Sums of complemented subspaces in locally convex spaces

Lars Svensson

1. Introduction

Let P_{1}, \ldots, P_{m} be continuous linear projections onto the subspaces N_{1}, \ldots, N_{m} of a topological vector space X. Two natural questions arise:
(a) Is $N_{1}+\ldots+N_{m}$ closed?
(b) Is $N_{1}+\ldots+N_{m}$ complemented?

In [3], H. Lang answers (a) affirmatively in case X is a Fréchet space and all products $P_{i} P_{j}, i \neq j$, are compact. This generalizes a similar result by L. Svensson [4] for reflexive Banach spaces.

The aim of this paper is to answer question (b). In fact we will prove that if X is a Hausdorff locally convex topological vector space and $P_{i} P_{j}$ is compact for $i \neq j$, then $N_{1}+\ldots+N_{m}$ is complemented. Moreover a continuous linear projection onto this sum is given by $P_{1}+\ldots+P_{m}$, modulo compact operators.

If X is a Hilbert space, we will prove that $N_{1}+\ldots+N_{m}$ is closed if $N_{i}+N_{j}$ is closed for all i, j and every product $P_{i} P_{j} P_{k}$ is compact for $i \neq j \neq k \neq i$.

2. Sums of complemented subspaces in locally convex spaces

Throughout this paper we will use the following definitions and notations.
A continuous linear map from one topological vector space into another is called a homomorphism if it is relatively open, compact if it maps some open set onto some relatively compact set and a projection if it is idempotent.

A map T is a compact perturbation of a mapping S, if $S-T$ is compact. A subspace of a topological vector space (TVS) is called complemented (topologically
supplemented or a direct summand) if it is the image of some continuous linear projection.

Lemma 2.1. A subspace L in a TVS X is complemented precisely if the canonical map $X \rightarrow X / L$ has a right inverse, which also is a homomorphism.

Proof. Strightforward verification.
Lemma 2.2. Let $S: X \rightarrow Y$ and $T: Y \rightarrow Z$ be homomorphisms such that $\operatorname{im} S \supset \operatorname{ker} T$. Then $T S$ is a homomorphism.

Proof. Easy verification.
Lemma 2.3. Let L and M be subspaces of a TVS X. Suppose that $L \subset M$ and that L is complemented in X. If, in addition, M / L is complemented in X / L, then M is complemented in X.

Proof. Consider the commutative diagram below, where all topologies and mappings are the canonical ones

The reader may recall that s is a topological isomorphism. By the assumption and Lemma 2.1 there exist homomorphisms

$$
p^{\prime}: X / L \rightarrow X \quad \text { and } \quad r^{\prime}: \frac{X}{L} / \frac{M}{L} \rightarrow \frac{X}{L}
$$

such that $p \circ p^{\prime}$ and $r \circ r^{\prime}$ are the identity mappings.
Thus both p^{\prime} and r^{\prime} are injective and we conclude from Lemma 2.2 that $p^{\prime} \circ r^{\prime}$ is an injective homomorphism. Hence $q^{\prime}=p^{\prime} \circ r^{\prime} \circ s: X / M \rightarrow X$ is a homomorphism.

But $q \circ q^{\prime}=s^{-1} \circ r \circ p \circ p^{\prime} \circ r^{\prime} \circ s$ is the identity on X / M.
This proves the lemma.
Lemma 2.4. Let T be a homomorphism from one TVS X into another Y. Suppose that $\operatorname{ker} T$ and $\operatorname{im} T$ are complemented with projections P and Q respectively. Then T has a "left pseudo-inverse", i.e. there exists a homomorphism $T^{\#}: Y \rightarrow X$ such that $T^{\#} T=I-P$.

Proof. Consider the diagram below, where T_{0} is an isomorphism.

Now put $T^{\#}=J T_{0}^{-1} Q$.
By Lemma 2.2, $T^{\#}$ is a homomorphism.
Much of what remains, in this paper, is to refine the following.
Lemma 2.5. Let P and Q be projections onto the subspaces L and M in a TVS X. Suppose that $I-P Q$ and $I-Q P$ are homomorphisms with complemented kernels and images. Suppose, moreover, that their kernels are equal.

