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Introduction 

Let L be a selfadjoint weakly-perturbed operator of multiplication in L~(R), 
i.e. the so - called Friedrichs model [4, 5] in theory of smooth perturbations: 

(Lu) (x) = xu  (x) + (gu) (x) - xu (x) + f R  V (X, y) U (y) dy. 

If the kernel v(x,  y) satisfies conditions of smoothness, symmetry and decreases 
at infinity in a sense then the absolutely continuous spectrum of the selfadjoint 
operator L coincides with R [4, 5]. It is enough to require that V belongs to the trace 
class S 1 [16]. It has been proved in [4] that under the condition vELip a, 0~>1/2, 
the spectrum of L besides the absolutely continuous part can contain only a finite 
number of eigenvalues of finite multiplicity. But in the case vELip e with e ~ l / 2  
the singular continuous spectrum as well as the infinite point spectrum can occur. 
In [1 l] an example of such an operator with rank V= 1 was constructed. The follow- 
ing result describing the structure of the singular continuous spectrum ~ and of the 
point spectrum ~p was also obtained there. Just for rank V= 1 there proved the 
following estimate. 

Let F be the support of the singular part of the spectral measure of L and F ~ 
be the 6-neighbourhood of F on R. Then 

mes F~ = O(62~), 6--,-0, 0 < ~ < 1 / 2 ,  

rues E being Lebesgue measure on R. 
It has been shown in [11] that this estimate is precise in the power scale. In this 

paper the problem under consideration is reduced to the investigation of a zero-set 
of a scalar analytic function determining the spectrum of L. The solution of this 
problem is based on a uniqueness theorem for analytic functions with positive ima- 
ginary part [12]. 
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Unfortunately, attempts to extend this result even to the case rank V=2 meet 
essential difficulties. This is connected with the fact that the functions under considera- 
tion are not scalar but matrix functions. The description of the spectral structure for 
rank V< co given in [14] is related to the case when all eigenfunctions of V do not 
vanish simultaneousely. The problem of description of the singular spectrum in 
Friedrichs model in general setting was posed by Pavlov, B. S. and Faddeev, L. D. 
[13]. Below we give a solution of this problem. It is based upon the investigation of an 
operator-valued analytic function M(2) (see (1.2)) with the positive imaginary part 
in a neighbourhood of its roots. It seems plausible that in case rank V> 1 (even for 
rank V=2) it is impossible, to reduce the problem to the investigation of only scalar 
characteristics (type det M0o)). This leads to an essential complication of the problem 
for rank V>I. 

Let us describe the contents of the paper. 
Section 1 is devoted to the spectral analysis of the Friedrichs model. Here we 

reduce the investigation of the spectrum to that of roots of an analytic operator-func- 
tion with the positive imaginary part. Section 2 deals with the uniqueness theorem 
for analytic operator-functions with positive imaginary part on the circle or half- 
plane. Classes of such operator-valued functions which naturally appear in the selfad- 
joint perturbation theory are studied. In the next section on the contrary we make 
use of operator theory to prove some facts for analytic operator functions with 
positive imaginary part, and, in particular, uniqueness theorems. 

The main Section 4 concerns the detailed study of the roots of the operator- 
function M(2). Here we prove the main theorem on the "doubling of the root order" 
2~ of the operator-function M(A) when the kernel v satisfies the condition of type 
Lip ~. 

Finally, in Section 5, basing on the results of the preceeding sections, we prove 
the main theorem on the spectral structure of operators in the Friedrichs model. 
Different variants of conditions on v are considered. This allows us to compare the 
latter theorem with the other results on the spectral analysis of Friedrichs model 
obtained by Friedrichs and Faddeev. 

Note that the main results of this paper were announced in [10]. 

I. Friedrichs model in perturbation theory and the operator-function M(2). 

Recall that for the operator L in the Friedrichs model we have 

so that L = x .  
(~<1/2). 

(1.1) 

(Lu)(x) = xu(x)+ fRv(x,  y)u(y)dy,  uCL~(R) 

+ V, where V is an integral operator with kernel v(x, y) satisfying 

v(x+h, x+h)+v(x, x)-v(x+h,  x)-v(x, x+h) ~= CLIhl 2~. 
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Let V~0, VES 1. We shall consider the operator-valued function M(2), 
Im 2~0, taking values in the space of bounded operators on E, where E = R ( V )  
is the closure of the range R(V) of V: 

(1.2) M(2) - I+ (V)l12(x-2)-l(V) 1/2, Im2 ~ 0, 

where (x -2 )  -1 means the operator of multiplication by the function (x -2 )  -1 on 
L2(R). 

Obviously Im M(2)=~0, Im 2>0, and we have (M(2) - I )ES  1 if V~S 1. The 
next identities are the direct consequences of the Hilbert identity for resolvents: 

M(2) (V) 1/z (L - 4)-1 = (V)1/2 (x - 2)-1, 
(1.3) 

M-1(2) = I - (V) l /2 (L-2) - l (V)  1/', Im2 ~ 0. 

Since V~ S 1, the absolutely continuous spectrum of L coincides with the real 
axis R [16]. The following elementary proposition describes the connection between 
the singular spectrum of L and the "roots" of M. 

Proposition 1.1. Let M(2) be defined by (1.2). I f  

(1.4) sup IIM-1(2)11<oo, I m 2 o = 0 ,  s > 0 ,  

IMP>0 

then the spectrum of L in an e-neighbourhood of 20ER is absolutely continuous. 

Proof Let A _--(2o--e, 20 + 0  c R .  It is enough to check that ( (L-k- iO- l~o,  ~o)E 
Lp(A) uniformly on e for a dense set of vectors ~0EH~ and for some p > l .  

If ~p=(V)l/2h, hEH, then by (1.3) we have 

= I((V)"(L-2)-I(V) " h ,  h)l 
_ -  [(M-I (4) (x - 2)-I h, h)[ 
~- I(M,1 (2) (M(2)-  I )  h, h)[ 

= [((/-M-1(2)) h, h)[ ~_ (I + ItM-a (2)[I)llht?. 

So under (1.4) ((L-2)-lq~, ~0) belongs to L=(A). The dense set of vectors ~oEH 
can be determined as follows. Let Im #<0,  q~=(L-IO-l(V)V2h, then the Hilbert 
identily yields 

(V) 1/2 (L- -  2)-1  (L  --  f i ) - l  ( L - IX)-1 (V)112 h 

-- ( # - -  4) -1  (V)~/2 ( L - / 7 ) - 1  ((L - 2 ) -1  _ (L - p ) - l )  (V)1/2 h 

= (# - 2)-1 (V)II2(L _ ~)-1 (_ 1) (L - #)-1 (V)1/2 h 

+ ( # -  2)-x  (/7 _ 2) -1 (V)I/2 ( (L  - -  2) -1  _ ( L  - fi) -a)  ( V ) l l ,  h. 

This fact together with the obvious inclusion (kt-2) -11[(L-/g)-I(V)I/~h[] ~EL~ 
(as a function of the variable 4, Im 2>0) proves the proposition. 
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Note in conclusion that the operator L on the subspace 

H e  VIm,.~0 ( Z -  ~)- iR (Vi/~) 

coincides with multiplication by x and therefore its spectrum in the orthogonal 
complement is also absolutely continuous. 

Suppose that VCS 1 and satisfies (1.1) and that (1.4) does not hold for any 
s>0. Then there exists fEE, f#O,  such that M(20)f=0. 

Theorem 1.1. Under condition (1.1) and VC S ~ the operator-valued function M(2) 
belongs to the Lipschitz class Lip cr with index c~, a<  1/2 in S 1 norm, i.e. 

(1.5) I[g(2)-M(2')lls, <= const 12-2'1 ~, Im2, 2' -> 0. 

