
An ill-posed moving boundary problem for 
doubly-connected domains 

Bj6rn Gustafsson 

O. Introduction 

Let, for f2 any bounded doubly-connected domain in R N with smooth boundary, 
u~ denote the harmonic function in 12 with boundary values one and zero on the 
inner and outer components of 0(2 respectively. We consider the problem: given 
~2 as above find a one-parameter family {f2(t)} of doubly-connected domains for 
tCR (t=time) in some interval around t = 0  such that 12(0)=f2 and such that 
the outward normal velocity of Of 2(t) equals -Ou~to/On on OI2(t) (S/On=the out- 
ward normal derivative). 

This problem may arise e.g. in electro-chemistry (for N<-3). Then f2(t) e, the 
unbounded component of f2(t)c=RN\f2(t),  is an anode, f2(t)t=f2(t)~,,O(t)" is 
a cathode and 12(t) itself is an electrolyte. Finally, ua~t) will be (proportional to) 
minus the electric potential. Under suitable assumptions the anode will dissolve 
and the dissolved material will be taken up by the cathode according to the law 
above. See [4], [6] for a related problem, with I2(t) i fixed. Actually, a slightly more 
general problem may be more adequate for this electro-chemical model. See w 3. 

For N = 2  there is also an interpretation of the problem in terms of Hele 
Shaw flow, i.e. for the flow of an incompressible viscous fluid in the narrow region 
between two slightly separated and infinitely extended parallel surfaces. Then I2(t) 
is (the two-dimensional picture of) the region of fluid, 12(t) ~ is occupied by e.g. 
air of some positive pressure and f2(t)" is empty or is occupied by air at a lower 
pressure. The pressure of the air in I2(t) ~ will make f2(t) move according to the 
stated law. Cf. e.g. [5], [13], [16]. 

Our problem may also be regarded as a kind of degenerate Stefan problem 
with three phases. In fact, if u a is extended to all R n by ua=0  in f2 e, u a = l  in f2 ~ 
then the law for the motion of 12(t) can be expressed 

(0.1) 0  H(u) = au 
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(cf. equation (1.4)'), where 

(Thus H(ut~) =Xs~. ) 

u(x, t)=uu(o(x ) and H is the function 

u 0 

H ( u ) =  for O < u < l ,  
for u - ~ l .  

H 

~U 

Fig. 1 
H(u) (completed to a connected graph) 

(0.1) may be viewed upon as an enthalpy formulation of a Stefan problem. Then u 
is the temperature and H the enthalpy. In our case the enthalpy function H=H(u) 
is of a quite unusual form (Fig. 1). In particular, it is non-monotone and it has 
two jump discontinuities, to mean that phase transitions occur at two different 
temperature levels. See e.g. [5] for enthalpy formulations of the Stefan problem. 

The fact that H(u) is non-monotone is related to the ill-posedness of our prob- 
lem. E.g., as t increases the inner boundary 0f2(t) ~ becomes more and more irregular 
and this corresponds to the fact that H(u) makes a negative jump at u=  1 (i.e. on 
Ol2(t)~). On the other hand Of2(t) e becomes more and more regular as t increases, 
corresponding to the positive jump of H(u) at u=0. 

It turns out that a necessary condition for our problem to have a solution is 
that 0 9  is real analytic. The main result in this paper Theorem 2.1, states that, 
conversely, if 0f~ is real analytic then there does exist a solution {f2(t)}, at least in 
a certain weak sense (and for t in some small interval around t=0). Our weak 
solution is constructed by first solving a Cauchy problem for the Laplacian with 
Cauchy data on 012. This takes care of the ill-posedness. Then 12(t) are obtained 
from solutions of certain elliptic variational inequalities. It is plausible that the 
weak solution constructed in this way actually is a classical solution, but we do not 
prove this in the present paper. 

An interesting property of our problem is that if e.g. N = 2  then 

 fo,,,s:o 
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for every function f analytic in a neighbourhood of f2(t) whenever {f2(t)} is a 
solution. 

