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0. Introduction

In this paper we continue our research on the Lorentz—Marcinkiewicz operator
ideals that we introduced in [7]. Here our attention will mainly be focussed on the
entropy ideals 2;"’21 generated by the entropy numbers e and the Lorentz—Marcin-
kiewicz sequence space A(¢@).

During the last few years entropy numbers and interpolation theory have turned
out to be powerful tools for the investigation of eigenvalue problems (see e.g. [6], {2],
[3], [10]). In this article we establish an interpolation formula between ,?q(,?l'-ideals for
the real method with function parameter developed by J. Peetre [16], T. F. Kalugina
[9], J. Gustavsson [8] (in the normed case) and C. Merucci [12], [13], [14], {15] (in the
quasi-normed case). As a consequence we extend results of B. Carl [3] and T. Kiihn
[10] on the characterization, in terms of entropy numbers, of operators from /, into
a Banach space of type p factorizing through /;, and of operators in the “dual” situa-
tion, i.e. operators acting from a Banach space whose dual is of type p into /,, admitt-
ing a factorization through /_. Some information on distributions of eigenvalues is
also obtained. We estimate the asymptotic behaviour of eigenvalues of certain classes
of factorable operators, complementing earlier results of B. Carl [3].

I should like to express my gratitude to the editors for suggesting several impro-
vements of the first version of this paper.

1. Preliminaries

For the standard notions of the theory of operator ideals we refer to the book by
A. Pietsch [17]. For interpolation theory our general references are the books by J.
Bergh and J. Lofstrom [1] and by H. Triebel [19]. The definition of Banach space of
(Rademacher) type p can be found in [11].
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The class of all functions @: (0, +<0)~(0, + ) continuous, with ¢(1)=1 and
such that

P )
@(f) = sup o) <o for every t=0

s=>0

is denoted by 4.
The Boyd indices o; and §; of the function @ are defined by

ap= inf logo(t) _ ., logo(®

i<t<te logt t-+=  logt
_ oo logd@ _ . log@(d)
be = osggl logt %Ef)l logt

The indices «; and f; satisfy — o< =0;< 4« and indicate when & belongs to
Li(d, +-), dt/t) and Li((0, 1), dtft) (see [12], [13)]).

For ¢c# and O0<=g=-, we denote by 1%¢) the Lorentz—Marcinkiewicz
sequence space [12], formed by all bounded sequences of scalars {=(¢,) with a finite
quasi-norm

(2;;1 ((P (n) SM(C))qn_l)llq lf 0 - q - OO

Woe =V sup(oms,0) it g ==

where (5,(0)) is the non-increasing rearrangement of ¢, defined by
5,(0) = inf {6 = 0: card (k: |{;] = 6) <n}.

For properties of spaces A%(¢) see [12] and [7}. We only remind the reader of the
foliowing generalization of a classical inequality of Hardy [7], Lemma 2.4:

Lemma H. Let ¢€# and O<r<eo with O<fs=a,<1/r, and let 0<g=-co,
Then there is a constant C=C(¢@,r, q) such that for all monotone non-increasing
sequence (0,) of non-negative numbers

16 p,q = ll(n'”'liukgn 15 gva = Cl@El gua-

The class of all bounded linear operators between arbitrary Banach spaces is
denoted by &, while % (E, F) stands for the set of those operators acting from E
into F.

If p€B, 0<g=-o and sis an additive s-function in the sense of A. Pietsch [17],
then the Lorentz—Marcinkiewicz operator ideal[2 ), 6%, consists of all T€ % which
have a finite quasi-norm

oSUT) = [[(s(D)]}pg (see[7D).
Examples of additive s-functions are the Gelfand numbers (c,(7)), the Kol-
mogorov numbers (d,(T)) or the approximation numbers (a,(T’)), see [17} and [18].
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The class of all compact operators is denoted by K.

We conclude these preliminaries by recalling some simple facts about the real
interpolation space with function parameter (see [16], [9], [8], [13]).

Let (4,, A;) be a compatible couple of quasi-normed spaces, let 0<g=ec and
€. The space (4y, 4y),,,,x consists of all x€4,+4; which have a finite quasi-
norm

([ (oK@ )y deft)™ if 0<g<o
Hanr.q;K = sup ((o(t)—lK(t’ x)) if g=co,

where K(z, x) is the functional of J. Peetre, defined by
K(t, x) = inf {|xol4,+ [ %1 4,0 % = Xo+ X1, Xo€ Ao, %1€ 4y}
For ¢(t)=7 (0<0-<1) we get the classicalreal interpolationspace ((4o, 41)s, ol ll6, )
(see[1], [19]).
2. Entropy ideals £ ()

The n-th entropy number e,(T) of an operator T€Z (E, F) is defined as the
infimum of all ¢=0 such that there are y,, ys, ..., ,€F with g=2""1 for which

T(Up) S Uj_, {;+eUs}

holds, where U, Uy are the closed unit balls of £ and F respectively.
The theory of entropy numbers was developed by A. Pietsch for the first time in
[17], §12, where the properties of entropy numbers were described in detail.

