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O. Introduction 

Let G be a connected real semisimple Lie group with finite centre, and let z be an 
involutive automorphism of G. Put G'={x~G: z(x)=x}, and let H be a closed 
subgroup of G with (G'),cHcG'; here (G'), denotes the identity component of GL 

In this paper we investigate some properties of the algebra D(X) of invariant 
differential operators on the semisimple symmetric space X=G/H. Our main results 
are that the action of D(X) diagonalizes over the discrete part of L2(X) (Theorem 1.5), 
and that the irreducible constituents of an abstract Plancherel formula for X occur 
with finite multiplicities (Theorem 3.1). Both results are proved by using techniques 
of Harish--Chandra adapted to the situation at hand. 

1. The action of D (X) 

Let dx be a choice of left-invariant measure on I". Then by the left regular repre- 
sentation L, G acts unitarily on L~(X)=L~(X, dx). An irreducible subrepresentation 
of L is called a discrete series representation of X. The closure L](X) of the linear 
span of such irreducible subrepresentations is called the discrete part of L z(X). 

Let Kbe  a z-stable maximal compact subgroup of G. Then by [5] the space L](JO 
is non-trivial if rank (G/H) =rank (K/KnH). In [15] it is proved that this rank con- 
dition is also necessary for the existence of discrete series. In the proof, the assertion 
that every discrete series representation can be realized in an eigenspace for D(X) 
is fundamental (cf. [15, p. 360, Remark (i)]). This assertion is basically a consequence 
of  [17, Remark following Lemma 9], where it is claimed that every formally self- 
adjoint operator in D(X) is essentially self-adjoint as an unbounded operator in 
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L2(X). However, the proof given in [17] is incomplete (cf. also [15, p. 388, Remark 
(ii)]). The missing ingredients are provided by Lemmas 1.1 and 1.2 below. 

Let g and [~ be the Lie algebras of G and H respectively, U(g) the universal enve- 
loping algebra of g's complexification ~c, and 3 the centre of U(g). Given uE U(g), 
we write Lu=L(u) (resp. Ru=R(u)) for the infinitesimal action of u on C*~(G), 
induced by the left-(right-) regular representation L (resp. R) of G. If u lies in the space 
U(g) H of Ad~(H)-invariant elements of U(g), then R~ leaves the space C=(G/H) 
invariant, and thus determines an element of D (X), which we also denote by R,. As is 
well l~nown the map u,+R~ induces an isomorphism of U(g)n](U(~)RmU(g)I)) onto 
D(X) (of. [9]). Moreover, D(X) is commutative and finitely generated as a 3-module 
(cf. [9] and [20, Thin. 2.2.1.1 ]); if G is classical we even have D (X) = R (3) (cf. [ 10]). 

Let L~(X)**={fEC=(X); L,fEL~(X) for all uEU(g)} be equipped with the 
topology induced by the seminorms 

(1) P,: f ~-~ [IL, flIL'cx) (uE U(g)). 
Then we have the following lemmas. 

Lemma 1.1. D(X) maps L~(X) *~ continuously into itself, 

Lemma 1.2. C~(X) is dense in L~(X)% 

We shall prove Lemma 1.1 at the end of this section, and postpone the proof of 
Lemma 1.2 to the next. But first we derive the result we set out for. If DED(X), we 
define the differential operator D*, called the formal adjoint of D, by 

(Df, g) = (f,D*g) (f, gEC~(X)). 

By G-invarianee of D and (.,  .) it follows that D*ED(X). The following lemma is 
a straightforward consequence of Lemmas 1.1 and 1.2. 

Lemma 1.3. I f  f, gEL2(X) *~ DED(X), then (Df, g)=(f, D'g). 

The above lemma completes the proof of [17, Lemma 9], so that we have 

Proposition 1.4. I f  DED(X), D=D*, then D is an essentially self adjoint opera- 
tor in L2(X) with operator core L2(X) .0. 

Let D,(X)={DED(X); D=D*}. If DED(X), then D+D* and i(D-D*) 
belong to D,(X), so that the real subalgebra D,(X) spans D(X) over C. 

Remark. In view of [ 13, Cor 9.2], the elements of Ds (X) have mutually commuting 
spectral resolutions. 