Proof. Suppose first Im2, 2 '>0 and that GEB(H). Then 

tr ((M(2) - I)  G) = tr (V 1/= (x - 4)-t ZX/2 G) 

= Z ,  ((v)  l :~(x-4)- l(v) l:~ o~o,, r 

= Z, , j  ~ ( ( x - 2 ) - 1  q,j, q,,)(oq,,, q,j) 

= fR(x_2) - I  {Z,,j~CT~,~(oq,,, ~oj) q,j(x) ~o,(x)} ax. 

Where V=7__,i 2~. ( . ,  9i) 9i is the spectral decomposition of the selfadjoint operator 
V, (q~, ~0k)=a~, ;t~>O, llVIIs~=Z~2~<~. 

We obtain by Privalov's theorem [15] for a scalar analytic function 

" "  - -  ~,j(x)~o,(x)[[L,~, [tr (M(2)-M(2 ' ) )G I <- const 12-,~ I {[[Zi, j|/2i2j(Gq)i, ~Oj) 

Use the convenient notations 

{~ i  (ffi(X)} clef ~(x)CLz(R, 12), II~(x)H~ ~~ Zi~i l e i ( x ) l  2 < oo 
then 

Zf, j t/2i2j(O(Pi, (P j) (Rj(X) q~i(X) ~- (~(X), G*~(X))I, 

where for the realization of G in l 2 we keep the same notations. Since 

[](~(X)' G*~(X))I'~LI(R) ~ fR I[O(X)II= [Ia*ll dx 

= fBll~(x)l?dx l iar = (Zi2~)IIa[ l  = [IvIls, llall, 
we have 

[tr(M(2)-M(2"))G I <= const I,~-,Vl~{2 flail (sup ll~(x)ll)ll~(x)llLip~+ I[all IIVIIsl} 

= const 12-~'1~ Ilall {2(sup II~(x)l[)II~ (x)l!Lip, + liVllsl}. 
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Lemma 1.1. Let v satisfies (1.1) then 

[[~(x+h)--~(x)l]l~ <= C~/2lhl ~, xER. 

Proof. If v (x, y ) = Z ~  2i got(x), q~i (Y) is an eigenfunction expansion of  the kernel 
of  the selfadjoint operator V then the simple calculation shows 

I[~(x + h)-~(x)lt ~ = II~(x + h)tl~ + lI~(x)llz-(~(x + h), ~ ( x ) ) - ( ~ ( x ) ,  ~(x + h)) 

= Z ,  2,1~o, fx + h)12 + ~,,~,, [q~,(x)12- Z,2,~o,(x + h) ~ , ( x ) -  Z ,  2,q~,(x) ~o,(x + h) 

= v(x+h, x+h)+v(x ,  x ) - v ( x + h ,  x) - v (x ,  x+h) <- CLIhl 2". 

The uniform boundedness of  I[~(x)ll is equivalent to the condition 
supx v(x, x ) <  ~.  Indeed 

l[~(x)][ = = Z ,  2,t~0,(x)I = = v(x, x)ELa(R) 

since V>=O, VES 1. The local estimate l l~(x +h)--~(x)ll  <=C~ z= [hi = (see Lemma 1.1) 
together with the condition II ~(x)ll EL=(Ir of course leads to the uniform bounded- 
ness of  II ~(x)ll. Finally, 

[tr {(M(2) - M ( 2 ' ) )  G}[ <_- const 12-2'1" H all 

which is equivalent to (1.3) by the equality 

sup Itr (AG)I = IIAllsl 
G E B(H) 

IIGll = 1  

[6]. Here B(H) denotes the space of  all bounded operators on H. 
It is not difficult now to prove that the boundary values 

M(k) d~f S -- lira M(k  + is) 
e ~ + 0  

belong to S 1 and that (1.3) holds for Im 2, 2'_->0. 
The corollary of  the theorem is that M(2) is continuous (in Sl-norm) in the 

closed upper half-plane. Let there exist the operator M-X(k) for some kER then 
by the continuity the estimate (1.4) holds in a neighbourhood of  k on C. Hence the 
failure of  (1.4) leads to that M-a(k) does not exist. Since ( M ( k ) - I ) E S I c S  ~, 
this means that there exists an eigenvector of M(k) corresponding to the eigenvalue 0. 

Theorem 1.1 reduces the problem description of  the singular spectrum in selfad- 
joint Friedrichs model to the description of  the rootsets A of the operator-function 
M(2) with positive imaginary part. 

A d~r {kER: 3e ~ 0, eEE, M(k)e = 0}, 

A D ~s(L)u~p(L). 

Note that the converse statement is not true (if a <  1/2) even for rank V= 1. This 
can easily be confirmed by an example. 
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II. The uniqueness' theorems for  the operator-functions with positive imaginary 
part. 

First we examine the operator-valued function on the unit circle. Let the "modu- 
lus of  continuity" ~o(t) be a monotone continuous function, t->0, o9(0)=0, and 
S p, p => 1, be the Schatten classes [6]. 

Theorem 2.1. Let E be a Hilbert space, N(z),  Im N(z)  ~ 0  be an E-valued analytic 
operator-function on the unit disc Izl<l satisfying ( N ( z ) - I ) E S  1, Izl<l. If N(z) 
is invertible at some point o f  the circle (and hence at every point o f  the circle [3]) then 
the Lebesgue measure of  the 6-neighbourhood on the unit circle T o f  the set 

F a,_r {wET: l IN-X(z)-I] ls~ <-_ co(Iz-wl), Izl < 1} 

satisfies the condition 

(2.1) rues F ~ <= Co9(6) 

with a constant C depending only on p, co and on IIN-X(0)-1I[sl p > l .  

This theorem and its proof are the generalizations to the operator case of  the 
uniqueness theorem from [7, 12]. Note  that the condition (2.1) for o)( t )=t  leads 
to the finiteness of the set F. 

Proof. Use the fact that Calderon--Zygmund theory of  the singular integral 
operators (and of the Hilbert transform in particular) can be generalized to the case 
of  Banach space SP-valued functions [2, 17, 18]. Note that the statement is not a 
consequence of the corresponding "scalar" theorem. The operator-functions 
Im N -  1 (re~O) and (Re N -  1 (re*O) _ Re N -  1(0)) connected by the Hilbert transform take 
values in S l =  S p, p >1 for every r <  1. Since this transformation of  the SP-valued 
function on Tis  of week type (1,1) in L~(T, SO [2, 18], we get for any y > 0  

Hence 

mes {0: ]iRe N-~(rJ ~ N-~(O)lls, > y} 

<- ( C./ y) f ~ II Im N-a (re'~ s,  dO. 

y mes {0: [IRe N - l ( r e  ~~ N-l(0)lisp > y} 

<- c .  f II Im N -~ (re '~ 11 sl dO = - Cp tr f Im N -1 (re 'o) ao = - c .  tr (Im 2 .  N-1 (0)) 
T T 

= 2zcCp 111m N-l(0)llsl <_- 2rcCp II N-I (O) - I I I s l  
and therefore 

y mes {0; ][N-l(re '~ - R e  N-~ (0)Hsp > y} <= (Cp+ 1)4re llN-X(0)-II[sl .  
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and 

Fix r, 0 < r < l ,  then 

F ~ c {wET: ][N-l(rw)-Zlls, ~ <= co(8+(1 - r ) )}  

rues F ~ <= mes {0: llN-l(rd~ <= co(5+(1 -!-))} 

~_ mes {0: llN-~(re'~ N-l(O)Ilsp >- o9-~(5 +(1 - r ) ) - I l R e  N-~(O)-I[is,} 

_-__ (Cp+ 1) 4r~ [tN-~ (0)-II[sl(co-~(5 +(1 - r ) ) - [ I R e  N-~(O)-IIIs~) -~ 

= 4rc(Cp + 1) IlN-l(O)-II[slO~(,~+(1 - r))(1 -oJ (6  + (1 - r ) ) l [Re  N- l (0 )  -Il ls ,)  -1. 

