Estimates for maximal functions along hypersurfaces

Hasse Carlsson* and Peter Sjögren

1. Introduction

Let $x_{n+1}=F\left(x_{1}, \ldots, x_{n}\right)$ be the equation of a surface in \mathbf{R}^{n+1}. We shall study the mean values

$$
m_{h} f(x)=\frac{1}{\prod_{1}^{n} h_{i}} \int_{0<y_{i}<h_{i}} f\left(x^{\prime}-y, x_{n+1}-F(y)\right) d y
$$

Here $h_{i}>0, i=1, \ldots, n, x=\left(x^{\prime}, x_{n+1}\right) \in \mathbf{R}^{n+1}$ and $y \in \mathbf{R}^{n}$. Assuming $F(0)=0$, we ask whether $m_{h} f \rightarrow f$ a.e. as $h_{i} \rightarrow 0$ when $f \in L^{p}, p>1$. This was proved for $F\left(x^{\prime}\right)=$ $\Pi_{1}^{n} x_{i}^{\alpha_{i}}, \alpha_{i}>0$, in Carlsson, Sjögren, and Strömberg [1]. Convergence of this type follows from the L^{p} boundedness of the corresponding maximal function operator

$$
M_{F} f=\sup _{0<h_{i}<\delta} m_{h}|f|
$$

where $\delta>0$. Stein and Wainger asked in [2, Problem 8, p. 1289] for which F the operator M_{F} is bounded on L^{p}, as a natural extension of the known results for curves. We shall give some answers to this question.

Theorem 1. Let $F \in C^{2+\varepsilon}$ in a neighborhood of $0 \in \mathbf{R}^{n}$, for some $\varepsilon>0$. If $\partial^{2} F(0) / \partial x_{i}^{2} \neq 0, i=1, \ldots, n$, then there exists a δ making M_{F} bounded on $L^{p}\left(\mathbf{R}^{n+1}\right)$, $p>1$.

Under stronger assumptions on the Hessian of F at 0 , the regularity hypothesis can be weakened.

Theorem 2. Let $F \in C^{2}$ in a neighborhood of $0 \in \mathbf{R}^{n}, n \geqq 2$. Assume that the matrix $\left(\partial^{2} F(0) / \partial x_{i} \partial x_{j}\right)_{i, j \in A}$ is nonsingular for any nonempty proper subset Λ of $\{1, \ldots, n\}$. Then M_{F} is bounded on $L^{p}\left(\mathbf{R}^{n+1}\right), p>1$, for some $\delta>0$.

[^0]Notice that the condition in Theorem 2 is satisfied if the Hessian of $F \in C^{2}$ is positive or negative definite. Also if $n=2$, the assumption about the Hessian in these two theorems are the same. In general, the assumption of Theorem 1 , $\partial^{2} F(0) / \partial x_{i}^{2} \neq 0$, cannot be weakened. In fact with prescribed values of $\partial^{2} F(0) / \partial x_{i} \partial x_{j}$ such that some $\partial^{2} F(0) / \partial x_{i}^{2}=0$, we can find a smooth F for which M_{F} is unbounded on L^{p}. For this surface $m_{h} f$ will not converge a.e. even for $f \in L^{\infty}$.

On the other hand, if F is a second-degree polynomial, no hypothesis on the Hessian is needed.

Theorem 3. Let F be a polynomial of degree at most 2. Then M_{F} is bounded on $L^{p}\left(\mathbf{R}^{n+1}\right), p>1$, even with $\delta=+\infty$.

For $n=2$, this was proved in [1].
By and large, our proof of Theorem 1 follows that of Theorem 1 in [1]. In Section 2, the proof is reduced to three lemmas which are proved in Sections 3 and 4. The main part of our proof is contained in the third of these lemmas, whose analogue in [1] is trivial. Section 5 briefly describes the modifications needed for Theorem 2. The proof of Theorem 3 is also in Section 5, as well as the counterexample mentioned above.

In this paper, C denotes various positive constants, and $\alpha \sim \beta$ means $C^{-1} \leqq$ $\alpha / \beta \leqq C$.

2. Structure of the proof of Theorem 1

We use induction in the dimension. The case $n=1$ is well-known [2]. This case also follows directly from our proof. From now on, we assume the theorem to be true for $n-1$, although this assumption will be used only in the proof of Lemma 3 below.

We need only treat the case $F(0)=0$. Considering the transformation $\left(x^{\prime}, x_{n+1}\right) \rightarrow\left(x^{\prime}, x_{n+1}-x^{\prime} \cdot \operatorname{grad} F(0)\right)$, we see that it can also be assumed that $\operatorname{grad} F(0)=0$. We next show that we may assume $\partial^{2} F(0) / \partial x_{i} \partial x_{j} \neq 0$ for all i and j, by making a change of variables which depends on the relative sizes of the h_{i}. Let $\max h_{i}=h_{q}$. For any fixed η, the transformation

$$
\begin{gather*}
x_{q}=x_{q}^{\prime}+\eta \sum_{i \neq q} x_{i} \\
x_{i}=x_{i}^{\prime}, \quad i=1, \ldots, n, \quad i \neq q \tag{2.1}
\end{gather*}
$$

is admissible, see the proof of Theorem 2 in [1]. Since $\partial^{2} F(0) / \partial x_{q}^{2} \neq 0$, it can be seen that small nonzero values of η will give $\partial^{2} F(0) / \partial x_{i}^{\prime} \partial x_{j}^{\prime} \neq 0$, as required. Choosing δ suitably, we shall always work in a small neighborhood of the origin where

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \sim \frac{\partial^{2} F(0)}{\partial x_{i} \partial x_{j}} \neq 0, \quad 1 \leqq i, j \leqq n . \tag{2.2}
\end{equation*}
$$