Theorem l.5. L](X) admits an orthogonal decomposition L~(X)=~ '=  1 Vi 
(Hilbert sum) into irreducible closed G-invariant subspaces, such that D(X) acts by 
scalars on every Vs. 
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Proof. Let VcL](X) be a non-zero irreducible closed G-invariant subspace, and 
write VK for the subspace of K-finite vectors in V. Then 3 acts by sclalars on VKc 
L2(X) .0. By Lemma 1.1 the elements of D(X) act as (g, K)-homomorphisms on 
L~(X) *~, so that U=D(X)VK is a (g, K)-submodule of L~(X) 0~. It is a finite direct 
sum of copies of V K because D(X) is a finite 3-module. Thus if W is the closure of U 
in L2(X), then WK= U. Select a K-type 6C/~ occurring in V. Then D(X) leaves the 
subspace W(6) of K-finite vectors of isotopy type fi invariant. Moreover, by Lemma 
1.3, the elements of Ds(X) act as self-adjoint operators on the finite dimensional space 
W(6). Since D,(X ) is commutative there exist distinct homomorphisms Xj: Ds(X)~ 
R(l<_-j<-m), and non-trivial subspaces W(6)j (l<-j<_-m) of W(~), such that 
IV(J)=O~=I W(~)j and every DED~(X) acts by the scalar )~(D) on W(6)i. Put 
U~ = U(g)W(6)i, Wj=cl  (Uj); then (Wj)K= Uj. Moreover, every D~Ds(X) acts as 
xj(D)I on Uj. The Z1 being distinct, one easily sees that U,_I_ Uj if ir Hence 
W,_I_ Wj (i~j). Every U, is a finite multiple of VK, hence every W, is a finite ortho- 
gonal direct sum of copies of V (cf. [6, Theorem 8]). It follows that Vis contained in a 
finite orthogonal direct sum z~=l  V, where Vi are irreducible closed G-invariant 
subspace of L2(X), all equivalent to V, and such that D(X) acts by scalars on Vi 
(1-<i~_n). The theorem now follows by an easy application of Zorn's lemma; the 
ultimate decomposition is countable because L2(X) is separable. [] 

Let us denote the infinitesimal involution corresponding to z: G-*G by the same 
symbol. Thus b, the Lie algebra of H, equals the +1 eigenspace of ~: g-+g. The 
Cartan involution 0, associated with K, commutes with ~, and we have a direct sum 
decomposition 
(2) g = (~c~q)@(~nb)~(pcsq)G(pc~D) , 

where p and q are the - 1 eigenspaces of 0 and z respectively. Fix a maximal abelian 
subspaee ap~ ofpc~q, and let A =A (g, %q) be its restricted root system. Then A is a 
(possibly non-reduced) root system (cf. [18]). If eEA, we write g" for the correspond- 
ing root space. Select a system A + of positive roots in A, and put: 

(3) n = Z,,~.,+ ~", a = Z,,~.,+ g-". 

Since z and 0 both leave %g invariant, the centralizer I of aj, q in g admits the decompo- 
sition 

(4) l = I ~ I ~ a , ~ I , h  

subordinate to (2). We will frequently use notations like Ih=Ic~b, etc. Since zO=I 
on %~, zO leaves every root space g~&EA) invariant, and we have corresponding 
decompositions 

= g+ (~g_ 

in + 1 and - 1 eigenspaces. We put 

(5) ~+ = { ~ ;  g~ e 0}. 
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Thus, if A+ =0, then %~ is central in the reductive subalgebra g+ =g~0 of g. If 
A + ~ 0, one has the obvious identifications A + =A (g+, %q), g~_ =g 'ng+  (eEd +). 
Nowput  

aff~ = {YE%q; e(Y) > 0  for all c~EA+nA+}, 

and A+~=exp (a+e). If A+ =0 this should be interpreted as + - ape - -  ape .  
Let ~ be the collection of positive systems P for A, satisfying P n d  § = d §  § 

I fPE~,  then a~(P)--{YEape; a(Y)>O for all aEP} is contained in a~, and 

(6) el (%+) = UeEe~ cl (a~e(P)). 

Moreover, we put n(P)=~'~EP g-~, and write N(P) for the ring of functions 
~/pc*R generated by 1 and 

a - ~  = e - ~ l ~  ( c c E P ) .  