Choose 6 to be small enough (for example let 09(6). tiRe N-X(O)-Ills,< 1/2 that is 
however not essential). 

I f  r ~ 1 we get the inequality 

mes F 6 <- (Cv+ 1) 4re tlN-l(O)-II[slO)(6)2. 

In case to(t)=ff, 0<e_~ l  we can describe in particular the structure of  the set 
of  "roots of  order 0(' for operator-functions with positive imaginary part. 

Now we consider analogous results for operator-functions on the upper half- 
plane C+.  

Let us introduce a class Ro(X) of  operator-valued functions T(2) analytic on 
C+ which take values in some Banach space XC=B(E) of operators on Hilbert 
space E (interesting examples are X = S  p, l<-p<-oo, X=B(E)) and which satisfy 
the conditions: 

(1) ImT(2 )  _-> 0, I m 2  > 0; 

(2.2) (2) r(iT) ~ 0. 

(3) fRImT(k+ie)dkEX,  ~ > O. 

It is easy to show that the last integral does not depend on 5>0.  Moreover, it 
turns out that condition (2) can be substituted by 11T(iT)llx= 0 (I/T), z ~ + co. 

The above definition is a natural generalization of the class Ro of  scalar-valued 
analytic functions f on C+ such that: (1) Imf(2)=>0; (2) sups>0 T If(iT)l< co (see 
Appendix 1I in the Russian translation of  the book Ill). 

Assume now that Xsatisfies the following "monotonicity" property: if 0<_-A <=B, 
A=A*, B=B*, BEX, AEB(E) then AEX and IIAllx<=llnllx, and in addition 
X-norm I1" IIx is a majorant of  the usual operator norm in B(E) (ll Z]l-<11Zllx, TEX). 
The next theorem is a simple generalization of  the corresponding "scalar" ascertion 
from [1] (for X=B(E) the similar theorem was proved in [3]). 
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Theorem 2.2. dssume that I"(2) satisfies (1), (2). Then the following are equivalent; 

(3.1) f R I m T ( k + i e ) d k E X ,  e > 0 ;  

(3.2) sup z IlIm T(iz)IIx < ~; ] 
�9 >o ~ in case X is a cross-ideal [6], X ~ S ~  

(3.3) lim �9 [IZ(i~)l[x < o~; / 
(3.4) trT(2)ERo in ease X =  S1; 

(3.5) There exist a selfadjoint operator .LP on a Hilbert space ~ and a bounded 
operator R: E ~ / f  such that R 'REX  and 

T(2) = R*(Aa-A)-IR, Im2 > 0 .  

Proof. The equivalence of (3.1)--(3.4) can be Checked by the Riesz--Herglotz 
theorem in the same way as in the "scalar" case. To this end one should consider 
the functions (T(2)(p, (p), q~EE, and take some care for the estimates obtained be 
uniformly dependent on (p. Here we only prove the equivalence of conditions (3.1), 
(3.5). This permits us to find a connection between Ro(X) and a class of operator- 
functions arising in the perturbation theory of selfadjoint operators. The connection 
can be used for studying of some properties of R0(X) (see for example w with the 
help of operator theory. 

(3.1)=*(3-5). Let (pEE, T~(2)def(T(2)~o, (p). By the Riesz--Herglotz theorem 
and T~,(iz),~.~,0 we get 

(2.3) (2) = f s  -- 2)-1 dr,  ~ )  

for a monotone function %00 of bounded variation: 

8 
fR Im T~,(k + ie)dk = f R  dk fR . (#_  F)2 + az d%@) = farc d%@). 

The uniqueness of the representation (2.3) implies that z~,(lt) is a bounded quadra- 
tic form in q~, %(#)=(B,,q), q,) for some selfadjoint operators B, on E, #ER. Ob- 
viously, B,,->0, 

[IGll ~- [ f R I mT(k+ '~ )~ l l  

and B,, is a monotone function of p, /~ER. As in [I0], by Naimark's theorem [1], 
there exist a Hilbert space ,Of, a selfadjoint spectral resolution E,, and a bounded 
operator R : E ~  such that B,,=R*E,,R, pER. Hence 

T,,,(2.) = = R q , ,  
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where s is the selfadjoint operator on .,~ with the spectral resolution E~,. Then 

falmT~,(2)dk= fRdk fR " d(Et, Rg, Rtp) (# - k)~ + ~ 
= 7rfltd(EvR~o, R9) = 7r(R*Rq~, 9), 

i.e. 
f a l m  T(k + ie) dk = zrR*RE X. 

(3.5)=*(3.1). Note that under condition (3.5) we can obtain (3) as well as (1), (2) 
from the identity 

f R  Im T(k + iO dk = rcR*R. 

Therefore only condition (3.5) is a criterion for T(2)ERo(X). Making use of this 
criterion one can easily prove the rest of the theorem. 

Remark. (1) By the same technique we obtain for a general operator-function 
M(2), ImM(2)=>O that 

M(2) = A +B2+R*CI+2.W)(.W-2)-IR 

where A=A*, B>-O, R is a bounded operator R: E~a%:, and ~/'=.W* on ~ ' .  

(2) This description of the analytic operator-valued functions with positive 
imaginary part permits one to show that M(2)EX, 2EC+ if M(20)EX for some 
20EC+. It is assumed here X satisfies the condition of "monotonicity". 

The following result is important in what follows. 

Theorem 2.3. I f  T(2)ER0(X) then ( I - ( I +  T(2))-OE Ro(X). 

Proof. Although the theorem can easily be proved by the usual function-theore- 
tic technique we give an "operator" proof. If 

TO) = R*(.oca-2)-lR, R: E ~  d/:, R ' R E X  
then 

(I+T(2)) -x = I -R*(L#+RR*-2)-~R.  

RR*: ~--~o~'. Indeed by the Hilbert identity 

( I -  R* (s RR* - 2) -xR) (I + R* (N'- 2)-1R) 
= I - R *  (s -f l)-~R +R* (s - R *  (s - 2) 

�9 [(~e+ ? d ~ * - 2 ) - ( ~ o - ~ ) ]  ( ~ e _ 2 ) - l R  = x. 

Since RR* is selfadjoint and bounded on .r (s is selfadjoint too. This 
completes the proof of the theorem. 

Fix Co>0 and a modulus of continuity co. 
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Theorem 2.4. Let E be a Hilbert space and let M(2) be an operator-function, such 
that (M(2)-I )~  Ro(Sa). Then the Lebesgue measure on R of  the 6-neighbourhood of  

F = {kER: l [n-a(2)-I[ ls~ a ~ o~(Ik-21), Im2  > 0, Ik-21 ~- s0} 

satisfies the condition 
(2.4) mes F ~ <- Co)(6), 6 <= e0, 

with constant C depending only on p, and 

lim z [Im(iv)-ll[s,,  p > I. 

The "local" version of the theorem follows from Theorem 2.1 by the simple 
transformation. Actually we only need to check that F is bounded. 

Proof. As in Theorem 2.1, we have for the Hilbert transform on L1 (R, S v) 

y mes {kC R: I[M-l(k + ie)-  111 > y} ~- Cv II f.  dk Im M - l ( k  + i8)] sa 

-- c :  IIR*RIIsl-- Cp~ !irn= z [lM(iz)-lI[sl. 

Here Theorems 2.2, 2.3 were used. Therefore for any e>0,  3 > 0  such that 
62+sZ<=e~ we get 

mes Fn<= mes {kCR: HM-l (k+i~) - l l [~  <= o9(6+~)} 

<- c,~ [IR*Rllslo~(6+~). 

