are continuous determinations of  Arg ~' and A r g f  
on I such that Argf=Arg  ~'. 

To construct the desired counterexample we will start with a function 
fEA(D) satisfying: OEf(O),f(1)=O,f(e~~ on T - { l }  and lim0~0+ Argf(e~~ = 
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lim0-~2~_ Argf(ei~ = -co, where Argf(e ~~ is a continuous determination of the 
argument of f (e  i~ on (0, 2zc). 

Then we construct a curve y: [0, 2rc]~C such that Arg y '=Argf ,  y(0)=0 
and ~is one-to-one on [0, 4z~]; where ~7=7 on [0,2rc] and ~7(0)=~(27r)+7(0-2rc) 
on [2re, 4r~]. This is possible because lim0-~o Argf(ei~ Argf(e i~ . . . .  

Next we try to find a measure p on T such that ~(o)=f~ ~. Then f t . , ~ 0  
for all I's according to lemma 18c. 

We state now proposition 19 and we give a more detailed proof. 

Proposition 19. There are fE A(D), #E M and zoE D such that f(Zo)=O~ Ap(f ) .  

Proof. We consider the function h( z )=z ( z - I )  exp (z+ I /z-1);  then hEA(D). 
Let f2 denote the simply connected domain containing 0 and bounded by the Jor- 
dan curve 

{ 60: 3}  {2" % 1/~" 2}  { I (  '0 }}  0<=0<-2n - w +it: <=t<= u l + e ) : 0 - < 0 =  < ; 

then f2cD (see figure 1). Let q~: D ~ O  be a conformal mapping from D onto 
f2, such that ~o(1)=1. Then the function J--hoq~ is in A(D) and f(1)=f(zo)=O, 
where z0=~o-l(0)ED. One can also easily check that f satisfies the conditions: 

i)f(ei~162 for all ei~ A continuous determination of Argf(ei~ 
0<0<2rc, satisfies lim0_~o+ Argf(ei~ _ Argf(e i~ . . . .  There is 00E(0, 2r0 
such that Argf(e i~ is strictly increasing on (0, 0o] and strictly decreasing on 
[0o, 2~). 

ii) There is 6>0 such that ITW~ IArgf(e~~ on (o, 2~). 

Figure 1 

Let now V be a continuous rectifiable curve in C starting from 0. We denote 
by KE(0, +co) its total length and we parametrize V by arc-length: y: [0, K]gS~  
y(S)EC, ~(0)=0. We suppose that y has continuous derivative y'(S) on (0, K). 
Then [7"(S)i=I and y '(S)=exp(iArgy'(S))  for all SE(0, K). We define 
~: [0, 2K]~C as follow: ~=y on [0, K] and y ( S ) = v ( K ) + y ( S - K ) f o r  SE[K, 2K]. 
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We suppose that the conditions iii), iv) and v) below are satisfied. 
iii) The map ~7 is one-to-one on [0, 2K]. 
iv) There is SoE(0, K) such that a continuous determination of Arg v'(S) 

is strictly increasing on (0, So], strictly decreasing on [S0, K) and satisfies 
lims_.o+ Arg ?'(S)=lims_. K_ Arg ~ ' (S)=  -~o and Arg ~'(So)=Argf(ei~ 

v) f0 ~ [Arg e'(S)[ ds<o% where Arg r '  is the determination of the argument 
of  ~' in iv). 

We assume for the moment the existence of  a curve ? with the above properties. 
At the end of  the proof  we shall give an example of such a curve. 

Properties i) and iv) imply the existence of a unique increasing homeomorphism 
[0, 2r~]30--,-S(O)E[O, K] such that S(0)=0,  S(Oo)=S o, S ( 2 r 0 = K  and Argf(e to) = 
Argo'(s(0))  for all 0E(0,2rc). We define S(O)=S(2~)+S(O-2rO=K+S(O-2zO, 
for 2n~0_-<4z~. Obviously S: [0, 4hi-*[0, 2K] is an increasing homeomorphism 
such that S(0)=0,  S(2tc)=K, S(4~t)=2K and Arg~'(S(O))=Argf(e i~ for all 
0E(0, 4re), 0#2re. 

We define # by the relation dp(e~~ 0 < 0 < 2 n .  Since S is strictly 
increasing,/z is a strictly positive measure on T. Moreover the continuity of S implies 
that p does not have point masses. Properties ii) and v) imply that /t is a finite 
measure: 

2. d S ( O )  1 f 2 .  f~ dp(ei~ = f~ [f(e'~ <-- -6J o IArgf(e")[dS(O) 

__ l f 2 ~  <~. 
- - ~ a  o [Arge'(g(o))ldS(O) = + f~  IArge'(S)ldS 

We see, therefore, that pEM. 
Let 0-< 0 <- 2re. Then 

f(ei') dS(t) 
f~o f (eU) d#(e't) = f~o If(e")[ 

= f ~  e, Ar, f~,,,~dS(O = f o  e, Ar,,,~s~,,~,tSO 

= f~o)  e,,,,,,~s)ds = fs~o)r ' (S)dS = r(S(O))-r(S(O))  

= r ( s ( o ) )  = ~ ( s ( o ) ) .  

Similarly f~ ) dp(e")=~(S(O)) for 2rc<=0_-<4rc. The map ~ is one-to-one 
on [0, 4re] by condition iii). Since S is injective, it follows that the map O-,-f~ 
~(S(O)) is one-to-one on [0, 4z]. Lemma 18c implies now that fi ,  u r  for all 
intervals l e T .  

It remains to give an example of  a double spiral ~ satisfying all above require- 
ments. Such a curve is represented in figure 2: 
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Vo Vo+ V(X)=s+Ve 

I % / \ ! \ 

V-1 V-t +V(X) :a+y-i 
Figure 2 

We denote by 7., n----0, + l ,  +2 ,  ... semicircles with centers on the real axis 
which are contained in the upper half-plane for even n and in the lower half-plane 
for odd n. The semicircle ~0 has as diameter the segment [1, 3+5/8].  For  
n = 2 , 4 , 6  . . . .  the diameter of  ~ is [ 3 - 5 / 2  n+~, 3+5/2n+8]. For  n = 1 , 3 , 5 , . . .  
the diameter of  7~ is [ 3 - 5 / 2  "+~, 3+5/2~+2]. The diameter of  ~ is the segment 
[ -2~+1 ,2  n] for n = - 2 , - 4 , - 6  . . . . .  Finally for n = - l , - 3 , - 5 ,  ... the diameter 
of  ~ is [ - 2  n, 2"+1]. 

We give to ~, the positive orientation for n < 0  and the negative one for n=>0. 
Then one can check that  a rotation of  the curve ~_+ Z 7, satisfies all the require- 
ments relative to the curve 7. II 
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