Clearly, the elements of N (P) are bounded on A + (P)=exp (a + (P)). 
Given any subset s of g, we let U(s) (resp. S(s)) denote the complex subalgebra 

generated by 1 and s of U(g) (resp. of the symmetric algebra S(g) of go). 

Lemmal .6 .  Let DEU(g), PE~.  Then there exist f~EN(P), r 
u~E U(I), the U(I)) (1 <=i<-I), such that for all aE Ape we have: 

D = Z ~ I  f~(a) r i. 

Proof One easily checks that fl admits the direct sum decomposition 

Hence, by the Poincard--Birkhoff--Witt theorem, U(g)= U(~(P))U(I)U(b). The 
assertion follows from this decomposition and the observation that X_ ,=  
a-'Ad(a-1)(X_~), for X-~Eg-'(~EP) and aEApe. [] 

Lemraa 1.7. Let /3ED(X). Then there exist a constant C>O and vjE U(g) 
(1 <-j<=J), such that for all ~pEC~176 we have: 

(7) l/3~(x)l <= C max_ IZoj~o(x)l (xEX). 

Proof. We have /3 =R  D for some DE U(g) H. By the Cartan decomposition 

G = Kcl(A'~a)H 

(cf. [4, Theorem 4.1]) it suffices to prove (7) for xEKcl(A+q), and since (6) is a finite 
union, it even suffices to prove (7) for xEKcl(A+p(P)), with P E ~  fixed. By Lemma 
1.6 there exist w~E U(g), and f~EN(P) (1 <=n<=N), such that 

R .  q) (a) = Z~=I f .  (a) [L (wn) qg] (a), 
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for all 9EC~~ aEApq. Let vl . . . . .  v s be a basis for the linear subspace of U(g) 
spanned by {(W,)k; l<=n<=N, kEK}, and define functions rn~: K-+C by 

Then 

whence 

Wn)k J = Z~=I m~(k)vj. 

R, q~ (ka) = Z (k-l) (R ~ 9) (a) = RD (L (k-~) q~) (a) 

= Z~=I f,,(a)[L(w,,)L(k-1)q~](a), 

.R~9(ka) N = Z n = l  Z~=I  f~(a) m~(k)[L(vj)q~l(ka), 

Now the m~ are bounded on K, whereas thef~ are bounded on cl (A+q(P)). This 
proves (7). []  

Lemma 1.1 now follows easily from Lemma 1.7 and the fact that L u ~ = ~ L  u 
for all uE U(g). 

2. Density of C~ (X) in L2(X)  ~ 
o 

In this section we prove Lemma 1.2, following closely the ideas of Harish-- 
Chandra [8, w (cf. also [19, p. 342]). Let aa: G~[0, ~) be the function defined by 

a~(k exp Y) = I[YlI : [-B(Y, OY)] 1/~, 
for kEK, YEp. Recall that aG is bi-K-invariant and continuous; aa(e) =0, a~(x)> 
0 for xCK, andif  x, yEG, then ao(x)=a6(x -1) and: 

tro (xy) <- a~ (x) + ao (y) 
(cf. [19, p, 320]). 

The map K•215 (k, Y, Z)~-,-k exp Yexp Z is a diffeornorphism 
([4, Proof of Thin. 4.1]). We define ax:G--,-[O, co) by 

ax(k exp Yexp Z)=ll  Yll (kEg, YEpnq, ZEpnb).  
From the Cartan decomposition H=(HnK)  exp (pnb), one easily deduces that 

ax(kah) = lIlog all, 
for kEK, aEApq, hEH. 

Proposition 2.1. The function a x is continuous, and left K-and right H-invariant; 
ax(e)=0 , ax(X)>0 i f  x~KH, and i f  xEG, yEG, then 

~,:(~x) = '~x (x), 

(8) ~x(Xy <- ~G(x) + ~x(y). 

Proof. The first assertions are obvious by what we said above. The first formula 
follows from the fact that the decomposition G = K  exp (pnq) exp (phi))is  z-inva- 
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riant, whereas z acts as - I  on pnq.  Formula (8) follows from a reasoning similar to 
the one in [14, Lemma 2.31]. We give it for the sake of completeness. 