The mean value $m_{h} f$ can be replaced by that over the rectangle $\left\{\frac{1}{2} h_{i}<y_{i}<h_{i}\right.$, $i=1, \ldots, n\}$, and we can take $h_{i}=2^{-j_{i}}$ for large integers j_{i}. In the sequel, we shall write $j=\left(j_{1}, \ldots, j_{n}\right) \in \mathbf{N}^{n}$ and $k=\min j_{i}$, and k will always be large. Let $0 \leqq \psi \in C_{0}^{\infty}(\mathbf{R})$ be 1 in $\left[\frac{1}{2}, 1\right]$ and have support in $] 0, \infty[$. (In this proof, we could actually use the rectangles $\left\{0<y_{i}<h_{i}\right\}$ and hence take $\psi \in C_{0}^{\infty}$ with $\psi=1$ in $[0,1]$, but this is not convenient in the proof of Theorem 2.) Define a measure μ_{j} by

$$
\begin{equation*}
\int \varphi d \mu_{j}=\int \varphi(y, F(y)) \Pi_{1}^{n} \psi_{j_{i}}\left(y_{i}\right) d y \tag{2.3}
\end{equation*}
$$

where $g_{m}(t)=2^{m} g\left(2^{m} t\right)$ for any function g in \mathbf{R}. It is enough to estimate the maximal function operator

$$
M_{\mu} f=\sup \left|\mu_{j} * f\right|
$$

the supremum taken over those j with all j_{i} sufficiently large.
As in [1], we shall compare the μ_{j} to measures v_{j} whose maximal function is easier to control. Take $0 \leqq \varphi \in C_{0}^{\infty}(\mathbf{R})$ with $\int \varphi d t=1$. Define

$$
\begin{equation*}
v_{j}=\mu_{j}-\mu_{j} *\left(\otimes_{i=1}^{n}\left(\delta_{0}-\varphi_{j_{i}}\right) \otimes \delta_{0}\right), \tag{2.4}
\end{equation*}
$$

δ_{0} being the Dirac measure at 0 in \mathbf{R}.
We use anisotropic dilations of the Bessel kernel G^{z} to improve and worsen our operators. With $z \in \mathbf{C}$ and

$$
\hat{G}^{z}(\xi)=\left(1+|\xi|^{2}\right)^{-(1 / 2) z}, \quad \xi \in \mathbf{R}^{n+1},
$$

we let

$$
G_{j}^{z}(x)=2^{\sum j_{i}+2 k} G^{z}\left(2^{j_{1}} x_{1}, \ldots, 2^{j_{n}} x_{n}, 2^{2 k} x_{n+1}\right)
$$

The reason for the factor $2^{2 k}$ in the last variable is that $2^{-2 k}$ is in general the order of magnitude of $|F|$ in supp μ_{j}. Notice that the μ_{j} and v_{j} are no longer dilations of fixed measures as in [1]. Now set $\mu_{j}^{z}=G_{j}^{z} * \mu_{j}$ and similarly for v_{j}^{z}. We shall study the maximal function operator

$$
M_{\mu-v}^{z} f=\sup _{j}\left|\left(\mu_{j}^{z}-v_{j}^{z}\right) * f\right|,
$$

where f is assumed to be in the Schwartz class S, and its analogues M_{μ}^{z} and M_{v}^{z}.
The following two lemmas give L^{p} estimates for $M_{\mu-v}^{z}$. They are similar to the corresponding lemmas in [1], and their proofs are given in the next section.

Lemma 1. There exists $a \sigma>0$ such that for $-\sigma<\operatorname{Re} z<0$

$$
\left\|M_{\mu-v}^{z} f\right\|_{2} \leqq C\|f\|_{2}, \quad f \in S .
$$

Lemma 2. For $0<\operatorname{Re} z<1$ and each $p>1$

$$
\left\|M_{\mu-v}^{z} f\right\|_{p} \leqq C(z)\|f\|_{p}, \quad f \in S
$$

where the constant $C(z)$ increases at most polynomially in $\operatorname{Im} z$ for fixed $\operatorname{Re} z$.

Interpolating as in, e.g., [1], we conclude that the operator $M_{\mu-v}^{0}$ is bounded on L^{p} for $p>1$. Defining M_{v} like M_{μ}, we see that Theorem 1 follows from the next lemma.

Lemma 3. The operator M_{v} is bounded on L^{p} for $p>1$.
In [1], the measures v_{j} were found to be dilations of a C_{0}^{∞} function, and so M_{v} was easy to control. In our case however, the density of v_{j} may be unbounded near the surface when some derivative of F vanishes at points in supp μ_{j}. This is the main difficulty in the proof of Lemma 3, given in Section 4.

3. Estimates for $M_{\mu-v}^{z}$

Proof of Lemma 1. As in the proof of Lemma 1 in [1], it is enough to show that

$$
\begin{equation*}
\sum_{j}\left|\hat{\lambda}_{j}^{z}-\hat{v}_{j}^{z}\right|^{2} \leqq C \tag{3.1}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left|\hat{\mu}_{j}(\xi)-\hat{v}_{j}(\xi)\right| \leqq C 2^{-J_{i}}\left|\xi_{i}\right|, \quad i=1, \ldots, n . \tag{3.2}
\end{equation*}
$$

We shall use van der Corput's lemma, see [2, Lemma 2.3], to estimate $\hat{\mu}_{j}(\xi)$ for large ξ. One has

$$
\begin{equation*}
\hat{\mu}_{j}(\xi)=\int e^{-2 \pi i\left(\sum y_{i} \xi_{i}+F(y) \xi_{n+1}\right)} \prod_{1}^{n} \psi_{j_{i}}\left(y_{i}\right) d y \tag{3.3}
\end{equation*}
$$

Take $q \in\{1, \ldots, n\}$ such that $i_{q}=k$. In the region we are interested in, $\partial^{2} F / \partial y_{q}^{2}$ is bounded away from zero. By van der Corput's lemma, the integral in y_{q} of the exponential in (3.3) over any interval near the origin is at most $C\left|\xi_{n+1}\right|^{-1 / 2}$. Integrating by parts in y_{q}, we conclude that

$$
\left|\hat{\mu}_{j}(\xi)\right| \leqq C\left(2^{-2 k}\left|\xi_{n+1}\right|\right)^{-1 / 2}
$$

The first derivative with respect to y_{i} of the parenthesis in (3.3) is $\xi_{i}+F_{i}^{\prime}(y) \xi_{n+1}$. Notice that $\left|F_{i}^{\prime}(y)\right| \leqq C 2^{-k}$ here. Hence, if

$$
\begin{equation*}
\left|\xi_{i}\right|>C 2^{-k}\left|\xi_{n+1}\right| \tag{3.4}
\end{equation*}
$$

van der Corput's lemma gives

$$
\left|\hat{\mu}_{j}(\xi)\right| \leqq C\left(2^{-j_{i}}\left|\xi_{i}\right|\right)^{-1}
$$

Now $\hat{\mu}_{j}$ is bounded and these estimates imply

$$
\left|\hat{\mu}_{j}(\xi)\right| \leqq C\left(1+\sum_{1}^{n} 2^{-j_{i}}\left|\xi_{i}\right|+2^{-2 k}\left|\xi_{n+1}\right|\right)^{-1 / 2}
$$

for all ξ, since the last term dominates $2^{-j_{i}}\left|\xi_{i}\right|$ when (3.4) is false. The same estimate then follows for $\hat{\boldsymbol{v}}_{j}$.