Definition 2.1. For ¢€# and O<g=- we put
8y = {TeL: (e(T))e2(0)}
o&(T) = £5,l(es(T))||pg for TELE),.

and

Here the norming constant ¢, , is chosen such that a(q,‘?q (Ix)=1, where I is the iden-
tity map of the scalar field K.

Since (A%(¢), | l,,,) is a maximal quasi-normed sequence ideal (in the sense of
A. Pietsch [17], §13) and entropy numbers are additive; it follows from [17], Thm.
14.1.8, that [8(,, ¢'7,] is a quasi-normed operator ideal.

The special case ¢ (#)=r"? (0<p=<o) gives the entropy classes £, which have
been extensively studied (see e.g., [17], [2], [4], [5]).

Next we state an interpolation formula between £-ideals for the (¢, ¢; K)-
method. The proof is based on an idea previously used by A. Pietsch in the case of the

(8, g)-method [18], Thm. 14.
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Theorem 2.2. Let E, F be Banach spaces, let 0<gqq, q1, §=°, ¥, Qo, 1€ B, and

put 9(O)=0o()/e:(t) and o()=0o(")x(0(1)). If 0<pz=oy<1, Bz =0 (i=0,1)
and Bz;=0 or 0;<0, then g€A and

(2(6) (E’ F)’ 2&?;41(}5’ F))x,q;K g ’3§f?1 (E’ F)

¢0s 90

Proof. We first give the proof when 0<g<e and f;>0. The factthat o€Z% was
proved in [7], Thm. 5.3.

Since f; >0 (i=0,1), B;>0 and >0, without loss of generality we may
assume that ¢, (i=0, 1) and y are increasing and that ¢ is an increasing bijection
belonging to %Y(0, +<)) with

)
§)) 0<C= glt; 20
(see [14], Prop. 1 or [15], Prop. 4.1.1). Furthermore, as
2504(E, F) & 25)..(E, F)
we may also assume that gy=g;=-<°.

Let T¢(25) (E, F), 89 _(E, F)), qx and let T=T,+T, be any decomposi-
tion with T,€8 _(E, F) and Ti€8%) (E, F). Given any n€N, let m be the
greatest integer not exceeding (n-+1)/2, then 2m—1=n=2m and

e, (T) = ey 1(To+T) = €, (Ty)+e,(T2)
= @o(m) 162 . (To) + 1 (M) 16l (1)
= (/)7 0f) o (To) +01(n[2) 168 (T
= () @o(n) 105 (T + 31 r(m) 00 o (T1)
= C0o(M) o) . (T)+ 0 (Ml . (Ty)]
where C;=max {(,(2), #,(2)}. Thus we get
oo(me,(T) = ClK@’(’?)y T)~

Consequently, taking into account that K(-, T), @ and ) are non-decreasing
and making the substitution u=¢(¢), we obtain with C,=2(¥(#(2)))?C? and C the
constant of (1)

3. 0a@) = 3 (Gpay #0eD) 5
1

a3 q_l_
= Cf Z"‘—‘l(x(q)(n)) K(p (), T)] -

o 1 “dt
= Cgfo (m)—K(Q)(i‘), T)) i

- o - du
=C 1C2f0 (K (u, T))q——u <o,
‘ Therefore Teﬁf;f)q(E, F),
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Suppose now that «;<0. Put x*(t)=ry(1/t). Then we have with equal quasi-
norms

(860 < (B, F), 88) . (E, F))y 05 = (22 o (E, F), 885) . (E, F))yr,g;x-
Furthermore
O<fp=apm<1 and ¢*() = o (O/@,(H) = (O,

Bpr=—0>=0 and o*() = o.(O/x" (¢*(®) = (.
Hence the result follows from the case just proved.
The proof of the remaining case g=eco can be carried out in the same way. [J

whence

3. Relationships between £ and 80,

In the following we compare the entropy ideals £, and the ideals £, generated
by either the approximation (a) or the Gelfand (c) or the Kolmogorov numbers (d).

Theorem 3.1. Let ¢c# with B;=0 and let O<q=oo. If sc{a,c,d}, then
8O (E, F)S L9, (E, F) for all Banach spaces E and F.

Proof. Choose r=>0 with O<fz=o;<1/r. According to [2], Thm. 1, there
exists a constant M =M (r)<< such that for every T€Z(E, F)

sup kMe (T =M sup ks, (T) n=1,2,...

1=sk=n 1=k=n
Therefore, using the generalized Hardy inequality, we have for every T€2Y (E, F)
with C=C(gp,r, q) the constant of Lemma H
a;f)q(T) = s(o,q”(en(T))”%q

= 2o,q[(n7" sup K e(T))]fo.q
= Me,, “(”_1/' 122,, kl/rsk(T))”rp,q

= MCey,o|[(5a(T))||pa = MCtp,,0$(T). 0O

Remark 3.2. This inclusion can be improved if g<-<: It can be easily checked
using [7], Thm. 5.1 and [17], Lemma 14.2.8/1 that finite rank operators from Einto F
are dense in ﬁgf,)q(E, F). Therefore it follows from Theorem 3.1, from [5], Thm. 1.2
and [4], Thm. 2.1, that

® L S 8ok for s=a,d.

