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1. Introduction 

Let s be a bounded open set in R N and let Qr be the cylinder s • (0, T) with 
some given T>0. We shall consider the following parabolic initial boundary value 
problem 

{~ +Au(x, t)+g(x, t, u(x, t)) =f(x,  t) in Qr 

(P) u(x,t) = 0 in 0fl• T) 
u(x, 0 ) = O ( x )  in fl, 

where A is an elliptic second order operator of the divergence form 

(1) Au(x, t) = ZM_~I(-1)M D~A=(x, t, u(x, t), Du(x, t)) 

for each t([0, T] with the coefficients A= satisfying the classical Leray--Lions con- 
ditions, and g is the strongly nonlinear part satisfying essentially only the condition 

g(x, t, s)s >-_-2(x, t) for all (x, t)~Qr, sER, 

where 2 is some given function in LI(Qr). 
It was shown by P. Hess [3] that the corresponding Dirichlet problem for the 

elliptic equation 
Au(x)+g(x,u(x)) = f ( x )  in a 

under similar conditions admits a weak solution. This result was recently generalised 
by J. R. L. Webb [11] also for higher order operators A by using new approximation 
results for Sobolev spaces obtained by L. I. Hedberg [2]. In this note we shall show 
that the problem (P) has a solution. This result is analogous to the elliptic case. The 
case where A is a higher order operator seems more complicated. Some results into 
this direction were obtained by H. Brezis and F. E. Browder [1], but stronger hy- 
pothesis on g was then needed. 
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There is also another approach to existence results for the problems involving 
the perturbation g(u) with liberal growth. This approach makes use of a priori 
bounds in L=(QT)-norm of u. But this implies restrictions which are somewhat 
unnatural in view of the general existence theory. We will discuss these restrictions 
when we introduce our conditions for the problem (P). 

The case where even A may have liberal growth from above was studied by R. 
Landes [7]. We shall employ a Galerkin method which makes it possible to adapt 
some ideas of [7]. 

2. Prerequisites 

Let f2 be a bounded domain in R N with smooth boundary. We start by introduc- 
ing the conditions for the coefficients of the operator (1) (cf. [9], p. 323). 
(AI) Each A~(x, t, ~/, ~) as a function from QT X R • R N into R is measurable in (x, t) 

and continuous in t/ and ~. For all (x, t)EQT and (q, 0ER N+I, 

[A,(x, t, 7, ~)[ ~ cl(lqlP-l+l~[P-l+kl(x, t)) 

with l<p<~o,  el>O and k, ELf(QT), p'=p/(p-1). 
(A2) For all (x, t)EQr, ~/ER and ~ *  in R N, 

Z[~[=I {A,(X, t, ~], ~ ) - - A o ~ ( x  , t, ~1, ~*)} (~--~g*) > 0. 

(A3) For all (x, t)EQT and ~=0/, ~)ER N+I, 

Zl,l~_x A,(x, t, ~) ~, >= c2[~[P-k2(x, t) 

with e2>0 and kzELI(Qr). 
The condition for g as a function from Qr • R into R reads as follows: 

(G) g(x, t, s) is measurable in (x, t) and continuous in s. For all (x, t)EQT and 
sER we have 

g(x, t, s)s ~- - ~ ( x ,  O, 

where 2 is a given function in LI(Q~). For any r_->0 there exists a function 
hrEU(Q~) such that for all (x, t)EQT 

sup Ig(x, t, s)l ~= hr(x, t). 
[s]~r 

In the elliptic case a priori bounds in L~-norm for the generalized solutions are 
available for the operators satisfying the eoercivity condition (A3) and additionally 
the assumption k2EL ~ with q~>N[p. But even then the conditions on g and f 
are to be strengthened because of the inequality (7.2) of [4], p. 286. One has to assume 
2,fEL q,, q2>N]p instead of 2EL ~ and f i n  the dual space of W'~ 'p. 
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In the parabolic case the boundedness of generalized solutions is shown in [5]  