Combining this with (3.2), we get

$$
\left|\hat{\mu}_{j}(\xi)-\hat{v}_{j}(\xi)\right| \leqq C \min \left(\left(1+\sum_{1}^{n} 2^{-j_{i}}\left|\xi_{i}\right|+2^{-2 k}\left|\xi_{n+1}\right|\right)^{-1 / 2}, 2^{-j_{1}}\left|\xi_{1}\right|, \ldots, 2^{-j_{n}}\left|\xi_{n}\right|\right)
$$

Arguing now as in [1], last part of the proof of Lemma 1, we obtain (3.1) and thus Lemma 1.

Proof of Lemma 2. We have

$$
\left|G^{z}(x)\right| \leqq C(z) \sum_{m \in Z^{2}} 2^{-|m| \operatorname{Re} z+m(n+1)} \chi_{|x|<2} 2^{-m}
$$

see [1], proof of Lemma 2. Let

$$
\lambda_{j}^{m}(x)= \begin{cases}2^{\Sigma j_{i}+2 k+m(n+1)} & \text { if }\left|x_{i}\right| \leqq 2^{-j_{i}-m}, i=1, \ldots, n, \text { and } \quad\left|x_{i+1}\right| \leqq 2^{-2 k-m} \\ 0 & \text { otherwise. }\end{cases}
$$

We estimate M_{μ}^{z} and M_{v}^{z} separately. For $f \geqq 0$,

$$
\begin{equation*}
\left|\mu_{j}^{z} * f\right| \leqq C(z) \sum_{m \in Z^{2}} 2^{-|m| \operatorname{Re} z} \mu_{j} * \lambda_{j}^{m} * f \tag{3.5}
\end{equation*}
$$

Let

$$
\mathscr{M}^{m} f=\sup _{j} \mu_{j} * \lambda_{j}^{m} * f
$$

When $m \leqq 0$, the support of $\mu_{j} * \lambda_{j}^{m}$ is contained in the box $\left\{\left|x_{i}\right| \leqq C 2^{-j_{i}-m}\right.$, $\left.i=1, \ldots, n,\left|x_{n+1}\right| \leqq C 2^{-2 k-m}\right\}$, and the density of $\mu_{j} * \lambda_{j}^{m}$ is seen to be bounded by a constant divided by the volume of this box. Hence, $\mathscr{M}^{m} f$ is bounded by a constant times the strong maximal function $M_{s} f$, and thus \mathscr{M}^{m} is bounded on L^{p} uniformly for $m \leqq 0$.

Now let $m>0$. We use (2.3) with the change of variables $y_{i}=2^{-j_{t}} S_{i}$, getting

$$
\begin{gather*}
\mu_{j} * \lambda_{j}^{m} * f(x) \leqq \int \prod_{1}^{n} \psi\left(s_{i}\right) d s 2^{\Sigma j_{i}+2 k+m(n+1)} \tag{3.6}\\
\int_{\substack{\left|v_{i}\right| \leqq 2-j_{i}-m, i=1, \ldots, n \\
\left|v_{n+2}\right| \leqq 2^{-2 k-m}}} f\left(x^{\prime}-2^{-j_{s}}-v^{\prime}, x_{n+1}-F\left(2^{-j} S\right)-v_{n+1}\right) d v .
\end{gather*}
$$

Here $s=\left(s_{1}, \ldots, s_{n}\right)$ and $2^{-j} s=\left(2^{-j_{1}} s_{1}, \ldots, 2^{-j_{n}} S_{n}\right)$, and we write $v=\left(v_{1}, \ldots, v_{n+1}\right)=$ $\left(v^{\prime}, v_{n+1}\right) \in \mathbf{R}^{n+1}$. When taking the supremum in the j_{i}, we shall start by fixing the non-negative integers $l_{i}=j_{i}-k$, and vary k. Let $\Lambda=\left\{i: l_{i}<m\right\}$. Denote by π_{A} the projection $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ obtained by replacing the i : th coordinate by 0 for $i \notin \Lambda$. With $F_{A}=F \circ \pi_{A}$, we have

$$
F\left(2^{-j} S\right)=F_{\Lambda}\left(2^{-j} S\right)+O\left(2^{-2 k-m}\right)
$$

for $s_{i} \in \operatorname{supp} \psi$. Therefore, we can replace F by F_{A} in (3.6), provided we integrate in v_{n+2} over a longer interval $\left|v_{n+1}\right| \leqq C 2^{-2 k-m}$.

We now recall a one-dimensional lemma from [1]. If $\omega=\left(\omega_{k}\right)$ is a decreasing sequence of positive numbers and $\tau=\left(\tau_{k}\right)$ a sequence of real numbers, let

$$
\begin{equation*}
M^{\omega, \tau} g(t)=\sup _{k} \frac{1}{2 \omega_{k}} \int_{-\omega_{k}}^{\omega_{k}}\left|g\left(t-\tau_{k}-s\right)\right| d s \tag{3.7}
\end{equation*}
$$

Lemma 4 in [1] says that if for each k the inequalities $\left|\tau_{l}\right|>\omega_{k}, l \geqq k$ hold for at most $m \geqq 1$ values of l, then $M^{\omega, \tau}$ is bounded on $L^{p}(\mathbb{R}), p>1$, with norm at most a constant times $m^{1 / p}$. In particular, this is satisfied when $\left|\tau_{k+m}\right| \leqq \omega_{k}$ for all k.

We shall estimate the modified integral in (3.6) and start by integrating in v_{n+1} :

$$
\begin{gathered}
2^{2 k+m} \int_{\left|v_{n+1}\right| \leqq c 2^{-2 k-m}} f\left(x^{\prime}-2^{-j_{S}}-v^{\prime}, x_{n+1}-F_{A}\left(2^{-j_{S}}\right)-v_{n+1}\right) d v_{n+1} \\
\leqq C M^{n+1} f\left(x^{\prime}-2^{\prime} s-v^{\prime}, x_{n+1}\right)
\end{gathered}
$$

Here M^{n+1} is $M^{\omega, \tau}$ applied to the $n+1$:st variable, with $\omega_{k}=C 2^{-2 k-m}$ and $\tau_{k}=$ $F_{\Lambda}\left(2^{-k-l_{1}} S_{1}, \ldots, 2^{-k-l_{n}} S_{n}\right)$. Now fix $p>1$. One finds $\left|\tau_{k+m+c}\right| \leqq C 2^{-2 k-2 m-2 C} \leqq \omega_{k}$ for some C. Thus M^{n+1} is bounded on $L^{p}\left(\mathbf{R}^{n+1}\right)$ with norm at most $C m^{1 / p}$.

