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O. Introduction 

In this paper we continue our research on the Lorentz--Marcinkiewicz operator 
ideals that we introduced in [7]. Here our attention will mainly be focussed on the 
entropy ideals ~(,~)~ generated by the entropy numbers e and the Lorentz--Marcin- 
kiewicz sequence space )Y(q~). 

During the last few years entropy numbers and interpolation theory have turned 
out to be powerful tools for the investigation of eigenvalue problems (see e.g. [6], [2], 
[3], [10]). In this article we establish an interpolation formula between ~(%ideals for 
the real method with function parameter developed by J. Peetre [16], T. F. Kalugina 
[9], J. Gustavsson [8] (in the normed case) and C. Merucci [12], [13], [14], [15] (in the 
quasi-normed case). As a consequence we extend results of B. Carl [3] and T. Kiihn 
[10] on the characterization, in terms of entropy numbers, of operators from I v into 
a Banach space of type p factorizing through/1, and of operators in the "dual" situa- 
tion, i.e. operators acting from a Banach space whose dual is of type p into lv, admitt- 
ing a factorization through 1~. Some information on distributions of eigenvalues is 
also obtained. We estimate the asymptotic behaviour of eigenvalues of certain classes 
of factorable operators, complementing earlier results of B. Carl [3]. 

I should like to express my gratitude to the editors for suggesting several impro- 
vements of the first version of this paper. 

1. Preliminaries 

For the standard notions of the theory of operator ideals we refer to the book by 
A. Pietsch [17]. For interpolation theory our general references are the books by J. 
Bergh and J. L6fstr6m [1] and by H. Triebel [19]. The definition of Banach space of 
(Rademacher) type p can be found in [11]. 
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The class of  all functions q~: (0, +~)-~(0 ,  +~o) continuous, with ~0(1)=1 and 
such that 

Cp(t) = sup qg(ts) �9 ~ - 0 ~  <c~  for every t > O  

is denoted by &. 
The Boyd indices % and fl~ of  the function ~ are defined by 

~ = inf logO(t)  = lim log~( t )  
~-~t<+~ l o g t  t_+oo l o g t  

fl~ = sup log O(t) = lim log Fp(t) 
0<t-~ l o g t  t~0 l o g t  

The indices % and fl, satisfy -- ~o<//,--<_~,< + oo and indicate when t~ belongs to 
La((1, +oo), dt/t) and /-a((0, 1),dt/t) (see [12], [13]). 

For  q~C~ and 0 < q _ ~ o ,  we denote by 2q(tp) the Lorentz--Marcinkiewicz 
sequence space [12], formed by all bounded sequences of  scalars ~=(~n) with a finite 
quasi-norm 

{ (~=l(~o(n)sn(~))qn-1) llq if 0 < q <oo 

IlCll~'~= sup(~o(n)sn(~) ) if q = o o  

where (sn (~)) is the non-increasing rearrangement of ~, defined by 

sn(~) = inf {6 > 0: card (k: I~kl => 6) < n}. 

For properties of spaces 2q(q~) see [12] and [7]. We only remind the reader of the 
following generalization of a classical inequality of  Hardy [7], Lemma 2.4: 

LemmaH.  Let (PE~ and 0 < r < o o  with O<fl~<-~<l/r, and let 0<q<_-oo. 
Then there is a constant C=C(qg, r, q) such that for all monotone non-increasing 
sequence (~n) o f  non-negative numbers 

rl(6n)ll .  ll(n-l" sup 
l ~ k N n  

The class of  all bounded linear operators between arbitrary Banach spaces is 
denoted by ~ ,  while La (E, F)  stands for the set of those operators acting from E 
into F. 

I f  ~0E~, 0<q<_ - ~o and s is an additive s-function in the sense o fA.  Pietsch [17], 
then the Lorentz--Marcinkiewicz operator ideal [ ~ ,  try!q] consists of all TE ~ which 
have a finite quasi-norm 

= I I ( sn fT) ) l l , .  , (see [7]). 