If  e ~  +0  then necessary inequality holds 

rues F a ~_ Gn(lim_ z [lM(iO-1llsl)O~(6), 6 <- So 

which clearly implies the desired inequality. 

III. An operator proof o f  the Uniqueness theorem. 

In this section, making use of the spectral theorem for selfadjoint operators, 
we give the proof of the uniqueness theorem for the operator-valued functions with 
positive imaginary part. 

Let M(M(2): H-~H, 2E C",,,R) be the operator-function 

(3.1) M(2) = I+ (V(A -2) -x I/V,, 

where LdefA + V, A, V are selfadjoint operators on a Hilbert space H, V_->0 and 
V is bounded (or is an (A)-bounded operator [8] whose relative bound is smaller 
than 1). Evidently, Im M(2)=>0, Im 2>0.  It is easy to cheek that the "general" 
ease of operator-functions M, (M-1)ERo(SI),  M(2)=I+R*(Le-2) - IR  can be 
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reduced to (3.1). For  this purpose we can consider the polar decomposition R = J .  T 

where T>-'O, T: E-~E and J is an isometric embedding of E into J~. Here T=I /V 
and R*R=T 2 which implies that T~S ~. 

Theorem 3.1. Let VES 1 then the set F of"roots of M of the order ~", 1/2<a__ 1, 

F a~f {kER: ][1-M-l(2)]I~i ~ ~_ Cl,~-kl ~, 0 < Ik-;q < e0, Ira2 > 0} 

satisfies the estimate 

(3.2) mes F ~ =< 4.1tC ~ [IVI[~t6 ~-1, 6 ~ e0. 

Note that for ~=  1 the theorem is close to Theorem 2.4 (about finiteness of 
the set of roots) but in the present case the set F is wider than that in Theorem 2.4 
since in its definition the Sl-norm is involved. Unfortunately for ~<  1 the estimate 
(3.2) is essentially weaker than (2.4). 

Proof. It is easy to check that 

M -1 (2) - X = - / V ( L  - 2)-1 r 

Consider the orthonormal system of eigenvectors q~k~H of V, V = ~ 'k  2k( ' ,  tpk)~0k. 
Then we have 

- - 1  - -  l : "  - -  1 ~ I t  

�9 I1 (L-2) -1  g r i l l ,  = Ilvl] , gV o ll'. 

Therefore (8 >0) 

fRdk I IM-l (k+ i8)-111~1 ~ IIgIIs, Z k  ~kfRI[(L--k--i~)-l~okPdk 
= HVl[s~ Z k  2k(2rc/8) IIq 'd = = IlVll~, (2~t/,) 

where we have made use of  the following identity 

(3.3) 8fgll(L--k--is)-lq, ll=dk = 2~ ][~op, ~o~/-t. 

It is valid for any selfadjoint operator L on H. This follows from the spectral 
theorem by the direct computation [16]. Finally 

(3.4) efRlIM-l(k+iO-Ill~,dk ~- 2~l lVl l}~ ,  e - 0. 

Let us consider any finite subset F '  of F together with 6-neighbourhoods of its 
points. We can suppose of  course that any point on R belongs to at most two of  such 
neighbourhoods. We denote them by A~, i=1 ,  2, ..., n and their centres by x~. 



126 S.N. Naboko 

Then ( 2 = k + i 6 )  

f~, IIM-a(k+ i6 ) -  III~ dk ~_ f~,  C -~ [dist (;t. F)]-2.  dk 

>=c-" fA ((k x,)2+b2)-'dk C-2261-i'f~(u'+l)-'du 
1 

C-261-2~. 

By the inequality (3.4) we get 

(4n/6) llVll~, -> 2f,7=1~ ' [In-l(k+i6)-I]l~dk >- (2/C2) 61-2~n, 

hence n6-< c 2. 2n. II VIIsh. 6 z~- x. This estimate (nO) of the measure of b-neighbourhood 
of  F" leads to (3.2). 

Note that the main point of  the proof was the identity (3.3) i.e. the spectral 
theorem for selfadjoint operators. In view of this it will be interesting to find an 
operator proof for the more exact estimate with 6" in the rigbt-hand side of (3.2). 

Remark. (1) Similar theorems (and proofs) are also valid for operator-valued 
function with J-positive imaginary part ( J=J* ,  32=1). Indeed, let 

Z = M+J1/IV[ 1/IV/, V =  JIVI, jdef signV 
then 

M(2) = I+JI /~(A  - 2 )  -1 II /~,  ImJM(2)  -> 0 

if Im 2>0.  Again M-l(2)=l-J  1/~1. ( L - 2 )  -1 I ~  and we can proceed ana- 
logously 

(2) The inequality (3.2) has an equivalent form: 

mes F '  ~ 4- nC 2 03"-1 (Jim z 1[ Im M(iz)II sO s. 

It holds for any (M-1)CRo(S1). 

(3) Clearly inequality (3.4) is equivalent to the following one (TE R0(S1)) 

f. 11Z(k + ie) ll~l dk =< 27z (~im z 11Z(iOllsO ~ 

or what is the same, to 

, f .  It( + r(k + i,))-1 - I l t ~  dk ~_ 2rc(lirn ~ llT(i~)Hs~) 2. 

(4) Let us note without proof that methods of operator theory permit us to 
obtain the following inequality as well (T6Ro(S1)) 

dk " d e t ' l - i Z ( k + i O  t )1) <- ~'-+~*lim z llz(iOlls,, 8 > O. 
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Let fEE  and 
operator V. Then 
between E and 

IV. Investigation o f  roots o f  the operator-function M. 

V=~k 2k(., q~k)rpk be the spectral resolution of the selfadjoint 
] /Vf=~k ~/~(f ,  q~k)gOk �9 Making use of the usual isomorphism 

1s(i.e. f,--~ {(f, q~k)}~=l, ][f][~ = Z k  [(f, rPk)[9 

we get a new formula for M(2) in l~-representation: 

MO) = I + f R (X-- (' ,  e'(x))  Cx) dx. 

Here for any xER(. ,  q,(x))~(x) is a rank one operator on la with the eigen- 
vector 

(4.1) do, xER.  

Thus in the new representation (M( ;0 - I )  is the Cauchy transform of the opera- 
tor-function on R with values in the set of rank one operators. Recall that (see Theo- 
rem 1.1) under condition (1.1) we have proved that ~(x)ELip e. 

The boundary values of M on R(2=k+i0 )  are 

M(k) = I + v.P. f R (x - -k ) - l ( .  , ~(x)) r dx + i~q~(k) ( . , ~(k)). 

Thus 
F(k) der ImM(k) = ~q~(k)(., ~(k)) _~ 0 

and M(uo)f=O, uoER, fEE, f # O  if and only if 

(1) (f ,  = 0, 

(2) f + v.p. f R (X-Uo)-~(f, r r dx = 0 

The following assertion is the main result of the paper. 

Theorem 4.1. Suppose that VES x, V>=O and that the kernel o f  the perturbation 
satisfies (1.1). Then for a < l / 2  and for a root uoER of M the estimate 

(4.2) IIM,~(u)ll -x =~ C[u-uol2L uER, 

holds on a neighbourhood of  uo with U only depending on a, ][ V]] s, and CL (see (1.1)). 

The proof is divided into several lemmas. We prove first the following refine- 
ment of the Pavlov--Petras lemma [11] which gives the needed estimate for rank 
one perturbations. 

