A note on Lipschitz functions and spectral synthesis

Ismo Sedig

1. Introduction and statement of results

Let \mathbf{R}^{k} denote the Euclidean k-space and let $\varphi \in L^{\infty}\left(\mathbf{R}^{k}\right)$. The spectrum of φ, denoted by $\sigma(\varphi)$, is the set of points $t \in \mathbf{R}^{k}$ such that the function $e^{i t \cdot x}$ is in the closed subspace spanned by the translates of φ in the weak-star topology of $L^{\infty}\left(\mathbf{R}^{k}\right)$ (being the dual of $L^{1}\left(\mathbf{R}^{k}\right)$). One says that φ admits spectral synthesis if φ belongs to the weak-star closed subspace spanned in $L^{\infty}\left(\mathbf{R}^{k}\right)$ by the functions $e^{i t \cdot x}, t \in \sigma(\varphi)$. By duality, this happens if and only if the condition

$$
\begin{equation*}
f \in L^{1}\left(\mathbf{R}^{k}\right), \quad \hat{f}(t)=\int_{R^{k}} f(x) e^{-i t \cdot x} d x=0 \quad(t \in \sigma(\varphi)) \tag{1.1}
\end{equation*}
$$

implies

$$
\begin{equation*}
f * \varphi(x)=\int_{R^{k}} f(x-y) \varphi(y) d y \equiv 0 \quad\left(x \in \mathbf{R}^{k}\right) \tag{1.2}
\end{equation*}
$$

For other equivalent ways to formulate the spectral synthesis problem as well as for classical motivation of the problem, the reader is referred to Benedetto [1].

It is well-known that for $k \leqq 2$ (1.1) implies (1.2) if, in addition, \hat{f} is sufficiently small in a neighborhood of $\sigma(\varphi)$, e.g. if, in the 1-dimensional space, \hat{f} is in the Lipschitz class $\operatorname{Lip}_{1 / 2}$ in a neighborhood of $\sigma(\varphi)$ (see Herz [2]). On the other hand, for $k \geqq 3$ one can find a rapidly decreasing function f and a bounded function φ on \mathbf{R}^{k} such that $\hat{f}(\sigma(\varphi))=\{0\}$, but $f * \varphi \neq 0$ (see Schwartz [8], Reiter [6]). This suggests that the set of integrable functions having Lipschitz continuous Fourier transforms might be large enough to test the synthesizability of a given function in $L^{\infty}\left(\mathbf{R}^{k}\right)$, at least for $k \geqq 3$. It turns out, however, that this conjecture is false. For the group of integers this observation is due to Lee [5]. In the present paper we prove the same result on \mathbf{R}^{k}, for every k, by using a different idea. More precisely, we show the existence of a function $\varphi \in L^{\infty}\left(\mathbf{R}^{k}\right)$ such that φ does not admit spectral synthesis although $f * \varphi \equiv 0$ whenever $f \in L^{1}\left(\mathbf{R}^{k}\right), \hat{f}(\sigma(\varphi))=\{0\}$ and $\hat{f} \in \operatorname{Lip}_{\alpha}\left(\mathbf{R}^{k}\right)$ for some $\alpha>0$. This is a consequence of the following two theorems.

Theorem 1. There exists a function $\varphi \in \bigcap_{2<p \leqq \infty} L^{p}\left(\mathbf{R}^{k}\right)$ with compact spectrum such that φ does not admit spectral synthesis.

Theorem 2. Let $f \in L^{1}\left(\mathbf{R}^{k}\right)$ and $\varphi \in L^{p} \cap L^{\infty}\left(\mathbf{R}^{k}\right)$ for some $p, 2 \leqq p \leqq \infty$. Suppose that $\hat{f}(\sigma(\varphi))=\{0\}$ and $\hat{f} \in \operatorname{Lip}_{k / 2-k / p}\left(\mathbf{R}^{k}\right)$. Then $f * \varphi \equiv 0$.

In Theorem 2 we define $\frac{1}{\infty}=0$. If $p=2$ then the assumption that $\hat{f} \in \operatorname{Lip}_{k / 2-k / p}\left(\mathbf{R}^{k}\right)=C \cap L^{\infty}\left(\mathbf{R}^{k}\right)$ is trivially satisfied. Hence we have the sharp result that every bounded function in $L^{2}\left(\mathbf{R}^{k}\right)$ admits spectral synthesis.

As far as we know, Theorems 1 and 2 do not appear explicitly in the literature. However, for the group of integers similar results have been obtained by Kahane and Salem [3, pp. 121-123]. (Note that Lee's Theorem 1 follows immediately from their results.)