Examples of additive s-functions are the Gelfand numbers (cn(T)), the Kol- 
mogorov numbers (dn(T)) or the approximation numbers (an(T)), see [17] and [181. 
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The class of all compact operators is denoted by !;I. 
We conclude these preliminaries by recalling some simple facts about the real 

interpolation space with function parameter (see [16], [9], [8], [13]). 
Let (A0, A1) be a compatible couple of quasi-normed spaces, let 0<q~r  and 

opeN. The space (Ao, A1)~,,q;K consists of all xEAo+A~ which have a finite quasi- 
n o r m  

,----[([*~P(t)-lK(t'x))qdt/t)l/qv( if 0 < q<oo 

]lx][~"q;~ = ] sup(~p(t)-XK(t, x)) if q =~o, 
I. t > 0  

where K(t, x) is the functional of J. Peetre, defined by 

K(t, x) = inf {Uxolh.+ t IIxllla~: x = Xo + x~, xoCAo, x~E&} .  

For r ~ (0<0<1)  we get the dassicalreal interpolation space ((Ao, Ax)0,q, ltllo, q) 
(see [11, [191). 

2. Entropy ideals s 

The n-th entropy number e,(T) of an operator TE.o~(E, F) is defined as the 
infimum of all 8->0 such that there are Yl, Y2 . . . .  ,ygEF with q~_2 n-1 for which 

q 
T(U'E) c U j = I  {yj-I-sUF} 

holds, where Uz, UF are the dosed unit bails of E and F respectively. 
The theory of entropy numbers was developed by A. Pietsch for the first time in 

[17], w where the properties of entropy numbers were described in detail. 

Definition 2.1. For r and 0<q=<~ we put 

s = {TE!~: (e, CT))E2~(tp)} ~',q 
and 

for rC~c~,)q. 

Here the norming constant %,q is chosen such that aC~,)~(IK)= 1, where IK is the iden- 
tity map of the scalar field K. 

Since (2q(rp), II II~,q) is a maximal quasi-normed sequence ideal (in the sense of 
A. Pietsch [17], w and entropy numbers are additive, it follows from [17], Thin. 
14.1.8, that r 9  (~) (~) ,-~,q, %,~] is a quasi-normed operator ideal. 

The special case ~p(t) =t lip (O<p<=oo) gives the entropy classes ~(e) which have p,q~ 
been extensively studied (see e.g., [17], [2], [4], [5]). 

Next we state an interpolation formula between ~)q-ideals for the (q~, q; K)- 
method. The proof is based on an idea previously used by A. Pietsch in the case of the 
(0, q)-method [18], Thin. 14. 
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Theorem 2.2. Let E, Fbe Banach spaces, let 0<q0,  ql, q<_~o, Z, q~0, fPi E~, and 
put q)(t)=q)o(t)flpl(t) and o(t)=q~o(t)/X(~o(t)). I f  0<flz<_-~z<l, f l~>0  ( i=0,  1) 
and fl~>0 or arp<0, then oE~ and 

(Yd (~) (E F), o(~) (E, F))z,q;K C ~(~) (E, F). 
~ o ,  q o k  ' z : ' ~ a l , q l  ~ ~ o , q  

Proof. We first give the proof  when 0 < q <  ~o and fig > 0. The fact that 0 E & was 
proved in [7], Thin. 5.3. 

Since f l ~ > 0  ( i=0,  1), fig>0 and fl~>0, without loss of generality we may 
assume that q~i ( i - 0 ,  1) and :~ are increasing and that q~ is an increasing bijection 
belonging to cr +~o)) with 

(1) 0 < C = inf tq~'(t) 
,>o q~(O 

(see [14], Prop. 1 or [15], Prop. 4.1.1). Furthermore, as 

~(e) (E F) C ~(e) (E, F) 

we may also assume that qo : q l :  ~.  
Let T E ( ~  ~(E,, F), ~(~)r F))x,q; ~ and let T=To+T1 be any decomposi- 

tion with ToE~t),~(E, F)  and T~E~(~),~(E, F). Given any nEN, let m be the 
greatest integer not exceeding (n + 1)/2, then 2 m -  1 ~n_<-2m and 

en(r ) ~ %~_1(To+ T1) ~ em(To)+em(T1) 
< q~o(m)-la~o ) , =  ~ (To)§ ~o (T1) 

<= ~o o (n/2)-1 a~o), ~ (To) + q~l(n/2) - l a ~  2 = (/'1) 