Fix a maximal abelian subspace aph of Iph and put % = %q @ %h, Av = exp ap, 
Let xEKaK, yEKbH (aEAp, bEApq). Then cr~(x)=l[loga[], ax(y)=l[logbl[, and 
xyEKaKbH. Also xyEKcH for some cEAvq. It follows that ch=klak2b for certain 
hell, kl, k2E K. Hence 

h = c-lklak2 b = ck~a'k~ b -1, 
so that 

c 2 = kl ak2 b 2 (k~)-1 (a ~) -1 (k~)-1. 

Hence 2 Illog cll = ~ ( c  ~) =a~(ak2b2(k~)-l(a~)-l)~-a~(a) +~r~(a ~) + 2  Illog bll. The esti- 
mate (8) now follows from the obvious fact that ][log a'll = lllog all. [] 

We also view ax as a function on X, and for t > 0  we define Bx(t)= 
{xEX; ax(X)<=t}. Then Bx(t) is compact in X, for every t>0 .  

Lemma 2.2. Let e>0 .  Then there exist left K-invariant functions ~/tEC'~(X), 
such that: 

(i) 0<-r (t>O, xEX), 
(ii) ~k,=l on Bx(t ) andsupp (~/t)C=Bx(t +e) ( t>0) ,  

(iii) i f  uE U(~), then there exists a C~>0 such that: 

supx IZ,~,l <= C~ (all t > 0). 

Proof. Fix ~EC~(K\G/K) such that supp r aa(x)<_-e/4}, 
such that ~k(x)=~(x-1)_->0 for all xEG, and such that fG@(g)dg=l (where some 
choice of Haar measure for G has been made). Moreover, let Zt be the characteristic 
function of  the set Bx(t+�88 and put ~q=@*Z,, i.e. ~k,(x)=fa ~(g)x,(g-~x)dg 
(xEX). Then the ~k t satisfy the assertions. In fact, (i) is obvious, (ii) follows from 
B e (~ e) B x (t +~ e) c= Bx (t +~ e) (cf. (8)). Finally (iii) follows from L~k t = (L~/) �9 Z,. 

Proof of Lemma 1.2. Fix a seminorm p.  (uE U(g)), and let {~t} be as in Lemma 
2.2. Then just as in [19, Thin 2, p. 343] it follows that p . (~k t f - f )~0  as t ~  + 0% 
for every fE L 2 (X) ~. [] 

3. Finite multiplicity theorems 

Since G is of type I (cf. [6]), the left regular representation L of  G on L2(X) has 
a direct integral decomposition 

(9) fa 
where d/~ is some Borel measure on the unitary dual t~ of  (7, equipped with its usual 
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Borel structure (of. e.g. [12]). The ~" are multiples of ~E d of possibly infinite multi- 
plicity m(ct, n'). The main result of this section is: 

Theorem 3.1. For almost every ~E~ we have re(at, n ' )<  oo. 

Remark. In particular this implies that every discrete series representation of G/H 
occurs with finite multiplicity in L] (G/H). 

In order to prove Theorem 3.1 we need some results of [16], which we now briefly 
describe. 

If  rc is a unitary representation of G in a separable Hilbert space a~f =o~g'~, we 
write :Of= for the space of C=-vectors in X ,  equipped with its usual Sobolev topology 
(i.e. the topology defined by seminorms as in (1)). An element 6 of the topological 
dual 3r "-~* of ~r is said to be a generalized cyclic vector if tp =0  is the only element 
of 0U *~ satisfying 6(~(g)cp)=0 for all gEG. Thus, the Dirac measure ~ of X = G / H  
at eH is a generalized cyclic vector for (L, Lz(X)). The decomposition (9) induces 
a decomposition 

a,u = 6" d#(~) aO 

in the sense of [16, Corollary C.I.]. Here the 6" are generalized cyclic vectors in 
~ ' = ~ , .  They are uniquely determined for almost every atEd; since 6~n is H-inva- 
riant, the 6 ~ must therefore be H-invariant for almost every at. 

A unitary representation n together with a generalized cyclic vector e is called 
a cyclic pair. Such a cyclic pair has a canonical realization on a left G-invariant Hilbert 
subspace V~ of the space 9 '  (G) of distributions on G, with the G-action induced by 
the left regular representation of G on C~ The isomorphism T: a"r ~ V~ is defined 
by 

for uE~r q~ECT(G). Here 
9" (G/H). We conclude: 

ru( ) = 

(p'(x)=~p(x-a). Obviously e is H-invariant iff V . c  

Lemma 3.2. For almost every ate G, 7r ~ has a canonical realization on a Hilbert 
subspace V" of g '  (G/H). 