Acknowledgements. I am grateful to Lars-Inge Hedberg for important informa- 
tion on certain topics in this paper, to Jacqueline Mossino for a stimulating exchange 
of ideas and for finding mistakes in the first version of the paper and to many other 
mathematicians for helpful discussions. Finally, I want to thank Irene Patricius 
for her beautiful typing of the manuscript. 

Some notation 

IE[ =N-dimensional Lebesgue measure of E = R  N. 

fE ~0 = f n  r dx=integral of ~0 with respect to N-dimensional Lebesgue measure 
(EcRN). 

A z x B  symmetric difference between the sets A and B. 

= C~O~N). 

H(g2)={harmonic functions in ~} (I2=R N open). 
H(O) = {functions harmonic in a neighbourhood of ~}. 

HLI(~)  _-- H(~)(~LI(~). 

SL1(~)---{subharmonic functions in Q}r~LI(Q). 
-- SL  1 (g2) = { - u :  uE SL  1 (~)} = {superharmonic functions in ~}nL 1(g2). 

1. Classical solutions 

In this section we introduce a precise concept of a (classical) solution of our 
problem and derive some properties of such solutions. 

Let I c R  be an open interval containing zero. A one-parameter family 
{f2(t): t e l }  of bounded domains in R N will be called smooth if there exists a C ~ 
function g(x, t) (xER N, t e l )  such that 

(1.1) I2(t) = {xERN: g(x, t) < 0}, 

o (t) = {x RN: g(x, 0 = 0}, 

Vxg(x,  t) # 0 for x~0~(t). 

If I2 is any bounded doubly-connected domain in R N (N->2) we denote by g2 ~ 
and g2 ~ the bounded and unbounded components of ~2C=RN\I2 respectively 
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(doubly-connected means that t2 ~ has exactly two components). Set Of2f=O(O~), 
0f2~=0(f20 so that OI2=Of2~wO0 ~ or, taking orientation into account, 0f2= 
- 0 0  l -0 t2  ~. 

When f2 is a bounded doubly-connected domain u a denotes the harmonic 
function in f2 with boundary values 

{~ on 0/2 e, 
on ~12 ~ 

(whenever this function exists). If 0~2 is smooth (C ~) then certainly u n exists and 
even unECI(~). See [21] for the latter. 

A smooth family {f2(t): tCI} of doubly-connected domains will be called a 
(classical) solution of our problem if 

d _ f  ~P Oun(t) ds 
(1.2) "d-'/foe) q~ = J~(o On 

for all ~pE~=Co(R N) and all t6L Here ds denotes the (N-1)-dimensional area 
0 

measure on O[2(t) and ~ the outward normal derivative on Of 2(t). 

Formula (1.2) expresses that 0f2(t) moves with the velocity -Ouoo)/On meas- 
ured in the direction of the outward normal of 0f2(t). Indeed, the smoothness assump- 
tion on {12(t)} implies the existence of a continuous function fl=fl(t) on Off(t) 
such that 

(1,3) dt a(O ~p = f ds 

for all r fl is the outward normal velocity of 0~2(t) and is given, in terms of 
Og/Ot Ou~(,) 

g(x, t) in (1.1), by f l = - ~ .  Hence (1.2) asserts that f l = -  
Og/On On 

We extend ua to all R N by 
{~ in f2 e, 

un = in f2i. 

Then, assuming that Of 2 is smooth, uu is continuous in R n and we have, for ~pEg, 

= - f  , d s -  f u .A .  = - f . ,  f = - f . .  u . a . .  #~ O n  t~ 
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Thus, for {~2(t): te l}  smooth (1.2) is equivalent to 

d (1.4) ~'f~0 = 

for all 9C~.  (1.4) expresses that 

d 
(1.4)' d--7 Za(o = Aua(o 

in some weak sense. 
The following lemma follows easily from the fact (cf. [21]) that ~ua(t)/On is 

strictly positive (negative) on Of2(t)' (00(t)  e) for {f2(t)} smooth .  (The proof is 
omitted.) 