Then $L+M$ is complemented in X.
Proof. By assumption $L \cap M=\operatorname{ker}(I-P Q)=\operatorname{ker}(I-Q P)$. Thus, by Lemma 2.3, we may assume that $L \cap M=0$. Now it is straightforward to verify that $R=P(I-Q P)^{\#}(I-Q)+Q(I-P Q)^{\#}(I-P)$ is a projection onto $L+M$.

Remark. The reader should have no difficulty in verifying that

$$
R=I-S+S Q S(I-P Q)^{\#}(I-P) S+S P S(I-Q P)^{\#}(I-Q) S
$$

is a projection onto $L+M$ (where $I-S$ is any projection onto $L \cap M$).
Lemma 2.6. Let E be a finite dimensional and F a complemented subspace in some Hausdorff locally convex TVS (from now on abbreviated HLCTVS). Then $E+F$ is complemented. If moreover $E \cap F=0$, and Q is some projection onto F, there exists a projection P onto E satisfying $P Q=0$, with the property that $P+Q-Q P$ is a projection onto $E+F$.

Proof. It is no loss of generality to assume that

$$
\operatorname{dim} E=1, \quad \text { and that } E \cap F=0
$$

If $0 \neq e \in E$, it follows from the Hahn-Banach theorem that some $e^{\prime} \in X^{\prime}$ annihilates F and satisfies $e^{\prime}(e)=1$.

Put $P x=e^{\prime}(x)$ e.
The rest is plain verification.
Definition. A homomorphism from one TVS into another is called a quasi-isomorphism if its kernel has finite dimension and its image has finite codimension.

Lemma 2.7. In a HLCTVS compact perturbations of isomorphisms are quasiisomorphism.

Proof. See Grothendieck [2].
We now have come to our main result.
Theorem 2.8. Let L, M be complemented subspaces in a HLCTVS X with corresponding projections P, Q. Suppose that $I-P Q$ and $I-Q P$ are compact perturbations of isomorphisms. Then $L+M$ is complemented. Furthermore, if $P Q$ and $Q P$ are compact, then $P+Q$ is a compact perturbation of some projection onto $L+M$.

Proof. We will reduce this theorem to Lemma 5. To do this we introduce

$$
\begin{aligned}
H & =\operatorname{ker}(I-P Q) \subset L \\
K & =\operatorname{ker}(I-Q P) \subset M \\
\tilde{L} & =L+K \\
\tilde{M} & =M+H
\end{aligned}
$$

We observe that $L \cap M=H \cap K$ is finite dimensional. Thus, by passing to the quotient space $X / L \cap M$ we may, in view of Lemma 3, assume that $L \cap M=0$. Hence $H \cap M=$ $K \cap L=0$.

Since H and K are finite dimensional we conclude, from Lemma 6, that there exist projections S and T onto H and K, respectively, such that $\widetilde{P}=P+(I-P) T$ and $\tilde{Q}=Q+(I-Q) S$ are projections onto \tilde{L} and \tilde{M}, respectively. Since S and T are compact, $I-\widetilde{P} \widetilde{Q}$ and $I-\widetilde{Q} \widetilde{P}$ are compact perturbations of isomorphisms.

Obviously $L+M=\widetilde{L}+\tilde{M}$, so if we show that $\operatorname{ker}(I-\widetilde{P} \widetilde{Q})=\operatorname{ker}(I-\widetilde{Q} \widetilde{P})$, the proof will follow from Lemma 2.5. Since $H \subset L \cap \tilde{M} \subset \tilde{L} \cap \tilde{M}$ and $K \subset \tilde{L} \cap \tilde{M}$, we get $H+K \subset \tilde{L} \cap \tilde{M} \subset \tilde{H} \cap \tilde{K}$, where $\tilde{H}=\operatorname{ker}(I-\tilde{P} \widetilde{Q})$ and $\widetilde{K}=\operatorname{ker}(I-\widetilde{Q} \widetilde{P})$. Now we claim that $\tilde{H} \subset H+K$. Indeed if $x \in \tilde{H}$, then