Integrating then in $v_{i}, i=1, \ldots, n$, we can apply similar maximal operators M^{i}, defined as $M^{\omega, \tau}$ acting in the i : th variable, with $\omega_{k}=2^{-k-l_{i}-m}$ and $\tau_{k}=2^{-k-l_{i}} S_{i}$. The norm of M^{i} on $L^{p}\left(\mathbf{R}^{n+1}\right)$ is bounded by $\mathrm{Cm}^{1 / p}$.

Summing up, we obtain

$$
\mu_{j} * \lambda_{j}^{m} * f(x) \leqq C \int M^{1} \ldots M^{n+1} f(x) \Pi_{1}^{n} \psi\left(s_{i}\right) d s_{i}
$$

The right-hand side here defines an operator with norm at most $C m^{(n+1) / p}$ on $L^{p}\left(\mathbf{R}^{n+1}\right)$.
Having thus varied k, we shall also let the l_{i} vary, first in such a way that Λ is fixed. Observe that M^{1}, \ldots, M^{n} are independent of the l_{i}. Moreover, M^{n+1} depends only on those l_{i} for which $i \in \Lambda$. Such an l_{i} can take only m different values, and the number of possible Λ is finite. Replacing the supremum in these remaining variables by a sum, we see that the operator \mathscr{M}^{m} for $m>0$ is bounded on $L^{p}\left(\mathbf{R}^{n+1}\right)$, with norm at most $\mathrm{Cm}^{n} m^{(n+1) / p}=\mathrm{Cm}^{c}$.

From (3.5) and our estimates for \mathscr{M}^{m}, it follows that

$$
\left\|\sup _{j}\left|\mu_{j}^{z} * f\right|\right\|_{p} \leqq C(z) \sum_{m \in Z^{2-|m| \operatorname{Re} z}\left\|\mathscr{M}^{m} f\right\|_{p} \leqq C(z)\|f\|_{p} ~}
$$

To conclude the proof, we need a similar estimate for v_{j}^{z}. Because of (2.4), v_{j}^{z} is a sum of convolutions in certain variables of μ_{j}^{z} with normalized dilations $\varphi_{j_{i}}$ of $\varphi \in C_{0}^{\infty}(\mathbf{R})$. These convolutions can be estimated by means of one-dimensional maximal operators. Hence $\left|v_{j}^{z} * f\right| \leqq C M\left(\mu_{j}^{z} * f\right)$, where M is a sum of products of maximal operators in the coordinate directions. Since M is bounded on L^{p}, so is $M_{v_{j}}^{z}$ and Lemma 2 is proved.

4. Proof of Lemma 3.

Expanding the tensor product in (2.4), we see that the measure v_{j} is a sum of convolutions in one or more variables of μ_{j} with one-dimensional functions $\varphi_{j_{i}}$, $i=1, \ldots, n$. Let v_{j}^{r} be the convolution in the r :th variable of μ_{j} with $\varphi_{j_{r} .}$. The terms in the above sum are either of type v_{j}^{r} or convolutions in certain variables of some v_{j}^{r} with functions $\varphi_{j_{i}}$. These last convolutions can be estimated by means of onedimensional operators acting on v_{j}^{r}, cf. the last lines of Section 3. Therefore, it is enough to estimate the maximal function associated with the measures $\left(v_{j}^{r}\right)_{j}$ for each r. To simplify notations, we take $r=1$.

We have

$$
\begin{gathered}
v_{j}^{1} * f(x)=2^{j_{1}+\Sigma j_{i}} \times \\
\times \iint f\left(x_{1}-y_{1}-u, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-F(y)\right) \varphi\left(2^{j_{1}} u\right) \prod_{1}^{n} \psi\left(2^{j_{i}} y_{i}\right) d u d y
\end{gathered}
$$

In this integral we want to make the change of variables $\left(u, y_{1}\right) \rightarrow(s, t)$ given by $s=u+y_{1}, t=F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. It is therefore necessary to study the zero set of the Jacobian $\partial(s, t) / \partial\left(u, y_{1}\right)=F_{1}^{\prime}(y)$. Because of (2.2), $F_{11}^{\prime \prime}$ is of constant sign near 0 , say $F_{11}^{\prime \prime}>0$. Hence, the implicit function theorem shows that the function $y_{1} \rightarrow$ $F_{1}^{\prime}\left(y_{1}, \ldots, y_{n}\right)$ has a unique zero $y_{1}=\xi=\xi\left(y_{2}, \ldots, y_{n}\right)$ for $\left(y_{1}, \ldots, y_{n}\right)$ in a neighborhood of 0 . Further, $\xi \in C^{1}$ and

$$
\begin{equation*}
\xi_{i}^{\prime}=-\frac{F_{1 i}^{\prime \prime}}{F_{11}^{\prime \prime}} \sim-\frac{F_{1 i}^{\prime \prime}(0)}{F_{11}^{\prime \prime}(0)} \sim \pm 1, \quad i=2, \ldots, n . \tag{4.1}
\end{equation*}
$$

Later we shall need the function $T=T\left(y_{2}, \ldots, y_{n}\right)=F\left(\xi, y_{2}, \ldots, y_{n}\right)$. Notice that

$$
\begin{equation*}
\left|T_{i}^{\prime}\right|=\left|F_{i}^{\prime}\left(\xi, y_{2}, \ldots, y_{n}\right)\right| \leqq C \max \left|y_{i}\right|, \quad i=2, \ldots, n \tag{4.2}
\end{equation*}
$$

The indicated change of variables can be carried out in each of the domains $\left\{y_{1}<\xi\right\}$ and $\left\{y_{1}>\xi\right\}$. It follows that we can estimate $\nu_{j}^{1} * f(x)$ by at most two integrals of type

$$
\begin{align*}
& 2^{j_{1}+\Sigma j_{i}} \int f\left(x_{1}-s, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) \tag{4.3}\\
& \cdot \varphi\left(2^{j_{1}} u\right) \Pi_{1}^{n} \psi\left(2^{j_{i}} y_{i}\right) \frac{1}{\left|F_{1}^{\prime}(y)\right|} d s d t d y_{2} \ldots d y_{n}
\end{align*}
$$

Here $|s| \leqq C 2^{-j_{1}}$, because the same is true for u and y_{1}. Since y_{1} is independent of s and φ is bounded, we can estimate the integral in s in terms of the standard maximal function operator M_{1} taken in the first variable. Thus the expression (4.3) is at most a constant times

$$
\begin{aligned}
& 2^{\Sigma j_{i}} \int M_{1} f\left(x_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) \\
& \cdot \Pi_{1}^{n} \psi\left(2^{j_{i}} y_{i}\right) \frac{1}{\left|F_{1}^{\prime}(y)\right|} d t d y_{2} \ldots d y_{n}=I(x)
\end{aligned}
$$