Lemma4.1. Let u, uoER, [U--uolda6 and 

s ~ (Uo-2lu-uol, u0+2 lu-u01) c R. 
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I f  a function ~ on R satisfies 

(1) I • ( t ) - r  -< G l t - u l  ~, 

(2) 14~(t)l <-C:lt-uol ~, tCS; 

(3) fnlff( t) l  dt ~ Cz; 

(4) 

then 

S.N. Naboko 

t~S; 

I~P(t)l ~ It-uol#(Co+C3(dist(t,s))#), tr 

I~o(u)-~0(uo)l ~ G Ga~+ 2G,~+CoC'p,~# +G c';,~ ~#, 

where C,, C'p, C'p' are constants only depending on ~,/~< 1/2 and q~ is the Hilbert 
transform of ~: 

Ip(t) dt 
= v.p . fR ~(t)-C,(u)t_u dt. (4.3) r = v . p . f a  t - u  

The proof is rather close to that of  the paper [11] but for our purposes (even 
in case rank V=2) an essential complication of the conditions on ~, is necessary. 
Since ~k (u0) = 0, we have 

r = - f  ~k(t)-~P(Uo) at + f s O(t)-O(u) at 
s t--uo t--u 

-- lira /" ~,(u) dt+fR\s(U_Uo ) ~P(0--r ( t -  u) (t-- Uo) dt. N--*oJ (--N,N)\S t--u 

For the first two integrals above conditions (2) and (1) respectively imply 

t -uo  It-uol dt ~- 

I f  sat g'(O-~'(u)l <- c~ 

The third integral does not exeed In 3. C:- $~ and 

( t -u) ( t -uo)  dt <-t5 t-.ol>: [t-ull t-uo[ dt 

+~ f z  Iff(t)ldt ~26G+26 f z t~(t)ldt 
I t -  u0l I t -  ul - I t -  uol ~ ' 

where 
z~ ~ {t6R: tr It-uol < 1}. 
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We have by the property (4) 

26 L ltl~/(t)_______~l_ uol 2 dt ~_4~ fi~o+~eidt ~ ( C o + C s l t - u o - 2 $ l  #) 

( f~ z # d z  ) < Co46#l(l_fl)+4Caf2#l(l_2fl). ~_ 4t~ Co(c5#-~1(1 -fl))+Cs (z+26)~_#) = 

Finally, 

Iq, (u ) -  ~o (Uo)l ~- 4C12=a=/e+ln 3C~+2~C3+Co4~#/(1 -/~) +4Ca ~#/(1-2fl). 

This completes the proof of the lemma with C==4.2~/e +In 3, C~=4/(1-2//), 
C~ =4/(1 --3). 

Note that in the case of Ca=0 the lemma is valid for ~<1/2, f l<l .  
We consider first the simple case which is analogous to the scalar case when 

(u0) = 0. Theorem 4.1 is a direct consequence of the following lemma. 

/.,emma 4.2. I f  ~(Uo)=O, uoER then 

IIM(u)fl[ <- C/const lu-uo[ ~, uCR, e < 112, 

where f satisfies M(uo) f=O, ll fll =1 and Cr. is the constant from (1.1). 

Proof. Let lu-u01=--6. Then 

Hmu)flz = I I (mu) -muo) ) f l l  

~F(u)fll ~-lI~(u)[[ 2 [lfll = [~(u)-~(u0)l[ '  <- CL [u--u01". 

Therefore 

IIg(u)fll <- ~CL6~+ .sup Iv.p.fR(x--u)-~(e(x):, g) d x -  
i all = 1  

-v.p. f n (x-uo)-'(F(x).f, ax l 
Consider the function 

0(t) a~_f (FCt)f, g) = (f, ~(t))(~(t),g) 

and check conditions (I)~(4) of Lemma 4.1. We have ~k(0)=0 and 

t~,(u,)-~,(,o~ -< I(:, ~(u,))(~(uo, g)--(f, ~(u~))(c~(u2), g)l 
+l(s, ~,(,,,))(~(,,,~, g)-fs, @(,,,~)(,~(u:), ~)1 

ll.fU ll@(u,.)ll I I@(u~)-@Cu,)l l  IIgU + II/11 l l~(u,) l I  l l @ ( u O - @  (u:)ll Iltll 

< C L l U ~ =  -- u~l~<Clul -- uol=+lu~ -- Uo I=) 
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which proves the properties (1), (2) with CI=Cz(2~+I). 6 ~. By the definition of 
(see (4.1)) 

ll,lCs, <---- f s a t  l[fl[ [Igll [l~(t)[l s 

= f a z ,  X~lq~,(Ol~dt = HVl[s~ - C~ <o~.  

The last condition of Lemma 4.1 with fl=2ct (it is possible for a < l / 2  since 
C3=0), C3=0, Co=CL obviously follows from the inequality [~k(t)l<=l[fllllg[I 
Ilff,(t)llz<=CL �9 Jt--Uol ~'. As a result we obtain 

[!M(u)fH <= ~CL 6 ~ + CL(2 ~ 71- 1) 6 ~ C~ 6" + 26 11VI[s * 

V ~ +C; CL 6~ = 6'~[CL(rc+(2~+ l)C~+C~')+261-~I[ IIs,]. 
This implies (4.2) with 

C = cL(rc+3f~+f{)+2OVlls, for 6 < 1. 

Let us turn to the general case ~(u0)#0 when the "scalar" proof fails. Define 
the normalized vector 

def 
eu - ~ -  e~(u)/lle~(u)II c l~, 

which is correctly determined for u in some neighbourhood of u0 on R. Let E ' c E  
be the orthogonal complement in E of the vector f, M(uo)f=O, llf[l =1. Hence 
e,oEE'. For the matrix M(u) in "basis" E =  {w .f, w~C}@E" we have the formula 

(4.4) M(u) = [ : ( " b )  I 

with ader(M(u)f,f), cd~ M(u)f~E', ba~ePE, M*(u)fCE" and "~---~(u): E'-,- 
~E ' ,  ~(u)a~f/'e, M(u)Pr,, where PE, is the orthogonal projection of E onto E'.  
The formula (4.4) is equivalent to the following calculation (wE C, eEE'): 

M(u) (w f+  e) = wM(u) f+  M(u) Pr, e = w (I -er , )  

�9 M(u) f +  w Pr, M(u) f +  PE, M(u) Pr, e + ( I -  PE,) M(u) 

�9 Pz, e = w(M(u)f, f ) f +  wPE, M(u)f+ ~e + (M(u) Pz, e, f ) f  

= waf+wc+~e+(e, Pr, M * ( u ) f ) f =  awf+wc+.~e+(e, b)f. 

It follows straightforwardly that 

1 1 
M - l ( u ) = ~ ( u )  I[--~-lc 1[ - ( "  ' (~-l)*b) I (4.5) A (u)~- I  + ~ -ac ( .  ' (~-l)*b) 

where A (u) daa- - (~-1  (u)c, b) plays the role of determinant of M(u). The existence 
of the inverse operator D-l(u) a.e. u on R follows directly from Theorem 1.1. Other- 
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wise there exists hEE" such that h~0 ,  ~ ( u ) h = 0  and we can obtain (4.2) as in 
Lemma 4.7 (see below). 

The following estimates of the matrix elements of the operator M(~) are needed 
in the sequel. 

Lemma 4.3. I f  lu-uol <- 1 then 

la(u)l =< Clu-uol ~=, 

[Ib(u)ll <- Clu-uol~(sup ll~(t)l[ + l u - u o l ~ ) ,  
tES 

(4.6) llc(u)ll ~-- C lu-uol  = (sup I1~(01[ + l u -  uol=), 
tES 

llP~.b(u)ll <- C lu-uol  ~=, 

IiP~.e(u)II <= Clu-uol ~, 

where t '  E. is the orthogonal projection of  E onto subspace E"def E e  [ f v  #(Uo)], and 
the interval S=(uo-21U-Uol, Uo+21U-Uol) is the same as in Lemma 4.1. The con- 
stant C in estimates (4.6) depends only on C L (see (1.1)), I[ Vl[sx and g <  1/2. 