only for p=2.  The theory there is based on the inequality 

(N) lluIl~ ~ ClIOull~tlulI N-~ for 0 < e < (1/2-1/q)(1/N-1/p+l]2) 

due to Nirenberg and Golovkin, cf. (2.10) in [5], p. 62. In the interesting case q>2 
we obtain positive values for ~ only if p>2N/(2+N). For p<2N/(2+N) no theory 
on the boundedness of generalized solutions seems to be available. If p >2N/(2 +N) 
the restrictions on the data are similar to the elliptic case and the initial value O 
has to be uniformly bounded (cf. inequalities (2.3) and (2.4) p. 424 and Theorem 6.6 
p. 462 in [5]). We remark also that the inequality (4.26) in Theorem 6.7 means restric- 
tion on the growth of g(u). In fact, g(u) may be considered then as a bounded map 
and the theory of bounded pseudo-monotone operators is applicable. Finally we 
remark that our hypotheses are not optimal in the sense that Sobolev's imbedding 
theorem and (N) can be used to weaken our hypothesis (A1) in an obvious way. 

The function spaces we shall be dealing with are denoted V= W~'P(O), where 
p is given by (A1), ~e'=LP(0, T; V) with the usual norm 

and ~gr=~/'c~L2(Qr) with the norm 

IlvlI  : Ilvll + IIvlIL <Q >. 

For the Galerkin method we choose the sequence {wl, w2 .. . .  } in Co(O) such that 
U~~ vn with Vn---span {w~, w2 . . . .  ,w,}, is dense in WJo'P(f2) where j>N/p+l. 
Since WJo'P(O) is continuously embedded in C~(O-), for any vEWJo'v(f2) there exists 
a sequence (vk)cU~=l Vn such that Vk~V in WJo'P(f2) and in C1(O--), too. 

We denote further ~ =  C([0, T]; Vn). It is easy to see that the closure of 
U,=~ ~ with respect to the norm 

ilvllc ,o< T  = sup {[D~u(x, t)l} 

(x, t) E QT 

contains Co(Qr ). This implies that for any fE ~e-* there exists a sequence (fk) 
U~=l ~ such that f k ~ f  in ~e'* in the sense that 

f T" A dx dt (f, �9 

For any SELf(f2) there is a sequence (~k)c U~=l vn such that ~ ' k ~  in s 
Then we have the following 
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Definition 1. A function u.E ~e'. (n= 1, 2, ...) is called a Galerkin solution of 
(P), if Ou./OtELl(O; T; V.), u.(O)=~k, and for all zE(0, T] we have 

f Q. ~ vdxdt + f Q. ~I.I_<IA~(X, t, u.,Du.)D'vdxdt 

+ f  g(X, jQ t ,u.)vdxdt= f f. vdxdt 
J Q~ 

for all vE~., where ~ .E~ ,  f.E~,, and Ip.~lp in L~(Q) and f . ~ f  in "U*. 
We shall be interested in solutions u for (P) in the following sense. 

Definition 2. A function uE~/rnC~ T]L2(f2)) is called a weak solution of 
(P), if 

Oq~ r 
- f Q u- dx d, + f . u(O  oft)dx /o 

+ f e  21~l~_xA~(x,t,u, Du)D~gdxdt+ feTg(x,t,u)cpdxdt= (f ,*) 

for all q~EO([O,T];Co(K2)) with u(0)=O, and g(., .,u)ELa(QT),g( ., .,u)uE 
z (a0. 

We close this section by the following compactness result which will be needed 
in the proof of the existence theorem. 

Proposition 1. Let (un) be a bounded sequence in LP(0, T; Wg'-l'P(f2))c~ 
L~(0, T;La(g2)) with l < p < o ~  and m>-_l. I f  u,(O--u(t) (weak convergence) 
in L~(K2) a.e. in [0, T], then Un~U in LP(O, T; W~-a'P(f2)) .for some subsequence 
of (un). 