Before proving Theorems 1 and 2 we recall some simple and well-known properties of the spectrum. We consider fixed $\varphi \in L^{\infty}\left(\mathbf{R}^{k}\right)$ and $f \in L^{1}\left(\mathbf{R}^{k}\right)$.

$$
\begin{align*}
& \sigma(\varphi)=\left\{t \in \mathbf{R}^{k} \mid \hat{g}(t)=0 \text { for every } g \in L^{1}\left(\mathbf{R}^{k}\right)\right. \tag{P1}\\
& \text { which satisfies } g * \varphi \equiv 0\}
\end{align*}
$$

$$
\begin{align*}
& \sigma(f * \varphi) \subset \operatorname{supp}(\hat{f}) \cap \sigma(\varphi) \tag{P2}\\
& \varphi=f * \varphi \text { if } \hat{f}=1 \text { in a neighborhood of } \sigma(\varphi) \tag{P3}\\
& \operatorname{supp}\left((f \varphi)^{\wedge}\right) \subset \overline{\{t+\lambda \mid t \in \operatorname{supp}(\hat{f}), \lambda \in \sigma(\varphi)\}} \tag{P4}
\end{align*}
$$

2. Proof of Theorem 1

It is known (see Richards [7]) that there exists a real-valued function $g \in A(T)$ with the following properties: for some $\delta>0$,

$$
\begin{gather*}
C(x) \stackrel{\text { def }}{=} \sup _{j \in \mathbf{Z}}\left|\left(e^{i x g}\right)^{\wedge}(j)\right|=O\left(e^{-\delta \sqrt{|x|}}\right), \quad x \in R,|x| \rightarrow \infty, \tag{2.1}\\
g \notin \mathrm{cl}\left\{\mathrm{~g}^{2} h \mid h \in A(T)\right\} . \tag{2.2}
\end{gather*}
$$

One continuous linear functional on $A(T)$, which separates g from the closed ideal generated by g^{2}, is of the form

$$
h \rightarrow\left\langle\delta^{\prime}, h\right\rangle \xlongequal{\text { def }} \int_{-\infty}^{\infty} i x\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t) \exp (i x g(t)) d t\right) d x
$$

Let χ be the characteristic function of the interval $\left(-\frac{1}{8}, \frac{1}{8}\right)$. Define

$$
\begin{gathered}
f(x)=\sum_{n=-\infty}^{\infty} \hat{g}(-n) \chi(x-n), \\
\psi(x)=\sum_{n=-\infty}^{\infty}\left\langle\delta^{\prime}, e^{i n t}\right\rangle \chi(x-n) \quad(x \in R) .
\end{gathered}
$$

Then, clearly, $f \in L^{\mathbf{1}}(\mathbf{R})$. We will show that

$$
\begin{gather*}
\psi \in \bigcap_{2<p \leqq \infty} L^{p}(\mathbf{R}), \tag{2.3}\\
\hat{f}(\sigma(\psi))=\{0\}, \tag{2.4}\\
f * \psi \neq 0 . \tag{2.5}
\end{gather*}
$$

To prove (2.3) pick any $p \in(2, \infty)$. It follows from Parseval's formula that

$$
\sum_{n=-\infty}^{\infty}\left|\left(e^{i x g}\right)^{\wedge}(n)\right|^{p} \leqq C(x)^{p-2} .
$$

On the other hand, by Hölder's inequality

$$
\begin{gathered}
\left|\left\langle\delta^{\prime}, e^{i n t}\right\rangle\right| \leqq \int_{-\infty}^{\infty}|x|\left|\left(e^{i x g}\right)^{\wedge}(-n)\right| d x \\
\leqq\left[\int_{-\infty}^{\infty}\left(\frac{|x|}{1+x^{2}}\right)^{q} d x\right]^{1 / q}\left[\int_{-\infty}^{\infty}\left(1+x^{2}\right)^{p}\left|\left(e^{i x g}\right)^{\wedge}(-n)\right|^{p} d x\right]^{1 / p},
\end{gathered}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Hence

$$
\begin{gathered}
\|\psi\|_{p}^{p}=\sum_{n=-\infty}^{\infty} \int_{n-1 / 2}^{n+1 / 2}|\psi(x)|^{p} d x=\frac{1}{4} \sum_{n=-\infty}^{\infty}\left|\left\langle\delta^{\prime}, e^{i n t}\right\rangle\right|^{p} \\
\leqq c \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{p} \sum_{n=-\infty}^{\infty}\left|\left(e^{i x g}\right)^{\wedge}(-n)\right|^{p} d x \leqq c \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{p} C(x)^{p-2} d x
\end{gathered}
$$