Proof of Theorem 3.1. Let X': 3 ~ C  be the infinitesimal character of ate G, and 
let e E/~ be a K-type occurring in at. Then the space V'(~) of K-finite vectors of type 6 
in V ~ is contained in ' �9 9,(G/H, ff)={uEg"~(G/H)(8); Lzu=~'(Z)u for all ZE3}. 
By an application of the elliptic regularity theorem as in [19, Proof of Thin. 7.8, 
p. 310] it follows that the elements of 9"~(G/H; ~') are real analytic functions. There- 
fore this space will also be denoted by A,(G/H; X'). In the remainder of this section we 
willprove that dime A,(G]H; X") is bounded by a finite number dim (~)~[W(~): W(~0)] 
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involving the index of one Weyl group in another (Corollary 3.10). Hence 

m (~, 7:) <= dim (e)2 [W(~): W(~0)], 

for almost all ~Ed. [] 

For the sake of completeness we list the following lemma which is proved along 
similar lines. 

Lemma 3.3. Let rc bean irreducible unitary representation of  G in a Hilbert space 
J:.  Then the space (o,~f "-~176 of  H-fixed distribution vectors has finite dimension over C. 

Remark. For other results concerning H-fixed distribution vectors related to the 
Plancherel formula we refer the reader to [2, 3, 11]. 

The remainder of this section is devoted to the proof of Corollary 3.10. Recall 
the definitions (3) and (4) of ~ and I~q. 

Lemma 3.4. The algebra ~ splits into a direct sum of  vector subspaces 

(10) g = ~eI~qe%~et). 

Proof. If ~EA=A(g, %q), then r(g~)=g-~. It is easily seen that the map 
Ih• (X, Y)'~-+X+Y+~Y is bijective and so ~ @Ih| The assertion 
now follows from the obvious decomposition 9=~Glkq|174 [] 

Extend %q to a Cartan subalgebra a of 9, and let ~ =A (go, ac). Then restriction 
of ~ =  {aE ~; alapqr to %q gives all of A, and we may select a system ~+ of posi- 
tive roots for �9 which is compatible with A +. 

If ~EA+nA + (cf. (5)), we define f_~, g~_: Ap + ~ R  by 

f~_(a) = ( a ' - a - ~ )  -1, g~_(a) = - a - ' f ~ . ( a ) .  

Moreover, if aE A +, 85 r 0, we put 

f~(a) = (a '+a-~)  -1, g~_(a) = - a - ~ f ~ ( a ) ,  

for aE Apq. Let ~ +  be the algebra of functions A+q ~ R  generated by f.~, g+, ,f_~,a g# 
(aEA + c~A +; flEA +, g~ # 0), and let ~ be the ring generated by 1 and ~ + .  

Lemma 3.5. Let aEA +, X~Eg~+ (or EgS). Then there exist f l , f 2 E ~  +, such that 
for all aEA+q one has: 

(11) OX, = fl(a)(X,+OX,)"-~+f2(a)(X,+zX,). 

Proof. If X~ES~_, then zX,=OX, and one easily checks (11) to hold with 
f~=f_~, f~=g~. On the other hand, if X~E~_, then ~ , = - O X ,  and (11) holds 
with A =f-~, A =g~-. 
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Let ~0={aE~; al%q=O}. Then ~o=A(Ic, ac), and ~ + = ~ 0 n ~  + is a system of 
positive roots for ~0. Put ~ ( ~ ) = ~  (summation over ~+), q ( ~ o ) = ~ a  
(c~E~+), n c ( ~ ) = ~ g ~  (~E~+), n~(~0)=~'~9~ (~E~+), ~ ( ~ ) = ~ ' ~ g j  (~E~+), etc. 
By the Poincar~--Birkhoff--Witt theorem we have direct sum decompositions 

U(g) = {~(~)U(9)+ U(~)n~(~)}eS(a), 

U(1) = (~(~0) U(1)+ U(I)no(~0)}eS0). 