Remark. Usually the compactness in LP(0, T; Wg"P(f2)) is obtained by a priori 
bounds of Ou,/Ot in some distribution spaces (of. e.g. [1]). These bounds are replaced 
here by the hypothesis u,(t)~u(t) in LI(Q) and IluAt)l[L~<~)<_-C, which can be 
verified easily for the sequence of Galerkin solutions. 

Proof of Proposition 1. Let v, stand for the mollified function 

vo(x, t) =fRY v(y, t)Y~(x--y)dy, where v(y, t) = 0 for all y~I2. 

Since Un(t)~u(t) in LI(f2) we have Un,(X, t)~u,(x, t) a.e. in Qr, moreover 

II uAt)ll _ ,  <- II uAt)lI., 

and for any e>0  there exists c ,>0 such that (cf. [10], p. 75 and 85) 



A strongly nonlinear parabolic initial boundary value problem 33 

for all Ic~l-<_m--1. Hence 
IlO= u.(t)--D=uk(t)llp 

<= HD" u.(O-D~ u. .  (t)llp + liD ~ u. .  ( t ) - D  ~ uk. (01lp 

+ lid ~ uk . ( t ) -O ~ u~(t)lfp <-- ~ l[Omu.(t)H~+ ~ IlO" u~(0llp + c [ID~u,,.(O--O'u~.(t)ll~ 

+ c. II u , , . ( 0 -  u~.(t) llx. 

Consequently, for all Iml -<m-  1, 

f uk(t)tl~ dt 

<c{~'f~o llD'u.(Oll~dt+ fjIlD'u~(t)II~ = a p dt 

+,.fo [ID" u,,(t) --DmUkr dt+c; f~ [lu,,(O-uk,(t)[ls dt}, 

c being some positive constant. By choosing first a a n d ,  small enough and then n 
and k large enough we can conclude that (u,) is a Cauchy sequence in LP(0, T; 
Wg'-a'P(t'2)), hence being convergent. Here we have used the fact that 

f~ lu , , (x ,  t)[ dx <= c for all n and almost all t~(0, T), 

and Un,(X, 0 ~u,(x, t) a.e. in Qr imply that 

f~llu~o(t)-uk.(t)ilfdt~O as n , k ~ . o  

for any fixed tr. 

3. Existence theorem 

Our main result in this note is the following 

Theorem 1. Let 12 be a bounded smooth domain in R N and T>0. Assume that 
the operator A defined by (1) satisfies the conditions (AI), (A2) and (A3) and the 
function g the condition ((3). Then the problem (P)admits a weak solution u for any 
fE~l/'* and ~CL~(f2). 

Proof. We shall give the proof in several steps. In many stages we can adopt 
the ideas of [7]. For convenience we assume that ~k=0. The general case can be 
handled similarly without essential difficulties. 

1 ~ To showthe existence of Galerkin solutions u~ we proceed as follows. Applying 
Friedrichs' mollification with respect to space-time variables to the coefficient func- 
tions we obtain Galerkin solutions for the mollified problem. The coefficient func- 
tions A~ and g~ dearly meet the assumptions of Lemma 1 in [7]. Observing that 
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(A1), (A2), (A3) and (G) are true uniformly for the mollified problem we get a 
Galerkin solution u. with e-+0, satisfying the conditions of Definition 1. Hence 

(2) [fo- ,-~qJdxdt+ f~. y~l~l<-tA~(x't'u"'Du")D~qjdxdt+ 

[fag(x,t,u.)q)dxdt--- faf .cpdxdt  for all ~pE~,,, zE(0, T] 

with f.E~e~, and f~-~f in q/'*. Setting (p=u. we get by (A3) and (A1) that 

[Ilu.ll~ -<- c, Ilu.IIL~<0,T;L,~>> <---- c, 
I l l&( ' ,  ", u., Du.)IIL.'(aT~ <= c, (3) 
[0 f g(x, ..)u.dxd, c for an t tO, rl. 