We consider first the case when $F_{1}^{\prime}(y)$ stays away from 0 . Let $I^{\prime}(x)$ be that part of $I(x)$ obtained by restricting the integration in $\left(y_{2}, \ldots, y_{n}\right)$ to those points for which $\xi \notin\left[-C 2^{-j_{1}}, C 2^{-j_{1}}\right]$. Here C is chosen so large that $\operatorname{supp} \psi \subset[-C / 2, C / 2]$. Because of (2.2), F_{1}^{\prime} is not far from linear and, therefore, essentially constant as we integrate $d t$ in $I^{\prime}(x)$. By the mean value theorem, the variable t in $I^{\prime}(x)$ stays within the interval

$$
\left|t-F\left(0, y_{2}, \ldots, y_{n}\right)\right| \leqq C 2^{-J_{1}}\left|F_{1}^{\prime}\right|
$$

Now we can estimate the integral in t by means of a one-dimensional maximal function:

$$
\begin{gathered}
I^{\prime}(x) \leqq C 2^{\sum_{2}^{n} j_{i}} \times \\
\times \int_{0 \leqq y_{i} \leqq C 2-j_{i}} M_{n+1} M_{1} f\left(x_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-F\left(0, y_{2}, \ldots, y_{n}\right)\right) d y_{2} \ldots d y_{n}
\end{gathered}
$$

The supremum in j_{2}, \ldots, j_{n} of this expression is dominated by a lower dimensional maximal function of the type of Theorem 1 . This is controlled by our induction assumption, and thus

$$
\begin{equation*}
\left\|\sup _{j} I^{\prime}(x)\right\|_{p} \leqq C\|f\|_{p}, \quad p>1 \tag{4.4}
\end{equation*}
$$

Consider next $I^{\prime \prime}(x)=I(x)-I^{\prime}(x)$. The function $y_{1} \rightarrow F\left(y_{1}, \ldots, y_{n}\right)$ now has a minimum T at $\xi \in\left[-C 2^{-j_{1}}, C 2^{-j_{1}}\right]$. Hence, $t-T \sim\left(y_{1}-\xi\right)^{2}$ so that $0 \leqq t-T \leqq C 2^{-2 j_{1}}$ in $I^{\prime \prime}(x)$. Moreover $\left|F_{1}^{\prime}(y)\right| \sim \sqrt{t-T}$, and thus

$$
\begin{gathered}
I^{\prime \prime}(x) \leqq C 2^{\Sigma j_{i}} \int_{\substack{0 \leqq t-T \leqq C 2-2 j_{1} \\
|\xi| \leqq C 2^{2}-j_{1}}} M_{1} f\left(x_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) \\
\cdot \prod_{2}^{n} \psi\left(2^{j_{i}} y_{i}\right) \frac{1}{\sqrt{t-T}} d t d y_{2} \ldots d y_{n} \\
\leqq \sum_{m=1}^{\infty} C 2^{j_{1}+m / 2+\Sigma j_{i}} \int_{\substack{C^{2}-2 j_{1}-m_{\leqq} \leqq t-T \leqq C 2-2^{j_{1}-m+1} \\
|\xi| \leqq C 2^{-j_{1}}}} M_{1} f\left(x_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) \\
\cdot I \Pi_{n}^{2} \psi\left(2^{j_{i}} y_{i}\right) d t d y_{2} \ldots d y_{n}=\sum_{m=1}^{\infty} J_{m}(x)
\end{gathered}
$$

Fixing m, we estimate J_{m}. Write $l_{i}=j_{i}-k$ as before. Consider those i for which $l_{i}>m+2 l_{1}$. From now on, we assume that this happens precisely when $2 \leqq i \leqq d$ for some d with $1 \leqq d \leqq n$. This is no restriction. In particular,

$$
\begin{equation*}
0 \leqq l_{i} \leqq m+2 l_{1}, \quad i=d+1, \ldots, n \tag{4.5}
\end{equation*}
$$

Define
and

$$
\xi^{*}=\xi^{*}\left(y_{2}, \ldots, y_{n}\right)=\xi\left(0, \ldots, 0, y_{d+1}, \ldots, y_{n}\right)
$$

$$
T^{*}=T^{*}\left(y_{2}, \ldots, y_{n}\right)=T\left(0, \ldots, 0, y_{d+1}, \ldots, y_{n}\right)
$$

Then (4.1-2) imply
and

$$
\left|\xi^{*}-\xi\right| \leqq C 2^{-k-m-2 l_{1}} \leqq C 2^{-j_{1}}
$$

$$
\left|T^{*}-T\right| \leqq C 2^{-2 k-m-2 l_{1}}=C 2^{-2 j_{1}-m},
$$

when $2^{j_{i}} y_{i} \in \operatorname{supp} \psi, i=2, \ldots, n$. Extending the domain of integration in the definition of J_{m}, we get for some C

$$
\begin{gathered}
J_{m}(x) \leqq C 2^{j_{1}+m / 2+\sum j_{i}} \int_{\substack{\left|t-T^{*}\right| \leqq C 2 \\
\left|\xi^{*}\right| \leqq C 2^{-j_{1}}}} M_{1} f\left(x_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) \\
\cdot \Pi_{2}^{n} \psi\left(2^{j_{i}} y_{i}\right) d t d y_{2} \ldots d y_{n} .
\end{gathered}
$$

Now y_{2}, \ldots, y_{d} appear only in the argument of $M_{1} f$, and one can apply the standard maxi nal function operators in these variables. Hence,

$$
\begin{gather*}
J_{m}(x) \leqq C 2^{2 j_{1}+m / 2+\sum_{d+1}^{n} j_{i}} \tag{4.6}\\
\cdot \int_{\substack{|t-T *| \leq C 2^{-2 j_{1}-m} \\
\left|\xi^{*}\right| \leq C 2^{-j_{1}}}} M_{d} \ldots M_{2} M_{1} f\left(x_{1}, \ldots, x_{d}, x_{d+1}-y_{d+1}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) \\
\cdot \prod_{d+1}^{n} \psi\left(2^{j_{i}} y_{i}\right) d t d y_{d+1} \ldots d y_{n} .
\end{gather*}
$$

We shall estimate $\sup _{j} J_{m}(x)$ and its L^{p} nor.n, for a fixed $p>1$. Notice that the right-hand side of (4.6) is independent of j_{2}, \ldots, j_{d}, so that the supremum need only be taken in $j_{1}, j_{d+1}, \ldots, j_{n}$.