Proof. (1) For the proof of the first estimate we define a scalar function ~k(t) = 

I(o(t),f)l~. Then 

a = ( M ( u ) f , f )  = ( ( M ( u ) - M ( u o ) ) f , f )  

= in [(~ (u),f)] z + v.p. (t)(t-- u) -~ d r -  v.p. fa ~p (t)(t-- Uo) -1 dt. 

It is easy to check that Lemma 4.1 can be applied to ~b: 

IO(u~) -- r (uz)[ <= {(~(ul), f)[  I[fll [[ ~ ( u ~ ) -  �9 (uz)II 

+ I(,~(us),f)lllfll I I*(u~)- @(u:)il 
<= cF  ~ lug- u~l: (l((~(uO -,s' (Uo)), f ) l  + I((~ (u~) - ' ~  (Uo)), f ) l )  

<= C L l u~ - u~l" (l u l  - uol" + l u~ - uolO, 

II~'(t)ll,~,c~ ~ ll@(t)llL<~> = i lVll~,,  

I ~ , ( 0 i  = < -  - c~i,,-,,ol":. 
To prove the estimate we use Lemma 4.1 and argue exactly as in the preceding lemma. 
Finally 

lal --< lU-Uol~[CL(zc+C~+C~)+2 llVlls,]. 

(2) As for the next pair of estimates (4.6) we need to check only the estimate for 
llcll since M*(uo)f=O. We have 

licll ~ IIM(u)fll = sup l( M(u)f,  g)l" 
I lgl l  =I, oEE 
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Let 
~k(t) der (f, oCt))(#(t),  g). 

We have to check the conditions of Lemma 4.1 for ~k. If ul, u~ES then 

Ir (u l ) -  r (udl <- [(f, �9 (u~))] Ii gll !I �9 (u~).  �9 (u~)ll 

+1( ~ g)l Ilfll II*(uO-O(u~)lI ~- cL/~lu,-u21~2 sup II*(t)ll, 
t 6 S  

II ~' (t) ll L~CR) ~-- II ~ (t) lI L(R) = H V H sl .  

Let ~ be the nearest number  to t from the interval $: 

I~(t)l ~ I(f, ~ ( t ) ) ( , ( t ) - , ( ~ ) ,  g)l+l(f,  ~(t))l I(o(n), g)l 

<-l(f, a~(/)-O(Uo))] l l*(t)-o(~)ll  Ilgll +[(/ ,  *(t)--O(Uo))l II*(~)ll llgll 

-<- c)./2 I t -  uol', [c~/~ l t - ~ l ' +  I1~(~)11] 

<-- c/J z It - uol" [sup I1 �9 (~)II + c~/~ (Hist (t, sO)']. 
, 6 S  

By Lemma 4.1 with 

G=2c&'~supl l~( , ) l l ,  c ~ =  IiVlls~, c ~ =  c~, Co= cL/~supll~(~)ll, 
, 6 8  ~6S  

we get 
II c II <- "C~/~ l u -  uol'(C&/~lu- uol" + sup II ~ (011) 

t 6 S  

+2C~/~ sup ll~(t)ll C . l u -  uol'+2 lu-uol llr'lls, 
,6s 

+ eL/' sup 11 ~ (t) ll c~ l u -  uol ~ + c "  c ,  l u -  uol ~" 
,6s 

- lu--uol2"OrCL+2 IlZlis~ lu--uol~-~'+C"C x �9 L J  

+ l u -  Uol ~ sup 11 �9 (t)ll {~c~/~ + 2c~1~ c ,  + c~l~ cd}. 
t 6 S  

(3) Now we prove the last pair of estimates (4.6). Since 

lle ,,bll = sup g)l = g)l 
Ilgll ~--1. gE E Ilgll = l ,  g 6 g  

we can apply Lemma 4.1 with the function Ip( t )=( f ,  #(t)).(#(t),Pg, g). 
following estimates are valid 

I[6'(t)IIL~cR) <--Ilr'lls~, 

l$(t)l = [(f, #( t ) -#(Uo)) l"  I ( r  Pe"g)l 

<_ II~(t).~(uo)II ~ <_- CLlt--uol ~'. 

The 
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By the orthogonality ~(Uo) to E" we have for u l ,  uzES 

14J(u0-4J(u~)l <--[(f, ~ , ( u l ) ) ( ~ ( u l ) - ~ ( u ~ ) ,  eE .g ) ]  

+ e ..g)l [(f, 
<-- II �9 (u0 - �9 (us)ll [!1PE,, g i l l ( :  �9 (u0 - r (uo))l + 1(4 - �9 (uo), PE, g)[ Ilfll ] 

<= C L l Ul -- U~I~ ( l ul --  UoI= + I u~ --  Uol =) <-- C L l Ux --  U~I~ 21+ = I u --  uol ~. 

By Lemma 4.1 with C , = C L 2 ~ ' + l l u - - u o l  ~', C~=llVJIsl, C 8 = 0 ,  c o = e L , / ~ = 2 ~  
we get the inequality 

[lP~-bli ~- ~ C L I u - - u o I ~ + C L 2 " + a l U - - U o I U ~ C = + 2 1 U - - U o I  IIVIIsl+ C'2= IU- -UoI~CL 

= lu-uol~[CL(rC+2~+xC=+C;,3+2 [IV[ls* I n -  uolX-~]. 
Since 

IIP~,,cll = I IP ,~ .n(u) f [ I  = sup I ( P , ~ . n ( u ) f ,  g)] 
Ugll =I, oEE 

the proof of the last estimate is quite analogous to the preceding one. This completes 
the proof of the lemma. 

Theorem 4.1 for �9 (uo)# 0 can be obtained by the careful analysis of the matrix 
elements in the representation (4.5). The following consideration is devoted to this 
purpose. By the formula (4.5) we have 

i lg-1(u)l1-1 <_ 4 IAI/(1 + [1(~-1) * b[I 

(4.7) + II~-X~ II + l l a ~ , ~ + ~ - ~ (  �9 , (~-1):r b)II). 

In particular, there are 3 variants of  estimates: 

l[M-X(u)[l-1 ~_ 4 min {IAI, lal + llbl[, lal + Ilc[l}. 

Further estimates essentially depend on the value of I1 �9 (uo)ll. 
I. We suppose first that the following conditions are valid: 

ix) sup l l~( t ) -~(uo) l l  < 1/2  ll~(u0)ll, 
tES 

(c)  
(2) II#(Uo)ll --> lu-u01 �9 = 6 =. 

Only the second condition is essential here. We can replace (C) by the one condition 
II~(u0)ll >=C~/~'6=/2 but the preceding form is more convenient. By conditions (C) 
we get 

(4.8) 1/2 l[ ~ (u0)l[ -<_ I[~(u)ll-< 3/2 ll~(uo)ll. 

It should be mentioned that conditions (C) are valid for fixed values u, uo. In what 
follows we shall use the following estimates for the matrix elements of the operator 
~ - l ( u ) .  
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e d e f  Lemma4.4. I f  t-~-~(t)/ll~(t)[I, tER then 

[ (~- l (u)  e,o, e.o) I => ~ll::(u)l[~l(.~-l(U)euo, e~)l~, 

I (~- l (u)  e,o, euo)[ => ~l[+(u)ll~l(e-l(u)P~,eu, e~o)[ ~. 

Proof. Let 1 , , h - - ~ -  (u)e~oEE , e,,oEE then 

(h, %) = (h, .~(u) h) = (h, e r  M(u) e r  h) = (h, M(u) h), 

I(h, euo)l >- IIm (h, M(u)h)[-- ~[(h, #(u)  h)l~. 

This implies the first inequality (4.9). The second one can be obtained similarly: 

[(.~-l(u)euo, e.o)[ = [(e.o, (~-l(u))*e.o)[ => rc I((e-l(u))* e.o, ~(u))12 

= ~ n �9 (u)ll ~ [(e.o, e - lCu)  PE, e.)lz = n I1 �9 (u)lI ~ l(~-~ (u) en, e=, e~o)[ ~. 