Consequently, for some subsequence of (u.), u. ~ u  in "/K and A.( . , . ,  u., Du.)~h. 
in Lr where h~ELP'(Qr) for all lc~]<-l. Moreover, for any 6>0, 

Ig(x. t. u.(x, t)){ <= sup Ig(~, t, ~)l+~g(x, t, . .(x,  t)) ~.(x, 0 
Isl~-l/a 

which together with (G) and (3) means that { g ( . , . ,  u,)} is weakly sequentially com- 
pact in L~(Qr). 

2 ~ We invoke Proposition 1 to get that u,,(x, t)~u(x, t) a.e. in Qr for some 
further subsequence, Indeed, since (u,) is bounded in L=(0, T; L2(f2)), it isbounded 
also in L=(0, T; LI(f2)) and we must show that u,(t)~u(t) in LI(f2) for all tel0, 7"]. 
Let ~0EU~=I V, be arbitrary and tE[0, T]. Then by (2), 

IL  (u.(y, o-u~O,, t))q, fy)ey] 

lso I = d y  

as n, k~<~ because {A, ( . , . ,  u,, DuO} and { g ( . , . ,  u,)} are both weakly convergent 
in L~(Q O. 

Moreover, for any zEL~(f~) there exists an approximating sequence (q~,.)c 
L_J~>=~ V. such that q~i~z in L~(f2). Hence we can conclude that (u,(t)) is a Cauchy 
sequence in the weak topology of L2(s for all tE[0, 7]. Hence Un(O--"O(O for 
all tel0, T] in L~(f2), for some function r~(t)EL2(f2). 

But since u, ~ u  in LZ(Qr) it is easy to see that zT(t)=u(t) a.e. in [0, T]. Thus 
Proposition 1 implies that u,~u in L~(QO and therefore u,(x, t)~u(x, t) a.e. 
in Qr for a further subsequence. 
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3 ~ By the continuity of g, g(x, t, Un(X, t))-~g(x, t, u) a.e. in Qr and Vitali's 
convergence theorem implies that g ( . , . ,  u,) ~ g ( . ,  -, u) in LX(Qr). By Fatou's lemma 
we get further 

(4) f Q g(x, t, u) udxdt  ~ l i m i n f f e  g(x, t, u.)u.dxdt. 
T T 

From (2) we get for all q~CC~([0, T]; C0(f2)) 

f Ou. d t + f ~ , ~ l ~ _ l h ~ D ~ o d x d  t (5) l im e~ at q~dx 

+ f e~ g(x, t, u)~ ax at = (f, rp)~r. 

By Lemma 2 of [7] we also have that ~: [0, T]~LZ(f2) is weakly continuous and 

p OU n T 
(6) lizj~ -yi-~ax~t= f aeaX/o-fQ .~eaxat. 
Hence the proof will be complete, if we can show that 

(7) fe zl~l<_lh, D~q~dxdt= feTzl~l<_iA~(x,t,u, Du)D~q~dxdt 

for all q~ECa([0, T]; Co(O) ), and 

(8) uE c~ T]; L~(O)). 

4 ~ . For (7) it is sufficient to show that 

lim s u p f  ~'l~lslA~(x, t, u~, DUn)(D~Un-D'u) dx dt <= O. 
n ~ c ~  ~ Q T  

This is true because the mapping from V to V* associated to the operator A is of 
the monotone type which can be verified by the assumptions (A1) and (A2) as in [8]. 