Lemma 1.1. Any solution {f2(t): t e l }  o f  our problem is strictly monotone in 
the sense that 

f2('c) i ~ c  f2(t) i and f2(~)" ~D f2(t) ~ 

for z < t  (~, t6I). Moreover, ua(~)<=ua,) (~<t) .  

Example 1.1. There exists a T > 0  ( T =  +co if N = 2 ,  T <  oo if N_->3) and 
a positive increasing function r(t) for 0 < t < T  with lira,_.0 r ( t )=0 ,  lim,_.r r ( t )=oo  
such that, for any A > 0  and any t0<0 the annuli (or shell-domains) 

(1.5) f2(t) = {xCRN: r ( t , to )  N < Ixl N < r(t--to)N+A} 

are a classical solution defined for to<t<to+T.  Observe that  [f2(t)l=constant, 
in accordance with e.g. Corollary 1.1 below (choose f =  1). Implicit formulas for 
r(t) may be found in [15]. 

An interesting question is whether the above solutions (and translations of 
them) are the only solutions which exhaust all R ~. 

The solution (1.5) possesses a number of extremal properties, e.g. the following. 
If {f2'(t)} is any other solution such that If2 (0)i[ = I fZ(0)~l and l O(0)[ = I f2'(0)l then 

Oua,(t) d lf2(t)~l < d Oua(o as ds If2(t)'l ~_ If2'(t)'l, "d7 ~--d-7 Io'(t)'l, On ~---foa'(,)' 0n 

for every t ~ 0  for which ~2'(t) is defined. See [15]. [] 

Our main concern in  this paper is t h e  local initial value problem associated 
with (1.2), i.e. the problem of finding a solution {f2(t): t~ I} on some small interval 
/ a round  t =0  when f2(0) is prescribed. There is then no loss of generality in assuming 
that I is so small so that there exists a fixed closed oriented hypersurface F c R  ~ 
such that, for all t6I, F c f 2 ( t )  and F separates the two components of f2(t)*. 

More specifically, when considering a smooth family {f2(t): tEI} of doubly- 
connected domains we shall henceforth (in w 1) assume that there exists a bounded 
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domain c o c R  N with F=0o~ smooth  such that  f2(t)~co~ and F c f 2 ( t ) f o r  all 
tEL Observe that  then f2(t)i=f2(t)~c~o~ and f2(t)r 

{f2(t): te l}  with I and F as above the Proposition 1.1. For a smooth family 
following conditions are equivalent. 

d ~u a ( , )  
ds 

for all r i.e. {f2(t)} is a solution. 

d f q~= f Oq~ ds (iO 

for all ~PE@ harmonic in ~2(t). 

f Oq~ ds (iii) fao) ~P-fa(o  ~p = ( t - z )  J r - ~  

for all q~E~ harmonic in t2(~)ut2(t). 

for all q~E~ superharmonic in f2(z) and subharmonic in f2(t) (and all ~, tel}. 

(v) For every z, tel, "c < t there is a function v=v~,tECl(R N) satisfying 

(1.6) Za(O-Za(,) = Av, 0 ~_ v <= t - z ,  

0 in f2 (t)', 
v =  t - ~  in fl(z)~. 

Remark 1.1. The strenghtened form of (ii) corresponding to (iv) reads 

d f ~ o > f  Oq, ds (vi) 

for all q~E~ satisfying Acp=<0 in t2(t)o~o and zl~p=>0 in 12(t)\o~ (F=Oo~). 
It  is easy to check that  e.g. (iv) implies (vi). 
In (v) the inequalities can be strengthened to 

0 < v < t - z  in f2(z)wf2(t). 

A more complete version of  the equivalence between (iv) and (v) is given in Proposi- 
tion 2.1. [] 

Proof. (i) implies (v): Define, for z <  t, 

f;ua(,) v = v , , t  = d r .  
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Then it follows from (1.4) (which is equivalent to (i)) that (1.6) holds in the distribu- 
tion sense. In particular AvEL** so that vEC 1 (even vEC ~'' for any ~<1). The 
remaining assertions follow immediately from the definition of u~, 0___uu~_l and 
Lemma 1.1. 