If $d=n$, we have $T^{*}=0$ and

$$
J_{m}(x) \leqq C 2^{-m / 2} M_{n+1} M_{n} \ldots M_{1} f(x)
$$

Hence,

$$
\begin{equation*}
\left\|\sup _{j: d=n} J_{m}\right\|_{p} \leqq C 2^{-m / 2}\|f\|_{p} \tag{4.7}
\end{equation*}
$$

The remaining case $d<n$ is divided into two parts. In the first part, we can replace the supremum by a sum. In the second part, T^{*} is almost linear in y_{2}, \ldots, y_{d}, which will allow us to apply the operator $M^{\omega, \tau}$ defined in (3.7).

Part 1: $d<n$ and $j_{1}>(1+\varepsilon) k$, or equivalently $l_{1}>\varepsilon k$. The right-hand side of (4.6) is the convolution of $M_{d} \ldots M_{1} f$ with a positive measure σ_{j}.

We shall estimate $\left\|\sigma_{j}\right\|$ and consider first the size of supp σ_{j}. Because of (4.1), $\left|\partial \xi^{*} / \partial y_{q}\right| \sim 1$, where as before q is chosen so that $j_{q}=k$. Notice that now $d<q \leqq n$. For fixed $y_{i}, i \neq q$, the inequality $\left|\xi^{*}\right| \leqq C 2^{-j_{1}}$ can thus hold only for y_{q} in an interval of length $C 2^{-j_{1}}$. It follows that

$$
\left\|\sigma_{j}\right\| \leqq C 2^{-m / 2+j_{q}-j_{1}}=C 2^{-m / 2-l_{1}}
$$

Clearly,

$$
\left\|\sup \sigma_{j} * M_{d} \ldots M_{1} f\right\|_{p} \leqq\left(\sum\left\|\sigma_{j}\right\|\right)\left\|M_{d} \ldots M_{1} f\right\|_{p}
$$

where the supremum and the sum are taken over those $j_{1}, j_{d+1}, \ldots, j_{n}$ satisfying (4.5) and $l_{1}>\varepsilon k$. If we sum $\left\|\sigma_{j}\right\|$ in l_{d+1}, \ldots, l_{n} with l_{1} and k fixed, we get at most $C\left(m+l_{1}\right)^{n-d} 2^{-m / 2-l_{1}}$. Taking then the sum in l_{1} and k, we see that

$$
\sum\left\|\sigma_{j}\right\| \leqq C m^{c} 2^{-m / 2}
$$

so that

$$
\begin{equation*}
\left\|\sup _{\text {Part } 1} J_{m}\right\|_{p} \leqq C m^{c} 2^{-m / 2}\|f\|_{p} \tag{4.8}
\end{equation*}
$$

Part 2: $d<n$ and $j_{1} \leqq(1+\varepsilon) k$. We fix $l_{1}, l_{d+1}, \ldots, l_{n}$ and vary k. The main difficulty in estimating the right-hand side of (4.6) is now that ξ^{*} and T^{*} depend on y_{d+1}, \ldots, y_{n}. We shall therefore divide the range of these variables into small cubes in which ξ^{*} and T^{*} are essentially constant.

Using (4.1) and the fact that $F \in C^{2+\varepsilon}$, we get

$$
\begin{equation*}
\xi^{*}\left(y_{2}, \ldots, y_{n}\right)=\sum_{d+1}^{n} b_{i} y_{i}+O\left(2^{-k(1+\varepsilon)}\right) \tag{4.9}
\end{equation*}
$$

if $2^{-j_{i}} y_{i} \in \operatorname{supp} \psi$. Here $b_{i}=-F_{1 i}^{\prime \prime}(0) / F_{11}^{\prime \prime}(0) \neq 0$. The remainder in (4.9) is at most $C 2^{-j_{1}}$ by the assumptions of Part 2, so that $\left|\xi^{*}\right| \leqq C 2^{-j_{1}}$ implies

$$
\begin{equation*}
\left|\sum_{d+1}^{n} b_{i} y_{i}\right| \leqq C 2^{-j_{1}} \tag{4.10}
\end{equation*}
$$

Consider the lattice of cubes in \mathbf{R}^{n-d} having side $2^{-k-m-2 l_{1}}$ and centers at those points whose coordinates are integer multiples of $2^{-k-m-2 t_{1}}$. In (4.6) we make the integral larger by deleting the factor $\Pi \psi\left(2^{-j_{i}}\right)$ and extending the integration in y_{d+1}, \ldots, y_{n} to the union of those lattice cubes which intersect the set

$$
\left\{\left(y_{d+1}, \ldots, y_{n}\right):\left|y_{i}\right| \leqq C 2^{-J_{i}} \text { and }\left|\sum_{d+1}^{n} b_{i} y_{i}\right| \leqq C 2^{-j_{1}}\right\} .
$$

Let these cubes be $Q_{k}^{r}, r=1, \ldots, N$. Their centers can be written as $2^{-k} \eta^{r}=\left(2^{-k} \eta_{d+1}^{r}, \ldots\right.$ $\ldots, 2^{-k} \eta_{n}^{r}$), and η^{r} and N do not depend on k. Since $q>d$ and $j_{1}-j_{q}=l_{1}$, a comparison of volumes shows that

$$
\begin{equation*}
N \leqq C 2^{-\sum_{a+1}^{n} j_{i}-l_{1}} 2^{(n-d)\left(k+m+2 l_{1}\right)} . \tag{4.11}
\end{equation*}
$$

From (4.2) we see that if $\left(y_{d+1}, \ldots, y_{n}\right) \in Q_{k}^{r}$, then $T^{*}(y)$ differs from $T_{k}^{r}=$ $T^{*}\left(2^{-k} \eta^{r}\right)$ by at most $C 2^{-2 j_{1}-m}$. Now (4.6) implies

$$
\begin{gathered}
J_{m}(x) \leqq C 2^{-m / 2+\sum_{d+1}^{n} j_{i}-(n-d)\left(k+m+2 l_{1}\right)} \sum_{r=1}^{N} 2^{2 j_{1}+m} \int_{\mid t-T_{k}^{r \mid} \leqq C 2^{-2 j_{1}-m}} d t \\
\cdot\left|Q_{k}^{r}\right|^{-1} \int_{Q_{k}^{r}} M_{d} \ldots M_{1} f\left(x_{1}, \ldots, x_{d}, x_{d+1}-y_{d+1}, \ldots, x_{n}-y_{n}, x_{n+1}-t\right) d y_{d+1} \ldots d y_{n} .
\end{gathered}
$$