The above inequality however holds true, if at least for one subsequence (vk) c 
[--J.~=l ~ with vk~u in ~/" we have 

(9) lim l i m s u p f  .~l~l~1{A.(x, t, u . ,Du. )D'u . -h .O'vk}dxdt  <= O. 
k ~  n ~ , ~  */ Q T  

By (5) we have for any fixed k, 

-- f QT "~1~1---<1 h~D~vk dx d t 

t o . .  L L = lim ao~. Ot vkdxdt+ Tg(x. t, u ) v k d x d t -  Tfvkdxdt" 
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From (2) and (4) we therefore get 

(10) lim sup/" ~l.l~l{A.(x, t, u . , D u n ) D ' u n - h ~ D ' v k } d x d t  

<= lira supfe  T (f.u.-fvk) dx dt + f f2T g (X, t, U) (O k -- U) dx dt + 

+lim s u p f  - ~ - ( V k - U . ) d x d t .  
~ Q T  

Since obviously 

lim lim f ,  ( f .  u. --fVk) dx dt = O, 

it remains to show for (9) that 

(11) l imsup/" g(x, t, u ) ( v k - u ) d x d t  <- 0 
/ ~ o o  ~ Q T  

and 
Ou. 

(12) lim suplim s u p f  --:--(Vk--U.) dx  dt <= 0 
k ~  n ~  QT ~ t  

hold for some sequence (Vk):  C~([0, T]; Co(~2)) such that v k ~ u in ~/'. 
The assertion (12) can be further modified 

f cgu,, , T'--O-i- tvk -- U.) dx  dt 

1 0 ~ ~Vk 
= - - T f a T ~ - i - ( u . ( t ) - - v k ( t ) )  d x d t +  f Q - f f i - (vk -un)  d x d ,  

= _~_ iI~.(Z)_~(r)ii~,~e)+fa ~ "-'~ --tok-ovk . u . ) d x d t .  

Hence (12) is satisfied, if 

(13) lim sup lim sup / '  O ~ t ( v k - u . ) d x d t  ~_ O. 
~ n~oo  d QT 

The sequence (Vk) is then constructed as follows: Starting with the Galerldn 
sequence (un) we define for each kEN, u~ } the truncation at level k. Next we define 
for /~CN 

(u())),,(x, t) = # s  s)e "(' -0  ds. 

Then (u (k)) _,..(k) u(k),_c,.u(k) in "r as #-+~, and x - ' n  ~'/.1 " ' a  ' 

~9(n (k)~ a t "  " .u = # ( U(n k) -- ( u(nk))u)" 

(If ~k#0 define 

(uT)),,(x, t) = ~, f~ (,,:~) (~, ~)-  u(~*) (x, o)). e ~'cs-') ds + u(n k) (x, O); 

see [71). 
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(15) 

and 
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Finally we must take the mollification with respect to space variable, [(u(~k)),], 
for a > 0  (cf. Proposition 1). It is obvious that this sequence is in C~([0, 7"]; C~(f2)). 
Moreover 

f Q r  g(x, t, u)([(u~k))u],- u) dx dt 

= feT g(x, t, u)([(u~k,)A.-u(~,).)axat +fe~. g(x, t, u)((u~)).-u~,)axat 

+ f a t  g(x, t, u)(u~ ~) - u  (k)) dx dt + l e t  g(x, t, U)(U(~)--U) dx dr, 

where each of the integrals converge to zero as a ~ 0 ,  n ~  0% # ~  ~,  and k ~  co, 
respectively. Thus we can choose (vk) as a diagonal sequence of  {[(u~k)),]o} such that 
(11) holds true and vk~u in ~e'. Since each OvffOt is in LP'(Qr), (13) follows from 

(14) l i m s u p f  O~~ (vk-u)dxdt  <- O. 

Denote Ak={(x,t)6QT: [u(x, t)] <=k}, k6N. Then u(k)=u in Ak and 

sgn(u(k)-u~ k)) = s g n ( u - u ~  k)) in Qr\Ak;  if uCk)-u~ k) ~ O, 

uCk) because of  ~, ~k .  Since 

fa~ ~ (~-  ~) a~ at = ~ fa t  {(u~')'-E(u~')'lA(t(ua%l"- u) dx dt 

'" gfaT {(u(~))- (u(~))A ((u(k))"- u) dx dt 

= f dx dt + la f e~,,a ( u ( ~ - ( u ' % ) ( u - ( u ' % )  dx dt <- O, 

as a-~0 and n-~ 0% for any/a  and k. Therefore we can conclude that (13) holds 
true, too. 