Let ~ and if0 be the corresponding projections U(g)-~ S(a) and U(1)-~ S(a). Given 
2E a*, let T~ denote the automorphism of S(a) determined by 

T~(H) = H - ~ ( H )  (H<a~), 

and put ?=Tq(~)o~[3, ~o=T~(~0)o7013(I); here 3(I) denotes the centre of U(I). 
Thus y is Harish--Chandra's canonical isomorphism of ~ onto the algebra I(a) of 
elements in S(a) which are invariant under the Weyl group W(~) of the root system 
�9 . Similarly, Y0 is the canonical isomorphism of 3(I) onto the algebra Io(a) of W(~o)- 
invariant elements in S(a). Let fi: U(g)-~ U(I) be the projection corresponding to 
the decomposition 

U(~) = (~U(~)+ U(~)n)e U(r). 

One easily checks that ~0ofi=~, 
into 3 (I). 

Lemma 3.6. If  ZE3, then 

and that #13 is an algebra homomorphism of 3 

z-#(z)Ertu(a). 

Proof. Let ZE3. Then Z- f i (Z)  is contained in the centralizer of %g in 
HU(g)+ U(9)u, which by the Poincar6----Birkhoff--Witt theorem and the weight 
structure of the adjoint action of apq in U(g) must be contained in ~(U(g)n. [] 

Now let v,-~'v be the automorphism of U(1) determined by "X=X-  
1 -~tr(ad(X)]n) for XEI, and let w-~v' denote its inverse. One easily checks that 
~0('Z)='~o(Z) for ZE3(1). Defining #: 3 ~ 3 ( I )  by ~ ( z ) = ' # ( z )  for ZE3,  we 
thus obtain a commutative diagram 

x ( a )  ~- ~ I0 (a)  

,l l,. 
3 " , 3(1) 

In particular/t maps 3 isomorphically into 3(I), and 3(1) becomes a 3-module in 
this way. By transportation of [20, Thin. 2.1.3.6] we obtain the following well known 
version of [7, Lemma 5]. Put r=[W(~):  W(d~o) ]. 
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Lemma 3.7. There exist r elements vl=l,  v2, ..., v, of  3(I) such that the To(Vj) 
(I <-j<-r) are homogeneous, and such that every element vE3(I') can be written uni- 
quely in the form 

with ZjE;3. Moreover, deg (v)=deg (Zj)+deg (vj) (l~_j~r). 

Lemma 3.8. Let DE U(9). Then there exist a DoE U(~nI)(~L~,3v~) U(~) 
and finitely many fiE~ "+, ~tE V(~, ~hE(ZI~_j_~, 3vj.) U(D) (1 ~i~_I), such that 

a-1 (i) D=Do+Z~_i~_rfi(a)~ i ~1i for all aEA+~; 
(ii) deg (D0)~deg (D), deg (~i)+deg (~h)~deg (D) (1~_i~I); 

(iii) D--Do rood ~U(g). 

Proof. We prove the lemma by induction on deg (D). For deg (D)=0 the lemma 
is trivial. Thus, let deg (D)=m>0, and assume that the lemma has been proved 
already for deg (D)<m. From (10) it follows that there exists a D*E U(I,~) U(apg)U(I)) 
N U(g)m (where U(g)m denotes the set of elements of degree ~-m), such that 

( 1 2 )  D - - D * ~ n U ( ~ ) m _  1 . 

Now put 

(13) D *  N = Z .=I  Q.H.Wn, 

with Q.E U(lkq), H.E U(apq), W.E U(I)), deg (Q.)+deg (H.)+deg (W. )~m 
(l<-n<_-N). Since H.E3(1), we may apply Lemma 3.7 to "H. and thus obtain an 
expression 

(14) H. = Zs=l fi(zn,j)vj, 

with Z,,,jE3, deg (Zn, j)+deg (vj)=deg (Z.,j)+deg (vj)=deg ('Hn)=deg (H.). Now 
fax n , j  for the moment, put d=deg (Z,,,j) and consider the expression 

Z ~ t (15) Q.( . , j -  
Here Z..j-~(Z.,.t)E~U(g)d_ 1. Since lk~ normalizes ~, we have Q.~U(8)d-xc 
~U(8) s with s=deg (Q . )+d-1 ,  and so (15) belongs to ~U(9),n_ 1. Hence by (12), 
(13) and (14), the element 

Do = ZNn=, Q.Zn,.tvjW. 