To estimate these integrals, we shall use operators of type (3.7). For $i=d+1, \ldots$ \ldots, n we let M_{i}^{r} be $M^{\omega, \tau}$ acting in the i :th variable, with $\omega_{k}=2^{-k-m-2 l_{1}-1}$ and $\tau_{k}=2^{-k} \eta_{i}^{r}$. Since $\left|2^{-k} \eta_{i}^{r}\right| \leqq C 2^{-k}$, the norm of M_{i}^{r} in $L^{p}\left(\mathbf{R}^{n+1}\right)$ is bounded by
$C\left(m+l_{1}\right)^{1 / p}$. Let similarly M_{n+1}^{r} be $M^{\omega, \tau}$ acting in the $n+1:$ st variable, with $\omega_{k}=$ $=C 2^{-2 k-2 L_{-}-m}$ and $\tau_{k}=T_{k}^{r}$. The quantity T_{k}^{r} is the value of F at some point with coordinates at most $C 2^{-k}$, so that $\left|T_{k}^{r}\right| \leqq C 2^{-2 k}$. Hence, the norm of M_{n+1}^{r} is less than $C\left(m+l_{1}\right)^{1 / p}$.

We conclude that

$$
J_{m}(x) \leqq C 2^{-m / 2+\sum_{d+1}^{n} f_{i}-(n-d)\left(k+m+2 l_{1}\right)} \sum_{r=1}^{N} M_{n+1}^{r} \ldots M_{d+1}^{r} M_{d} \ldots M_{1} f(x)
$$

For the norms, we have in view of (4.11)

$$
\left\|\sup _{k} J_{m}\right\|_{p} \leqq C 2^{-m / 2} 2^{-l_{1}}\left(m+l_{1}\right)^{c}\|f\|_{p}
$$

The supremum in $l_{1}, l_{d+1}, \ldots, l_{n}$ is now estimated by the corresponding sum. Because of (4.5),

$$
\begin{equation*}
\left\|\sup _{\text {Part } 2} J_{m}\right\|_{p} \leqq C m^{c} 2^{-m / 2}\|f\|_{p} \tag{4.12}
\end{equation*}
$$

From (4.7, 8, 12) we conclude

$$
\left\|\sup _{j} J_{m}\right\|_{p} \leqq C m^{c} 2^{-m / 2}\|f\|_{p}
$$

Summing in m, we get

$$
\left\|\sup _{j} I^{\prime \prime}(x)\right\|_{p} \leqq C\|f\|_{p}
$$

Together with (4.4), this estimate ends the proof of Lemma 3.

5. C^{2} surfaces, quadratic surfaces, and a counterexample

Proof of Theorem 2. We start with some linear algebra. Let $\emptyset \neq \Lambda \subset\{1, \ldots, n\}$, and take $q \in \Lambda$.

Lemma 4. Let F satisfy the assumptions of Theorem 2, and take $\varepsilon>0$. Then there exists a linear change of variables of type

$$
\begin{array}{ll}
x_{i}^{\prime}=x_{i}+\sum_{j ஞ A} a_{i j} x_{j}, & i \in \Lambda, \tag{5.1}\\
x_{i}^{\prime}=x_{i}, & i \notin \Lambda,
\end{array}
$$

such that $\left|\partial^{2} F(0) / \partial x_{i}^{\prime} \partial x_{j}^{\prime}-\delta_{i q}\right|<\varepsilon$ for $i \in \Lambda, j \notin \Lambda$ and such that the assumptions of Theorem 2 remain valid if F is considered as a function of $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$.

To prove this lemma, one can assume $\Lambda=\{1, \ldots, q\}$. Using block matrix computations and the fact that the matrix $\left(\partial^{2} F(0) / \partial x_{i} \partial x_{j}\right)_{i, j=1}^{q}$ is nonsingular, one finds that there exists exactly one transformation of type (5.1) giving $\partial^{2} F(0) / \partial x_{i}^{\prime} \partial x_{j}^{\prime}=\delta_{i q}$, $i \in \Lambda, j \notin \Lambda$. A slight perturbation produces the desired transformation.

In the proof of Theorem 2, one can assume $F(0)=0, \operatorname{grad} F(0)=0$, as in Theorem 1. Let $j_{i}, i=1, \ldots, n$, be as before, with $k=\min j_{i}=j_{q}$. Further, N will be a large natural number determined later. We first change coordinates according to Lemma 4 with $\Lambda=\left\{i: j_{i} \leqq k+N\right\}$, and then make a change of variables of type (2.1), with a suitably small η. It is therefore no restriction to assume that

$$
\left|\frac{\partial^{2} F(0)}{\partial x_{i} \partial x_{j}}-\delta_{i q}\right|<\varepsilon, \quad i \in \Lambda, \quad j \nsubseteq \Lambda,
$$

and

$$
\frac{\partial^{2} F(0)}{\partial x_{i} \partial x_{j}} \neq 0, \quad \text { all } \quad i, j,
$$

i
i_{n} addition to the conditions of Theorem 2. We then follow the pattern of the proof of Theorem 1. The only part of that proof where $F \in C^{2}$ is not sufficient is the estimate for $I^{\prime \prime}(x)$ is Section 4.

Consider first the case when $1 \notin \Lambda$. Assuming y_{2}, \ldots, y_{n} as in $I(x)$, i.e. $y_{i} \sim 2^{-j_{i}}$, we shall make sure that $\left|\xi\left(y_{2}, \ldots, y_{n}\right)\right|>C 2^{-j_{1}}$ in $I(x)$, so that $I^{\prime \prime}(x)=0$. The mean value theorem and (4.1) imply

$$
F_{11}^{\prime \prime}(\eta) \xi=-\sum_{i=2}^{n} F_{1 i}^{\prime \prime}(\eta) y_{i}
$$

for some $\eta \in \mathbf{R}^{n}$ with $|\eta| \leqq C 2^{-k}$. In this sum, term number q is $-F_{1 q}^{\prime \prime}(\eta) y_{q} \sim-2^{-k}$. The terms with $i \in \Lambda, i \neq q$ are at most $C \varepsilon 2^{-k}$. Those terms with $i \notin \Lambda$ are bounded by $C 2^{-k-N}$, because $\left|y_{i}\right| \leqq C 2^{-k-N}$ for these i. Since $\left|F_{11}^{\prime \prime}(\eta)\right| \leqq C$, it is then clear that we can choose ε and N so that this implies $|\xi| \sim 2^{-k}>C 2^{-k-N} \geqq C 2^{-j_{1}}$, as desired. Notice that this choice depends only on Λ and q. Thus by finiteness there exists one choice of ε and N which will do for all Λ and q.