$$
x=\widetilde{P} \widetilde{Q} x=P Q x+P(I-Q) S x+(I-P) T(Q+(I-Q) S) x
$$

So $P x=P Q x+P(I-Q) S x$. But clearly $P Q S=S=P S$. Hence $P x=P Q x$ for all x in \tilde{H}. Since $\tilde{H} \subset \tilde{L}=L+K$, every x in \tilde{H} can be written as $y+z$, where $y \in L$ and $z \in K$.

Therefore $P x=P(y+z)=P Q(y+z)$ yielding $y=P Q y \in H$. Hence $\tilde{H} \subset H+K$, proving our claim.

Finally $\tilde{L} \cap \tilde{M} \subset \tilde{H} \subset H+K \subset \tilde{L} \cap \tilde{M}$, from which we conclude that $\tilde{L} \cap \tilde{M}=$ $\tilde{H}=\tilde{K}=H+K$, and consequently that $L+M$ is complemented. The rest of the theorem follows easily from the remark made after Lemma 2.5.

An induction argument yields.
Corollary 2.9. Let N_{1}, \ldots, N_{m} be complemented subspaces in a HLCTVS with corresponding projections $P_{1} \ldots P_{m}$. Assume that $P_{i} P_{j}$ is compact whenever $i \neq j$. Then $N_{1}+\ldots+N_{m}$ is complemented. Moreover, $P_{1}+\ldots+P_{m}$ is a compact perturbation of a corresponding projection.

3. Sums of closed subspaces in Hilbert spaces

Our aim in this section is to prove.
Theorem 3.10. Let $P_{1} \ldots P_{m}$ be orthogonal projections onto the subspaces $N_{1} \ldots N_{m}$ of a Hilbert space H such that
(i) $N_{i}+N_{j}$ is closed for all i, j;
(ii) $P_{i} P_{j} P_{k}$ is compact for all $i \neq j \neq k \neq i$.

Then $N_{1}+\ldots+N_{m}$ is closed in H.
Before we prove this, we need a couple of Lemmas.
Lemma 3.11. Let P and Q be orthogonal projections onto L and M, subspaces of a Hilbert space H.

Then $L+M$ is closed precisely if $I-P Q$ has closed image.
Proof. We may assume that $L \cap M=0$, otherwise we just pass to the quotient space $H / L \cap M$. By duality, im $(I-P Q)$ is dense. Thus, by the open mapping theorem, $I-P Q$ is invertible if and only if $\operatorname{im}(I-P Q)$ is closed.

Also, as is easily seen, $I-P Q$ is invertible precisely if $|P Q|<1$.
Finally, as is well-known, $L+M$ is closed precisely if $|P Q|<1$, proving our lemma.

Lemma 3.12. Let P, Q, R be orthogonal projections onto the subspaces L, M, N of a Hilbert space H, such that
(i) $L+M, L+N, M+N$ are closed.
(ii) $L \cap N=M \cap N=0$.
(iii) $P Q R, R P Q$ and $Q R P$ are compact.

Then $L+M+N$ is closed.
Proof. Letting $P \wedge Q$ denote the orthogonal projection onto $L \cap M$, it is not too hard to verify that

$$
\begin{align*}
S & =P \wedge Q+(I-Q)(I-P Q+P \wedge Q)^{-1}(P-P \wedge Q) \tag{*}\\
& +(I-P)(I-Q P+P \wedge Q)^{-1}(Q-P \wedge Q)
\end{align*}
$$

is an orthogonal projection onto $L+M$. A simple calculation shows that

$$
I-R S=(I-R P)(I-R Q)+K
$$

for some compact operator K.
By Lemma 3.11, $I-R P$ and $I-R Q$ are invertible. Hence, $I-R S$, being a Fredholm mapping, has a closed image. Thus, by Lemma $3.11, L+M+N$ is closed.