for some constant $c>0$. Therefore $\|\psi\|_{p}<\infty$ by (2.1). Moreover

$$
\|\psi\|_{\infty} \leqq \int_{-\infty}^{\infty}|x| C(x) d x<\infty
$$

So (2.3) holds.
To prove (2.4) it suffices to show that $f * f * \psi \equiv 0$. Pick any $x \in \mathbf{R}$ and then an integer m such that $|x-m| \leqq \frac{1}{2}$. Then

$$
\begin{gathered}
f * f^{*} \psi(x)=\sum_{n=-\infty}^{\infty}\left\langle\delta^{\prime}, e^{i n t}\right\rangle \int_{-1 / 8}^{1 / 8} f * f(x-y-n) d y \\
=\sum_{n=-\infty}^{\infty}\left\langle\delta^{\prime}, e^{i n t}\right\rangle \int_{-1 / 8}^{1 / 8}\left[\sum_{j=-\infty}^{\infty} \hat{g}(-j) \int_{-1 / 8}^{1 / 8} f(x-y-n-j-u) d u\right] d y \\
=\int_{-1 / 8}^{1 / 8}\left[\int_{-1 / 8}^{1 / 8} \chi(x-y-u-m) d u\right] d y \sum_{n=-\infty}^{\infty}\left[\sum_{j=-\infty}^{\infty} \hat{g}(-j) \hat{g}(n+j-m)\right]\left\langle\delta^{\prime}, e^{i n t}\right\rangle \\
=\int_{-1 / 8}^{1 / 8}\left[\int_{-1 / 8}^{1 / 8} \chi(x-y-u-m) d u\right] d y\left\langle\delta^{\prime}, g^{2} e^{i m t}\right\rangle .
\end{gathered}
$$

But $\left\langle\delta^{\prime}, g^{2} e^{i m t}\right\rangle=0$ for every integer m. Hence $f * f * \psi \equiv 0$ and therefore $\hat{f}(\sigma(\psi))=$ $\{0\}$ by (P1).

Condition (2.5) follows from (2.2), since

$$
f^{*} \psi(0)=\frac{1}{4} \cdot \sum_{n=-\infty}^{\infty} \hat{g}(n)\left\langle\delta^{\prime}, e^{i n t}\right\rangle=\frac{1}{4}\left\langle\delta^{\prime}, g\right\rangle
$$

and therefore $f * \psi(0) \neq 0$.
Let $\left(K_{n}\right)_{n \in \mathbf{N}}$ be the Fejér kernel on \mathbf{R} (Katznelson [4, p. 124]). Then $f * K_{n} * \psi \neq 0$ for some n. For such an n define $\varphi=K_{n} * \psi$. Then, by (P2), we obtain the claimed result on the line. The general case now follows easily if we define

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \ldots f\left(x_{k}\right), \\
& \Phi\left(x_{1}, \ldots, x_{k}\right)=\varphi\left(x_{1}\right) \ldots \varphi\left(x_{k}\right)
\end{aligned}
$$

This completes the proof of Theorem 1.

3. Proof of Theorem 2

We will use the standard Beurling-Pollard argument (cf. Herz [2, p. 710]).
Pick a rapidly decreasing function η on R^{k} such that $\eta(0)=1$ and $\operatorname{supp}(\hat{\eta})$ is contained in the open unit ball. Define $\eta_{\varepsilon}(x)=\eta(\varepsilon x), \varphi_{\varepsilon}=(2 \pi)^{-k}\left(\eta_{\varepsilon} \varphi\right)^{\wedge} \quad(\varepsilon>0)$. If $\sigma(\varphi)$ is compact then it follows from (P3) and (P4) that φ is continuous and φ_{ε} vanishes in the set $\left\{t \in \mathbf{R}^{k}\left|\inf _{\lambda \in \sigma(\varphi)}\right| t-\lambda \mid \geqq \varepsilon\right\}$. Hence

$$
\begin{gathered}
f_{*} \varphi(x)=\lim _{\varepsilon \rightarrow 0+} \int_{\mathbf{R}^{k}} f(x-y) \eta_{\varepsilon}(y) \varphi(y) d y \\
=\lim _{\varepsilon \rightarrow 0+} \int_{H_{\varepsilon}} \hat{f}(t) \varphi_{\varepsilon}(t) e^{i t \cdot x} d t
\end{gathered}
$$

where H_{ε} denotes the set $\left\{t \in \mathbf{R}^{k}\left|0<\inf _{\lambda \in \sigma(\varphi)}\right| t-\lambda \mid<\varepsilon\right\}$. An application of Schwarz' inequality and Plancherel's theorem shows that

$$
\left|f^{*} \varphi(x)\right| \leqq \liminf _{\varepsilon \rightarrow 0+}(2 \pi)^{-k / 2}\left(\int_{H_{\varepsilon}}|\hat{f}(t)|^{2} d t\right)^{1 / 2}\left\|\eta_{\varepsilon} \varphi\right\|_{2}
$$