Next we indicate how to estimate $I^{\prime \prime}(x)$ when $1 \in \Lambda$. When $d=n$, we proceed as in Section 4. For $d<n$, we always use the argument of Part 2. Instead of (4.9), we now get

$$
\xi^{*}=\sum_{d+1}^{n} b_{i} y_{i}+o\left(2^{-k}\right)
$$

Since $2^{-j_{1}} \geqq 2^{-k-N}$, the remainder here is bounded by $C 2^{-j_{1}}$ if we stay near enough to the origin. This implies (4.10), and we can argue as in Section 4 to complete the proof.

Proof of Theorem 3. As in the proof of Theorem 1, we can assume that the terms of order 0 and 1 in F vanish. We may further assume $h_{1} \leqq h_{2} \leqq \ldots \leqq h_{n}$. There exists an m such that F is independent of x_{m+1}, \ldots, x_{n} but not independent of x_{m}.

If $F_{m m}^{\prime \prime} \neq 0$, we make the change of variables

$$
\begin{gathered}
x_{m}=x_{m}^{\prime}+\eta \sum_{1}^{m-1} x_{i} \\
x_{i}=x_{i}^{\prime}, \quad i \neq m .
\end{gathered}
$$

It is easy to see that for a.a. η this transforms F to a quadratic form with nonvanishing $\left(x_{i}^{\prime}\right)^{2}$ terms for $i=1, \ldots, m$. Now apply Theorem 1 with $n=m$ to $x_{1}^{\prime}, \ldots, x_{m}^{\prime}, x_{n+1}^{\prime}$ and the strong maximal function in the remaining variables. The conclusion follows, since we can have $\delta=\infty$ in the proof of Theorem 1 when F is a quadratic form.

Assume next $F_{m m}^{\prime \prime}=0$. Then F can be written

$$
F=x_{m} \sum_{i=1}^{l} a_{i} x_{i}+P_{1}\left(x_{1}, \ldots, x_{m-1}\right)
$$

where $l<m$ and $a_{l} \neq 0$, and P_{1} is a quadratic form. The change of variables

$$
\begin{gathered}
x_{i}^{\prime}=\sum_{1}^{l} a_{i} x_{i} \\
x_{i}^{\prime}=x_{i}, \quad i \neq l
\end{gathered}
$$

gives

$$
F=\left(x_{m}^{\prime}+\sum_{i<m} b_{i} x_{i}^{\prime}\right) x_{l}^{\prime}+P_{2}
$$

where P_{2} is a quadratic form in $x_{i}^{\prime}, 1 \leqq i<m, i \neq l$. Now let

$$
\begin{gathered}
x_{m}^{\prime \prime}=x_{m}^{\prime}+\sum_{i<m} b_{i} x_{i}^{\prime} \\
x_{i}^{\prime \prime}=x_{i}^{\prime}, \quad i \neq m
\end{gathered}
$$

so that

$$
F=x_{m}^{\prime \prime} x_{l}^{\prime \prime}+P_{2}
$$

As in the proof of Theorem 2 in [1], M_{F} will be a superposition of two maximal function operators for quadratic surfaces in \mathbf{R}^{3} and \mathbf{R}^{m-1}. Since Theorem 3 holds for $n=1$ [2, Theorem D p. 1248] and $n=2$ [1, Theorem 2], an obvious induction argument ends the proof.

A counterexample. We shall construct an $F \in C^{\infty}$ with prescribed values for $F_{i j}^{\prime \prime}$ not satisfying the hypothesis of Theorem 1 . The corresponding M_{F} is unbounded on all $L^{p}, p<\infty$, and not even L^{∞} can be differentiated along the surface $x_{n+1}=$ $F\left(x^{\prime}\right)$. We make the construction for $n=2$, since the general case is analogous.

From [2, Sect. III, 3] we know that there exists a C^{∞} curve $t=\varphi(s)$ in the plane which does not differentiate L^{∞} functions in \mathbf{R}^{2}. Moreover, φ and all its derivatives vanish at 0 . We take

$$
F\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}\right)+a x_{1} x_{2}+b x_{2}^{2}
$$

For $f \in C^{\infty}$ one has

$$
\begin{align*}
& \frac{1}{h_{1} h_{2}} \int_{0}^{h_{1}} d y_{1} \int_{0}^{h_{2}} d y_{2} f\left(x_{1}-y_{1}, x_{2}-y_{2}, x_{3}-F\left(y_{1}, y_{2}\right)\right) \\
& \quad \rightarrow \frac{1}{h_{1}} \int_{0}^{h_{1}} f\left(x_{1}-y_{1}, x_{2}, x_{3}-\varphi\left(y_{1}\right)\right) d y_{1}, \quad h_{2} \rightarrow 0 \tag{5.2}
\end{align*}
$$

This gives an estimate for the maximal operator M_{φ} for the curve ($s, 0, \varphi(s)$) in terms of M_{F}. Since M_{φ} is unbounded on L^{p}, so is M_{F}.

Take an L^{∞} function g in the plane which cannot be differentiated along the curve $t=\varphi(s)$. If the function $f\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1}, x_{3}\right)$ satisfies (5.2) for a.a. x, then f cannot be differentiated along the surface, and we have the desired counterexample. Let us thus verify (5.2) for a.a. x when $f \in L^{\infty}$. Because of bounded convergence, it suffices to show that

$$
\begin{gather*}
\frac{1}{h_{2}} \int_{0}^{h_{2}} f\left(x_{1}-y_{1}, x_{2}-y_{2}, x_{3}-\varphi\left(y_{1}\right)-a y_{1} y_{2}-b y_{2}^{2}\right) d y_{2} \tag{5.3}\\
\rightarrow f\left(x_{1}-y_{1}, x_{2}, x_{3}-\varphi\left(y_{1}\right)\right), \quad h_{2} \rightarrow 0
\end{gather*}
$$

for a.a. $\left(x, y_{1}\right) \in \mathbf{R}^{4}$. For each y_{1}, one can differentiate f a.e. along the curve $y_{2} \rightarrow$ $a y_{1} y_{2}+b y_{2}^{2}$. Hence, (5.3) holds for all x outside a null set $E_{y_{1}}$. Since the set $\left\{\left(y, y_{1}\right)\right.$: $\left.x \in E_{y_{1}}\right\}$ is measurable, (5.3) follows by Fubini's theorem.

References

1. Carlsson, H., Suögren, P. and Strömberg, J.-O., Multi-parameter maximal functions along dilation-invariant hypersurfaces, Trans. Amer. Math. Soc. 292 (1985), 335-343.
2. Stein, E. and Wainger, S., Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.

[^0]: * Supported in part by Naturvetenskapliga forskningsrådet.