Lemma 4.5. I(~-~(u)P~,e=, eu)l <- 1/~-II ~ (u)ll-3. 

Proof. Let h---~-l(u)Pz, euEE" then 

l(~-~(u)eE, e., e.)[--I(h,  e~,eu)l = [(h, e (u)h) [  

= (h, P~,n(u)PE, h)l = [(h, M(u)h)[ >-[Im(h, M(u)h)l 
= ~ ](h, ~(u))l~ = ~ IIr ~ I(h, eu)l' = rc II~(u)ll ~ I(~-~(u)P~,e., eu)[ ~. 

This proves the lemma. 
Let us introduce the notation: 

d =- (~-~(u)e~o, e~o ), F =  (9-~(u)e.o, ~(u)-~(Uo)) ,  

P==- (-~-l(u)PE, e~, ~(u)-~(Uo)) .  

By Lemmas 4.4, 4.5 we have the following 

Corollary. 

I 1~  --> ~ ( I d l  ll~(uo)l[-IFI), 

~ 

Indeed by Lemma 4.4 

Idl -> ~ [ (~-~fu)  e.o, ~(u))[~ = ~ I(~-~(u) euo, ~(Uo))+F[~ 
hence 

I 1~  --> ~ ( I d l  II~(uo)II-IFI). 

In view of Lemmas 4.4, 4.5 we get 

Idl -~ .l(~-l(u)P~,e~, ch(u))-(.~-~(u)en, e~, ~(u)-~(Uo))]~(ll~(u)ll/ll~(Uo)lly 
>-- ~c/4 [(~-~(u)Pn, e., ~(u ) ) - f f [  z => ~/4 (lffl-ll~(u)ll  l(~-~(u)P~,e., e.)l~. 
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This shows that t / ~  -> ~1/-~ �9 ( I F I -  1/(~. II �9 (u)ID). It is easy to estimate the value IFI 
by means of IFI: 

IFI = (1[ ~ @o)11) -11(~-1 (u) e~, �9 (Uo), �9 (u) - a~ (no))[ 

= (H - 1  ))t < ~(Uo (u)P~,~,(u), ~(u)-,X,(Uo 

+ l( ~ - I  ( . )  e~, (~ (~) - �9 (.o)), �9 (u) - �9 (.o))l] 

< -  (ll~(u)II/il~(uo)ll)IPl + II~-1(u)[I I1~ (u) -~(Uo)ll~(lI �9 (Uo)ll) - I  

=< 3/2 IPl + ][~-l(u)I1 c ,  l u -  uol~ (11 �9 (uo)ll) -1. 

Suppose first that II~-l(u)ll is not  too big 

(4.xo) II~-l(u)lI c , 6  ~ ~_ 1. 

Then I FI <- 3/2 I/rl + 1/II �9 (Uo) ll. This permits us to estimate z ~  1/l'-~ t[ ~ (uo)ll. By 
Lemmas 4.4, 4.5, by conditions (C), (4.10) and by the last Corollary we have 

Idl [l~(uoll -< ~-lz~ t/1-~+ IFI __< rc-l/~ t/T-~ + 3/2 lffl + l/ll~(uo)][ 

~_ 7r-1/2 I/I~T + 3/2 ((4 Idlhr) 1/2 + 1/0r II ~ (u)I[)) + l/l[ �9 (no)Ii. 

Therefore 

Idl I1~ (uo)ll m <- ~ (1/t/~-+ 3/1/~ I1~ (uo)ll + 3/(2zr) (11~ (uo)ll/ll~ (u)ll) + 1 

<-- 1 / ~  II~(uo)[I 4/I/~'+ (3/~r + 1), 

i.e. z>0 ,  z2_<-z. 4 /~ -+(3 /1 /~+1) .  Hence z =  ~/J~. Jl ~(uo)ll <-- 10, which will be used 
in what follows. 

/.,emma 4.6. Suppose that conditions (C) and (4.10) hold then the estimate (4.2) 
is valid. 

Proof. By the formula (4.5) 

(4.11) llM-l(u)ll-1 <_-lal+l(b, .~-lc)l(l+ll .~-lcll+ll( .~-q*b[l)  - 1  

where l al ~- c.  cS ~, ~ = lu-uol (see Lemma 4.3). Let us denote the orthogonal pro- 
jection of E '  onto vector e,. by Po, then 

(b, ~ - l e )  = (Pn,,b, ~-lc)+(Pob, ~-1c) 

= (Pe,,b, ~-le)+(Pob, ~-lPoc)+(Pob, 9-1Pn, c) 

= (Be,, b, ~-Xc)+(Pob, ~-lPoc)+((~-0*b, Pn,,c)-(P~,,b, ~-lPr,,c). 
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In view of the estimates from Lemma 4.3 and the inequality d =  < 100. II ~ (uo)ll- ~ 
we have 

I(b, ~-1c)1 <= He~,bll [1~-1c~ + I(~-le,0, e,o)l llPobll [Ieocl] + II(~-l)*bll lle~-clI 

+ [IP~,,bl[ [l~-a(u)[I I1e~,,cll -<- C~ ~ 11~-1c11 + 100 [l~ (Uo)lt-~(C~=(~+ 3/2 l[~(uo)ll)) ~ 

+ 11 ( ~ - a ) .  b lI c ~  ~ + lI ~-l(u)11 c ~ ~'~. 

If  we make use of the formula (4.11), condition (C) and the last estimate, 
then we get 

II n -1 (u)]1-1 =< C6~ + C6~ + 100C 262~ (5/2)3 + C6~ + (lI ~-1  (u)11 ~=) c ~ ~ ' .  

Finally, by the condition (4.10) we have 

IlM,I(u)II-I <= 6~(3C+(25C)2+C~/CL) 

which completes the proof of the estimate (4.2). 
Assume now that (4.10) fails i.e. 

(4.12) II~-l(u)ll C , ~  ~ > 1. 

Lemma 4 .7 . / f  conditions (C) and (4.12) are satisfied, then the estimate (4.2) is 
valid, 

Proof. By the condition (4.12) there is a vector g(E' ,  llgl[=l, such that 
ll~(u)gl[ <CL" 6~. It is sufficient to prove that IIM(u)gll ~const . .  6~ with the cons- 
tant only depending on C n and II VIIsl. 

IlM(u)g[l <IIeE, M(u)g[I + ll(I-P~,)g(u)gll 

= II~(u)glt + I(M(u)g,f)[  < C , , ~ ' +  I(g, b)l -< CLfi~+l(g ,  Pz-b)l + l (g ,  eob)l 

< C L ~ + C ~ + C ~ ( ~ + 3 / 2  ll~(u0)ll)liP gll = 0 ~ 

It is necessary here to evaluate the norm IIPogll = l(g, %)1. We use the condition 
(4.12) again: 

g)l = ( U ( u ) g ,  g) = . I(*(u), g)p. 
Since 

[(g, ~(Uo))l <- [(g, ~(u) ) l+ t (g ,  ~ (u ) -~ (Uo) ) l  

< c&/~6~/~ lz~+ l l ~ ( u ) "  ~(uo) l[ -~ ~rlz~ x~ 
we have 

II n(u )  g II <- c ,  a~  + c a  ~ + c a  �9 (a~ + 3/2 II �9 (no)II) ~ �9 (no)I1-12 cLz ~ a~ 

<= ( Cn + C + 3 CCs ~" + 2C Cs a~= II ~ (u0)I1-1 _< (C~ + C + 5 CCs ~) a~=, 

where in the last inequality the condition (C) has been used. This finishes the proof of 
the lemma as well as the estimate (4.2) (under the additional condition (C)). 
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II, Suppose that the condition (C) fails. Then it is easy to see that 

(4.13) sup ll~Ct)ll <- ~ 
tES 

with 
e dof max {1 +2~C~/2, 3.2~C~/2}. 