P q =
Furthermore, since the operator ideal £%,0& is injective, we also get from (2)

(
2% S K.
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4, Entropy numbers of factorable operators

We shall now extend results of B. Carl [3] and T. Kiihn [10] by means of the
interpolation formula of Section 2.

Theorem 4.1. Let F be a Banach space of type p and let T¢ % (1, F) admit a fac-

torization
1,—— F
L

with a diagonal operator D,€ % (l,, l) and Ac % (I, F). If n€A*(p), then T¢ Qg‘f’q {,, F)
provided that 1=p=2, 1=p=co, 0<g=-co, fiz>1—1/v and

o(t) = =12 (1).

Proof. Choose 0<py<p;=<-< such that

1-1/v < 1/p < B5 = o5 < 1/po-

Thus 1/v+1/p;>1 (i=0,1). Put 1/s;=1/p,+1/v—1/p (i=0,1) and let 2 be the
operator assigning to every sequence # the composite operator 4D,. By [3], Thm. 2

2(,) € £9..0,, F)
then the Closed Graph Theorem guarantees that
3) 2€8(ly,, 22.0,, F)) (=0,1).
Let us now consider the function x€4% defined by

x(0) = tPll(Pl-Po)((p (tPoP;/(Pl—Po)))'—l,

It follows from the interpolation property ([12], Thm. 1) and (3) that
DEL((Iys Iz asx> (D s F), 20Uy, Fy )

By [12], Thm. 5 and Prop. 8

U bodrsx = ()
and by Theorem 2.2

(8 U F), 820 (s Py, 5% S 253y F)-

S1y
Consequently, if 7€1%(p) we obtain that T=4D,€29,(,, F). O

For the “dual” situation, a similar reasoning and [10], Thm. 4, allow us to
derive:
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Theorem 4.2. Let E be a Banach space whose dualis of type p andlet S€Q(E, 1)
admit a factorization

E—= 1,

B\/

with a diagonal operator D,c2(l.,1l)) and BcL(E,l.). If ncii(ep), then
ScRO(E, 1,) where 1=p=2, 1=v=co, 0<q=<o, fz>max (1/p, 1/v) and

e(t) = =P (s),

5. Eigenvalues

We shall now estimate the asymptotic behaviour of eigenvalues of certain classes
of factorable operators, so all Banach spaces under consideration are assumed to be
complex.

Let @c# with ;>0 and let O<g=c. If T8V (E, E) it follows from
[7, Lemma 2.2, that lim, €,(7)=0. Therefore the operator T is compact. Let
(l,,(T)) denote the sequence of all eigenvalues of T counted according to their alge-
braic multiplicities and ordered such that |A,(7)|=|(D)l=...=0. If T has less
than » eigenvalues, we set 4,(7)=4,1(7)=...=0.

The following results extend earlier ones of B. Carl[3], Thm. 3 and Thm. 4.
We shall prove them by using his techniques and our entropy results.

Theorem 5.1, Let E be a Banach space of type p (1=p=2) and let T¢R(E, E)
an operator which admits the factorization

E- L. E

1}

l "11, 1§U<Oo

v D"

where A€L(E, I), BEQ(l, E) are arbitrary operators and D,€L2(l,, ) is a diagonal
operator. If n€i%(p), then (1,(T))€A%(g) whenever O<g=co, B;>1—1/v and

0 (t) —_ tl/u-—min (1/p, max (1/v, 1/2)) @ (t)

Proof. Theorem 4.1 implies T€®Y (E, E) with go(t)=r""""? ¢(r). There-
fore, according to [6], we have

C) (2a(T))€2%(g0)-
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Let us now consider the operator S=A4BD,c2(l,,1,). Applying again Theorem 4.1
we get S€€,(,,1,) where o,(f)=r""m2xC1D (7). So [6] yields

&) (24(8))€24 ().

But the eigenvalues of 7'and S coincide because the operators 7 and S are related
(in the sense of A. Pietsch[17], 27.3). Consequently, we obtain from (4) and (5)

that (4,(7))€A%(g). O

In order to show our last result, which is an application of Theorem 5.1 to a
special case, let us recall that 22(¢) is equal to the Lorentz—Zygmund sequence
space I, ,(logly’ if @(t)=r"7(1+|log¢t|y.

Example 5.2. Let T€8(l,,1,) be an operator such that (| T(x,)ll,)€/, (log )
where 1=v<oo, O<r<oo, 1/v+1/r=1, —co<y<+e< and (x,) is the unit vector
basis of /,. Then it is not hard to verify that the operator T admits the factorization

where n=(T(x)ll,) and B(()=r, Lu(TC)/IT(x),). Whence Theorem 5.1
gives that ’

1 1 1 1 1]
()’n(T))Els,r (lOg 1)7 for —S— = —r—+—z—)-—max (7, ? .
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