Lemma 3.13. Let L, M, N be closed subspaces in a Hilbert space H, with orthogonal projections P, Q, R respectively. Suppose that
(i) $L+M, L+N, M+N$ are closed.
(ii) $P Q R, R P Q, Q R P$ are compact.

Then $L+M+N$ is closed.
Proof. Since $(R \wedge P)(R \wedge Q)$ is compact, it follows from Theorem 8 that $E=N \cap L+N \cap M$ is closed, and that $R \wedge P+R \wedge Q$ is a compact perturbation of an orthogonal projection T onto E. (The orthogonality follows easily from the fact that $R \wedge P+R \wedge Q$ is self adjoint).
$\tilde{R}=R-T$ is an orthogonal projection onto $\tilde{N}=N \cap E^{\perp}$ where \perp denote orthogonal complement. We observe that $\tilde{N} \cap L=\tilde{N} \cap M=0$, and that $L+M+N=L+$ $M+\widetilde{N}$. Now we want to apply Lemma 3.12 to L, M and \tilde{N}. That $P Q \tilde{R}, \tilde{R} P Q$ and $Q \widetilde{R} P$ are compact is easily checked. Hence it only remains to show that $L+\tilde{N}$ and $M+\tilde{N}$ are closed.

A straightforward calculation shows that

$$
P \tilde{R}=P R(I-R \wedge P)+K
$$

for some compact operator K.
But, since $L+N$ is closed, the norm of $P R(I-R \wedge P)$ is less than 1 . Hence $I-P \widetilde{R}$ is a compact perturbation of an isomorphism.

From Theorem 2.8 we therefore conclude that $L+\tilde{N}$ is closed. Similarly we get that $M+\tilde{N}$ is closed, completing the proof.

Proof of Theorem 3.10. Induction on m.
Remark. A generalization of Theorem 3.10 in terms of products of four projections is not valid, as the following counter example shows. Put for $n=1,2, \ldots$

$$
\begin{aligned}
K_{n} & =\operatorname{span}(1,0,0,0) \subset \mathbf{R}^{4} \\
L_{n} & =\operatorname{span}(0,1,0,0) \\
M_{n} & =\operatorname{span}(0,0,1,0) \\
N_{n} & =\operatorname{span}\left(1,1,1, n^{-1}\right) \\
H_{n} & =\mathbf{R}^{4}
\end{aligned}
$$

and let H be the direct product of the H_{n}, with K, L, M, N similarly defined as subsets of H.

If S, P, Q and R denote the orthogonal projections onto K, L, M and N respectively, one easily verifies that the product, in any order, of P, Q, R and S is 0 .

Moreover, every sum of three or less of the subspaces K, L, M and N is closed.
However, $K+L+M+N$ is not closed. If we put $\tilde{L}=K+L$ we get an example showing that we really need the assumption that every permutation of the product in condition (ii) of Theorem 3.10, is compact.

Remark. In [4] Theorem 2.8 is used to study questions arising in theoretical tomography concerning the closure of a finite sum of subspaces of L^{p} consisting of functions constant on certain sets. In a future paper we will use Theorem 3.10 to give a functional analytic proof of a theorem in three-dimensional theoretical tomography, due to J. Boman [1]. Theorem 2.8 can also be used to prove theorems about extensions of functions and existence theorems for certain partial differential equations, see [4].

References

1. Boman, J., On the closure of spaces of sums of ridge functions and the range of the X-ray transform, Ann. Inst. Fourier, Grenoble 34, 1 (1984), 207--239.
2. Grothendieck, A., Topological Vector Spaces, Gordon and Breach 1973.
3. LaNG, H., On sums of Subspaces in Topological Vector Spaces and an Application in Theoretical Tomography, Applicable Analysis, 1984, 18 257-265.
4. Svensson, L., On the closure of sums of closed subspaces, Research report, Royal Inst. of Technology (Stockholm), 1981.

Received April 9, 1985
Department of Mathematics Royal Institute of Technology 10044 Stockholm Sweden