Lemma 4.8. Suppose that ~5 satisfies (4.13) then the inequality (4.2) is valid. 

Proof. In view of (4.13) and Lemma 4.3 

!lM-l(u)II <-- lal + llell ~ C~2~§ ~ (sup II~(t)l[ + 6 5  
tES 

<- 2C~ ~ + C~ ~ ~6 ~ = C(2 + ~) ~2~ 

with the constant C(2 + ~) depending only on C/. and l Vllsl. This completes the proof  
of  Theorem 4.1. 

V. The main theorem. The discussion of  different smooth conditions on the kernel v. 

Theorem 4.1 together with the uniqueness theorem from w 3 imply the following 
result. 

Theorem 5.1. Let VES 1, V~O and suppose that the kernel of  perturbation 
v(x, y) satisfies the condition (~< 1/2) 

(5.1) v ( x + h , x + h ) + v ( x , x ) - v ( x + h , x ) - v ( x , x + h )  <- CLIhl ~, x, hER. 

Then the singular continuous and the point spectra of  L (see w are contained in 
A (the set of  roots of the operator-function M(2)) satisfying the condition 

(5.2) mes A ~ --<= const 6 ~, c5 < 1, 

where A a is the cS-neighbourhood of  the set A on R. 

Proof. The inclusion ~ s u ~ , c A  was established earlier. The Theorem 4.1 
implies that in a neighbourhood of a root u0ER on R the estimate 

[]M-l(u)[1-1 .~ C(o~, CL, [IVII8I ) lu-u012~ 
is valid. Since M(2) belongs to Lip g (see Theorem 1.1), it is easy to extend this 
inequality to the line (R+i6  z) of the complex plane 

i] M -~ (u+/62)]1-1 _< (C(e, CL, l!Vlls~)+ C~)~52", 

lu-u01-<-~, uoEA, where C1 is a constant from the Lipshitz condition 
IIM(,~)-M(2")II ~ C112-2'1 ~ only depending on C L, II VIIs~. By the last inequality we 
get 

[[ M -~ (u +/~2) _ 11[~ _-__ II M-1 (u +/fir) _ I 1[ -1 

<-- ( [ IM-l (u+ i~2)11 - 1) - t  ~ l lM- l (u+  i~)[i-1 (1 - l [ M - l ( u +  i82)11-1)-~ 

<= ( c + c l ) ~ ( 1 _ ( c  +c~)~9-~ <_ 2(c + c 3 ~ .  
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Without loss of generality we can assume here that (C + C~). 52~< 1/2. Then we can 
use the same arguments as in the proof of Theorem 2.4 

mes A a _<- mes {kER: ][M-l (k+i6z) - I I [~  1 <- 2(C+C1)5 2~} 

const ( C q- C1) 5 2~ fR Im M - l ( k  + i5 ~)  kll 
= const (C+ Cx) 5 ~ ~r I1V IIs~. 

The proof is finished. 

Corollary. / t  is well-known [12] that the condition (5.2) implies the inequality 

Z n  l/nl 1 -z~  < 0% 

llnl being the lengths of bounded complementary intervals I, of A. 

Let us note that the part of the theorem concerning the relationship between the 
"smoothness" of v and the "smallness" of A is exact even for rank one perturbations 
V [11]. 

Compare the condition (5.1) with other conditions on the kernel of perturbation 
v which have been appeared in the spectral analysis of Friedrichs model. Note that 
the left-hand side of the inequality (5.1) is positive in view of the condition V_->0 
(see (5.3)). Actually this condition means that the function of two variables v(x, y) 
is smooth (in terms of the second difference) only on the diagonal. It is useful to 
compare the condition (5.1) with the norm for v introduced by Friedrichs [5] for 
the investigation of the spectral structure of the operator L:  

sup ( l+lxl~)(l+lYl~)lh~l-~lh21-~lv(x+h~,y+hz)+v(x,y) 
hl, h2,x, YER 

--v(X+hl, y ) - v ( x ,  y+hz)[ <co. 

The condition (5.1) can be obtained from the expression if we put x=y,  hi=h2 
there and drop the multipliers (1 +lxl~), (1 +[y[~) increasing at infinity. Note that 
in Theorem 5.1 the decreasing of v(x, y) at infinity only appears in condition V~S 1. 

The other condition on v from the paper [4]: 

[v(x+h~, y+ h2)-v(x, Y)I <- C(1 + Ixl + lYl)-~ Ih21~), 

0>1/2, ~>1/2, leads to the absence of singular continuous spectrum of L as well 
as to the "triviality" of the point spectrum. To compare it with (5.1) we define a ker- 
nel v~/~(x, y) of the integral operator corresponding to the non-negative square root 
(V)1/2~S 2. The connection with (511) follows from the following identity. 

P r o p o s i t i o n  5.1. Let V>-O, IrES z then for kernels of  integral operators V, V V2 
the identity 
(5.3) v(x + h, x + h) + v(x, x ) - v ( x  + h, x ) - v ( x ,  x + h) 

---- f R [vll~(x + h, y ) -  Vl/2(x, y)[2 dy 

holds. 
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Proof. Let {q~i(x)} be an orthonomal system of  eigenfunctions of  the selfadjoint 
operator (V) 1/~ then 

Therefore 

= fs(VlJ (  + h, y)-- y))9,(y) dy. 
By the properties of the orthogonal expansion in L2(R) we get 

Z ,  2, l~o,(x + h) - ~o, (x)l ~ =falvl/,(x+h, y)--v~tz(x, y)pdy.  

The left-hand side of the equality can be transformed into the needed expression 
by the same method as in Lemma 1.1. Of course we can obtain the analogous result 
by the direct substitution 

I)112(X' Y) = Z '  r q~i(Y)" 
By the last proposition the condition (5.1) is valid if 

(5.4) ( f  g IVv2(X "t- h, y)-- vl[2(x, y)]Zdy)ll2<= C~/' ]hJ'. 

It is sufficient to require that 

sup (1 + lyl) ~ Ivl/2(x+ h, y) - v~/~(x, Y)I [hi-~ < oo 
x.y, hER 

with 0>1/2, i.e. the kernel of operator (V) a/z belongs to Lip ~. Note that in view 
of  the formula (1.2) for M we obtain a restriction on the operator (V) ~/'2. The inves- 
tigation of M is the cornerstone of  the proof of  Theorem 5.1. In case rank V< ~ the 
conditions of type (5.4) for v and v~/~ are equivalent. 

Remark. It is easy to check that the condition V=~0 can be dropped. Consider 
the operator-valued function 

M(2) = J+(IVI)I/~(x-2)-~(IVI) 1/2, ImM(2)  _-> 0, 

where V = J .  I VI, J=s ign  V is a polar decomposition of the selfadjoint operator V. 
The Theorem 5.1 is valid if  in condition (5. I) we substitute v by the kernel of"modulus"  
of the operator [ VI. In case rank V< co it is equivalent to the condition of type (5.4) 
but for the kernel v itself. For  example, in terms of eigenfunctions we get 

max x h - x 2 l~_!_<_r~,V(fa[Cp,( + ) ~o,( )l dx) ~1' <= Clh[~" 

In conclusion the author thanks B. S. Pavlov and S, V. Hruscev for his attention 
to the work and for useful remarks. 

Added in proof The more general uniqueness theorems for SP-valued ( p ~ l )  
functions with positive imaginary part were proved by the "operator" methods. 
See the author's paper: "On the root structure for the operator-valued functions 
with positive imaginary part in SP-classes '', to be published in Dokl. Akad. Nauk 
SSSR, 1987. 
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