5 ~ The final step of  the proof  is to show (8). We shall do this by showing that 
u is the limit of  a Cauchy sequence in C~ T]; L2(I2)). 

To begin with we note that we may choose v k in such a manner that in addition 
to (11) and (14) we have for every zC(0, T] 

lirn [fQ g(x, t, u~)ok dx d t - - f  Q, g(x, t, u)u dx dt I ~_ ~, 

(16) lim (vk- u,,) dx dt <= e~, 

for some e~ not depending on z and e ~ 0  for k ~  ~.  This is true because of  the 
strong convergence of  [(u(~k))~], in ~ with respect to a, n,/z, and of  the strong conver- 



38 Rfidiger I.andes and Vesa Mustonen 

gence of u. and g ( . , . ,  u.) in LP(QT) and LI(Qr) respectively. Furthermore by Fatou's 
Lemma we know that 

lim ~ f f e  ~1.i_-__1A.(x, t, u.,Du.)D'u, dxdt  >= fe Zl'l<=IA'(x' t, u, Du)D'udxd, 
v 

and 
lim inffn_.o " o.g(x' t, u.) u. dx dt >=fog(x, t, u)u dx dt. 

Thus we obtain the estimate 

lira s u p L .  ~ t ( u . - - v k ) a x d t  

= lira_sup [.~.f~ Z I.I ~1A.(x, t, u., Du.) D'(Vk -- u.) dx dt 

+ f ~ g(x, t, u.)(vk-u.) dx dt + f e f~(u.-vkl dx dt] <- ek, 

independently from zC(0, T]. We have shown now that 

"k +"~, --> lim supfQ, ff--7(u.-v~)(u.-v~) dx dt 
(17) 1 " 2 

= -~ hms2p 11 u. (~)-  v~(~)ll,,(~) 

independently from .E(O, T], implying that vk is a Cauchy sequence in C~ T], 
V(a)) .  

We close the paper by the following 

Corollary. The function u can be used as a testing function in (P), i.e. 

+fo(u(O)"ax/; + f~z,.,~_~A.(x. ,. u.Du)D'.dxdt 

+__fog(x, t, u)u dx dt = __f o f(x '  0 u(x, 0 dx dt 
for all zE(O, T]. 

Proof. By the results of the previous proof we have in view of (16) 

0 --<- k--~lim ..o~lim -ou{f f_ g(x, t, U.)(U.--Vk)dXat 

+ f a  21=1<1A.(x, t, u., DUn)(D=u,,-D'vt) dx dt} 

Ou. = lim lim r . Jim limf,, f . (u.-Vk) dxdt  k..o Je.--ffi - (vk-u")dxdt+ n ~ o o  K ~  n ~ o o  ~ v  

< ~ lim lim s u p f  - (u.(t) - vk(t)) ~/" 
~-" "2" k ~  n ~  ,* ~2 0 

+ lim lim supfo - -~ . (vk-u . )dxdt  <= O. 
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(18) 

and 

(19) 
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lnim t, . . ,D..)D=u. dxdt 

39 

= fe~l=l<=zA=(x,  t, u, D u ) D = u d x d t .  

In view o f  (18), (19) and  the est imate just  above  (17) it is n o w  apparen t  tha t  we can 
replace Iim sup by  the l imit  in (17) which gives us 

~ l i m  11Un (z) - vk (r) l[ ~(a)  ~ ek + 8s 
n ~  

Since vk ( z )~u ( z )  we have also Un(Z)-~U(Z) in L2(f2) which implies tha t  

n-~J(2. Ot 

The  Corol la ry  now follows f rom (18), (19) and  (20) because Un is a Galerk in  solution. 
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