Let ω be the modulus of continuity of \hat{f}, defined by $\omega(\varepsilon)=\sup _{|t-\lambda| \leqq_{8}}|\hat{f}(t)-\hat{f}(\lambda)|$. Let $\left|H_{\varepsilon}\right|$ denote the measure of H_{s}. Then, by Hölder's inequality,

$$
\begin{equation*}
|f * \varphi(x)| \leqq \liminf _{\varepsilon \rightarrow 0+}(2 \pi)^{-k / 2} \omega(\varepsilon)\left|H_{\varepsilon}\right|^{1 / 2} \varepsilon^{k / p-k / 2}\|\eta\|_{2 p /(p-2)}\|\varphi\|_{p} \tag{3.1}
\end{equation*}
$$

But $\omega(\varepsilon)=O\left(\varepsilon^{k / 2-k / p}\right)$ and $\left|H_{\varepsilon}\right|=o(1)(\varepsilon \rightarrow 0+)$. Hence it follows from (3.1) that $f * \varphi \equiv 0$.

If $\sigma(\varphi)$ is not compact we convolve φ with the Fejér kernel on \mathbf{R}^{k}, apply the above argument to these convolutions and then pass to the limit. This completes the proof of Theorem 2.

4. Remarks

Theorems 1 and 2 show that the set $\left\{f \in L^{1}\left(\mathbf{R}^{k}\right) \mid \hat{f} \in \cup_{\alpha>0} \operatorname{Lip}_{\alpha}\left(R^{k}\right)\right\}$ is not large enough to test the synthesizability of a given function in $L^{\infty}\left(\mathbf{R}^{k}\right)$. For the group of integers, Lee [5, Th. 2] obtained an even stronger result. Unfortunately, it seems that our method cannot be generalized to prove Lee's Theorem 2 on the line. However, we are able to improve our results somewhat. Let φ be as in our Theorem 2. Moreover, assume that $\sigma(\varphi)$ is compact and satisfies $\left|H_{\varepsilon}\right|=o\left(\varepsilon^{a}\right)$ for some $a \geqq 0$. Let $f \in L^{1}\left(\mathbf{R}^{k}\right)$ and assume that, for some constants $\alpha, c>0,|\hat{f}(t)| \leqq c \inf _{\lambda \epsilon_{\sigma(\varphi)} \mid}|t-\lambda|^{\alpha}$ in a neighborhood of $\sigma(\varphi)$. Then the proof of Theorem 2 above shows that $f * \varphi \equiv 0$ if

$$
\begin{equation*}
\alpha+\frac{a}{2}+\frac{k}{p}-\frac{k}{2} \geqq 0 . \tag{4.1}
\end{equation*}
$$

Now let φ be as in Theorem 1. It follows from (4.1) that $f * \varphi \equiv 0$ whenever $f \in L^{1}\left(\mathbf{R}^{k}\right)$ and $|\hat{f}(t)| \leqq c \inf _{\lambda \in \sigma(\varphi)}|t-\lambda|^{\alpha}$ in a neighborhood of $\sigma(\varphi)$, for any $\alpha>0$.

We mention finally that the inequality (4.1) is sharp for every $k \geqq 3$. This can be deduced from Schwartz' example [8]. We omit the details.

References

1. Benederro, J. Spectral synthesis, Teubner, Stuttgart 1975.
2. Herz, C. S., Spectral synthesis for the circle, Ann. Math. 68 (1958), 709-712.
3. Kahane, J.-P. and R. Salem, Ensembles parfaits et séries trigonométriques. Hermann, Paris 1963.
4. Katznelson, Y., An introduction to harmonic analysis. Dover Publications, New York 1976.
5. Lee, S.-Y., Lipschitz functions and spectral synthesis. Proc. Am. Math. Soc. 83 (1981), 715-719.
6. Reiter, H., Contributions to harmonic analysis IV. Math. Ann. 135 (1958), 467-476.
7. Richards, I., On the disproof of spectral synthesis. J. Comb. Theory 2 (1967), 61-70.
8. Schwartz, L., Sur une proprieté de synthèse spectrale dans les groupes non compacts. C. R. Acad. Sci. Paris 227 (1948), 424-426.