satisfies the requirement (iii). Moreover, clearly deg(D0)<_-deg(D) and DoE 
U(fnI)(z~/=x 3v;)U(t~). Thus it suffices to prove the lemrna with Do=O for 
DE~U(g)m_I, and without loss of generality we may further assume that D= 
= O(X~).~ with/~iE U(~)m-x, ~EA + and X~Eg~. or X,f~t. Using the decomposition (1 I) 
we then obtain 

D = A(a)(X~,+OXD"-'.D+A(a){.D(X,,+'cX,,)+~}, 
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with B=[X~+zX,, /)]E U(g)m-1. Applying the induction hypothesis to 13 and 
and keeping in mind that ~ '+ is an ideal in o~ and that Apq centralizes l~c~I we obtain 
the desired result. [] 

Given a finite dimensional representation It of K in a vector space E, we write 
C(G, E, It) for the space of continuous functions r G ~ E  that are left #-spherical, 
i .e. 

(kx)  = It (k) (x) ,  

for all xE G, kE K. If Z: 3 ~ C is an infinitesimal character, we write A (G/H, E, It, Z) 
for the space of real analytic right H-invariant functions q~EC(G, E, It) satisfying 

(16) Lz(p = z(Z)cp 

for all ZE3.  

Lennna 3.9. Let It be a finite dimensional representation of  K in E, and let Z: 3 ~ C 
be an infinitesimal character. Then 

dimc A (G/H, E, It, X) ~-- dim (E)[W(r W(r 

Proof. Fix aE A+q and define the linear map ~e': A (G/H, E, It, Z)-~E" (r = [W(~): 
W(O0)]) by q/'(q))=([R(v~)q~](a))'~= 1 . The lemma will follow once we have 
shown that q/" is injective. Thus, let q)EA(G/H,E, It, Z), and suppose ~e'((p)=0. 
By Lemma 3.8, every DE U(g) can be written as 

I f~.l(a)~ Zov  J rood U(g)I~, 

where ftjE~-, ~ilEU(f), ZoE3.  Thus 

(Rocp)(a) = Z,J~(a)z(Z~)#(~)[R(vj)q)l(a) = O. 

By analyticity of ~p this implies ~ = 0. 

Remark. Of course by essentially the same proof an analogous result holds for 
3-finite, Oz~, It2)-spherical functions G~E,  if px, Itz are commuting representations 
of K and H respectively in a finite dimensional vector space E (cf. also [7, Lemma 8]). 

Given a finite dimensional irreducible representation eE/~, and an infinitesimal 
character X, we write A(G/H, Z) for the space of right H-invariant real analytic 
functions G-~C satisfying (16), and A,(G/H, )0 for the subspace of K-finite ele- 
ments of type 8. 

Corollary 3.10. I f  eE l~, Z an infinitesimal character, then 

(17) dimc A,(G]H, ;~) ~_ dim (e)~[W(~): W(~0)]. 
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Proof. Let E be the space of  the left K-finite functions of  t y p e ,  in L2(K), and let / ,  
be the right regular representation of  Krest r ic ted to E. Then there exists a natural 
bijective linear map v: A.(G/H, )O-~A(G/H, E, It, )0; if ~oEA,(G/H, Z), then v(~o) is 
given by v(q))(x)(k)=9(kx)  (xEG/H, k~K).  Hence (17) follows f rom Lemma 3.9 

find the fact that  dim ( E ) = d i m  (~)~. 

Somefinal remarks. Let rc be an irreducible unitary representation of  G in a 
Hilbert space X ' ,  and let 9 C ( ~ - = )  H. Given a K-type ~ / ~  occurring in ~ ,  and 
u~,Yg" (~), we may form the matrix coefficient 

m r , .  = 

One easily checks that  mr , ,  satisfies the system (16), where X is the infinitesimal charac- 
ter of  re; hence the associated spherical function f=v(mq,,,) does. Now in [7] it is 
shown that  f rom a result like Lemma 3.8 one may derive a system of  differential 
equations for F=(f ,R(v '2) f ,  . . . .  R ( v ; ) f )  on A+(P)  (PCN, cf. (6)), which has 
simple singularities in the sense of  [1, Appendix]. Therefore the mr, . have converg- 
ing series expansions very similar to those for K-finite matrix coefficients of  admissible 
representations. In another  paper  we will discuss such results in more detail. 
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