-<= Cpo (2) q~o (n) .1 a~o), ~ (To) + ~1 (2) q~l (n) -1 a~) ~ (T1) 

<= c l  ~o (n)-I [ ~  = (To) + ~ (n) ~(~]~ = ( r0 ]  

where C l = m a x  {~o(2), ~1(2)}. Thus we get 

qgo(n)e,(T) <= C1K(go(n), T). 
Consequently, taking into account that K ( . ,  T), (~ and 2 are non-decreasing 

and making the substitution u = cp (t), we obtain with C2= 2 (2 (~ (2))) q C q and C the 
constant of (1) 

.~=i  (~(n)e,(T)) q l = z~=~ (" 1 qgo(n)e,(T))q l 
z(q~(n)) 

~= cfE2_-i Z(q,(n)) K(~o(n), T) 

du <= c-lc~f~ (z(~)-lK(u, T))~ u < o o .  

Therefore TE ~,)~ (E, F). 
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Suppose now that eg<0.  Put Z*(t)=tZ(1/t). Then we have with equal quasi- 
norms 

(~(~) CE F), 9.~)~(E, F))x,,; ~ = (~),~(e, F), ~(~) (E F))z,,a;~. 

Furthermore 

whence 
0 < fl~, <- a~, < 1 and ~o*(t) = q~l(t)/q~o(t ) = q~(t)-:, 

rio* = - c o  > 0 and 0*(t) = ~ o l ( t ) / ~ * ( q ) * ( t ) )  = ~(t). 

Hence the result follows from the case just proved. 
The proof  of  the remaining case q=~o can be carried out in the same way. [] 

3, Relationships between s and ~(o q~, q q~, q 

In the following we compare the entropy ideals ~(e) and the ideals ~ !~  generated q~, q 

by either the approximation (a) or the Gelfand (c) or the Kolmogorov numbers (d). 

Theorem3.1. Let pEN with f i e>0  and let 0<q_<-co. I f  sE{a,c ,d} ,  then 
~(s) fE C (,0 ~,, ~ , F)  = ~ ,  q (E, F)  fo r  a l l  Banach spaces E and F, 

Proof. Choose r > 0  with O<flc,<-aco<l/r. According to [2], Thm. 1, there 
exists a constant M = M ( r ) < o o  such that for every TCS~(E, F) 

sup kVr ek(T) ~ M sup kllr sk(T) n = 1, 2, ,.. 
l~k~_n  l~_k~n  

Therefore, using the generalized Hardy inequality, we have for every TEJ3~)a (E, F)  
with C =C(r r, q) the constant of Lemma H 

if(e)cp, q . (T"  ~.., = 

-<_ ~o,~ll(n -1/" sup kl/'e~(r))ll~,~ 

<-- Me~,,~[[(n -11" sup k~"s~( r ) ) l ; ,  

< -  MC~,,~[I(s,,(T))I[~,,q = MCeq,,ga~)~(T). [] 

Remark 3.2. This inclusion can be improved if q <  co: It Can be easily checked 
using [7], Thin. 5.1 and [17], Lemma 14.2.8/1 that finite rank operators from E into F 
are densein ~(~) (E F). Therefore it follows from Theorem 3.1, from [5], Thm, 1.2 q~,qk 

and [4], Thm. 2.1, that 

(2) ~ )q  ~ ~(~)~o~ for s = a, d. 

Furthermore, since the operator ideal s is injective, we also get from (2) 
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4. Entropy numbers of factorable operators 

We shall now extend results of B. Carl [3] and T. KiJhn [10] by means of the 
interpolation formula of Section 2. 

Theorem 4.1. Let F be a Banach space of type p and let TE.~ (I v, F) admit a fac- 
torization 

Iv T ~" F 

h 
with a diagonal operator D~E N' (lv, ll) and A C e ( h ,  F). I f  ~E ~q(qO, then TE ~ {  (Iv, F) 
provided that l ~ p ~ 2 ,  l~-v<_-~, 0 < q  <-~,, ~ ,~>l -1 /v  and 

~(0 = : / v - ~ "  ~o(O. 

Proof. Choose 0 < p 0 < p l <  ~ such that 

1 - 1 / v  < 1/p~ < ~ <- ~ < l /p0.  

Thus 1/v+l/p~>l (i=0, 1). Put 1/s~=l/pi+l/v-1/p (i=0, 1) and let N be the 
operator assigning to every sequence t / the composite operator AD~. By [3], Thrn. 2 

then the Closed Graph Theorem guarantees that 

(3) ~E~(Ip,, ~(~,~(lv, F)) (i = 0, 1). 

Let us now consider the function ZE& defined by 

It follows from the interpolation property ([12], Thm. 1) and (3) that 

~E~((Ipo , lpx)z,q;K , ,(9. (e)so:o,(lo, F), Yd(~!..(lv, F))x,q;/r ). 

By [12], Tlma. 5 and Prop. 8 

and by Theorem 2.2 

(9.(~o70.(I ~, F), 9.(,[?..(lv, e))x,q;K c= yd(,)tIQ, qx v, F). 

Consequently, if t/E2~(tp) we obtain that T=AD~Es F). [] 

For the "dual" situation, a similar reasoning and [10], T/am. 4, allow us to 
derive: 
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Theorem 4.2. Let E be a Banach space whose dual is of  type p and let SE Yd(E, Iv) 
admit a factorization 

E s---2--~ lv 

with a diagonal operator D~EYd(Lo, Io) and BEP.(E,I=). I f  r/E2q(9), then 
SEg.~e~(E, lv) where l<=p<-2, l<=v<-oo, O<q<-,:,% fl~,>max (1]p, l/v) and 

e(0 = t~-v~-v~ 

5. Eigenvalues 

We shall now estimate the asymptotic behaviour of eigenvalues of certain classes 
of factorable operators, so all Banach spaces under consideration are assumed to be 
complex. 

Let 9 E ~  with fl~>0 and let 0<q_-<~. If TEYd~(E,E) it follows from 
[7], Lemma 2.2, that lim,_.~ e,(T)=0. Therefore the operator T is compact. Let 
(2,(T)) denote the sequence of all eigenvalues of T counted according to their alge- 
braic multiplicities and ordered such that 12x(T)l=>l;t2(T)l=>... =>0. I f  T has less 
than n eigenvalues, we set 2n(T)=2~+I(T) . . . . .  0. 

The following results extend earlier ones of B. Carl [3], Thin. 3 and Thm. 4. 
We shall prove them by using his techniques and our entropy results. 

Theorem 5.1. Let E be a Banach space of type p (1-<p_-<2) and let TE~(E, E) 
an operator which admits the factorization 

E r ' . ,  E 

where AE~(E, Iv), BE~(ll, E) are arbitrary operators and D~E~(lv, lO is a diagonal 
operator. I f  t/E2q(9), then (2,(T))E2~(e) whenever O < q ~ ,  f l e> l -1 / v  and 

Proof. Theorem 4.1 implies TEY~q(E, E) with e0(t)=t x/v-1/~ (p(t). There- 
fore, according to [61, we have 

(4) (2,(T))E2q(e0). 
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Let us now consider the operator S=ABD,  EYd(lv, Iv). Applying again Theorem 4.1 
we get SCSd~).~(l~, Iv) where 01(t)=tl/o-m~lo'l/z)qg(t). So [6] yields 

(5) (z. (s)) c 

But the eigenvalues of  T and S coincide because the operators T and S are related 
(in the sense of  A. Pietsch [17], 27.3). Consequently, we obtain from (4) and (5) 
that (2.(T))E2~(0). [] 

In order to show our last result, which is an application of  Theorem 5.1 to a 
special case, let us recall that 2q(~0) is equal to the Lorentz--Zygmund sequenc~ 
space Ip,~(log I) r if ~o( t )=? /P( l+ l log  tl) e. 

Example 5.2. Let TEP~(Iv, Iv) be an operator such that (11T(x.)[l~)Clr,.(log 1) ~ 
where 1-<_v<~, 0 < r < ~ ,  1/v+l/r>l ,  - ~ < ? < + ~  and (x.) is the unit vector 
basis of  Iv. Then it is not hard to verify that the operator T admits the factorization 

where ~/=(11Z(x.)llv) 
gives that 

lo r , lo 

11 

and Whence Theorem5.1 

(2n(T))E l,, r (log l) v for 1 1 (1  
- -  = - - + - - - m a x  , . 
s r v 
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