(v) implies (iv): Assuming (v) we have, for goE9 satisfying Ago-<_0 in O(z)c~co 
and Ago->0 in O(t)\o~, 

+ 

= (t-*) f o ago = (t-*) f ds, 

proving (iv). 
(iv) implies (iii): This is obvious. 
(iii) implies (ii): Differentiating (iii) gives 

d ago ds, (1.7) d-7 f o , o  go = 

at least for all goE~ harmonic in a neighbourhood of O(t). But every goE~ har- 
monic in O(t) can be approximated uniformly on O(t) (hence on gO(t)) by func- 
tions goE~ harmonic in a neighbourhood of 12(t) ([3], [11], [14, Ch. 5, w 5]) and 
from this (ii) follows, using the fact that the left hand side of (1.7) actually is of 
the form foa(o gofl ds (see (1.3)). 

(ii) implies (i): Assuming (ii) Green's formula gives 

d r r guoo~ �9 
(1.8) ~ J~(,) go = -- Jot~(O go ~ as 

for every q~E~ harmonic in I2(t) and we have to show that (1.8) actually holds for 
all goES. But this also follows from (1.3) and [3], [1I], [14] by approximating the 
function $<C(O(-ff(t-~)nH(O(t)) which equals goE~ on gO(t) by functions har- 
monic in a neighbourhood of O(t) (for which (1.8) clearly holds). [] 

From (ii) or (iii) in the proposition we see that if {O(t)} is a solution and go 
is a harmonic function in (say) a neighbourhood of O(t) (goEH(O(t))) such that 

f ago ds (1.9) .I r -~" = 0 

d 
holds, then -d-~fumg=O (or, if goEH(O(z)uf2(t)), fam~o=f~mgo). In two 
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dimensions (1.9) holds whenever r is a component of an analytic function. In fact, 
in this case q~ has a single-valued harmonic conjugate ~ = 9 "  and (1.9) follows 
directly from the Cauchy--Riemann equations: 

f r ~ n  ds= f r ~ s  dS=O" 

The higher dimensional analogue of the analytic functions (or, more precisely, the 
anti-analytic functions) is, at least from one point of view, the harmonic vector 
fields. A harmonic vector field in a domain f2cR N is a (smooth) vector field 
f = ( f ~  . . . . .  fly) in f2 satisfying 

(1.10) Ofk 
OX: 

(1.11) 

ofj = o (a~l k,j), 
Oxk 

N 
Z j = l  - -  O. Ox~ 

(1.10) and (1A1) are equivalent to the existence, locally, of a harmonic function u 
such that f = g r a d  u. 

In terms of the corresponding one-form to =fl dxl +... +fN dxN (1.10) and (I.11) 
say that dto=0 and d ' t o = 0  respectively, where * is the Hodge's star operator 
(see e.g. [20]). 

Now, if tp is a component of a harmonic vector field in f2, say q~ =f~ with f 
as above, then tp is harmonic in I2 (since locally ~o =Ou/9xl with u harmonic) and 
for any dosed oriented smooth hypersurface F in f2 

f 0~ as r-ff~" = 0 .  

In fact, using (1.10), (1.11) and Stokes' theorem, 

f~fa  ~ (  Of 1 r-~-d" = f rxj=~ -1)J -~-~J dXl...d~j...ax~ 

_ J-O-~x~ j= JrrOAdx~'''dxN+XN(-1)~-xr r r dxl...d~j...dXN - - - ~ 1  

= fr~--~ dx2"''dx~+ ~'~=~ ( - l ) J -~  f r  d(f~dx2...d~j...dXN) 

N 1 Ofj 
--Z~=~(-- 1)~- f r(--1)J-~j dx~...dXN ---- 0 

(dxl...d~j...dxs means dxl...dxj_xdxj+l...dxs). 
Thus we obtain 



An ill-posed moving boundary problem for doubly-connected domains 239 

Corollary 1.1. I f  {fl(t): te l}  is a solution then 

d4 f ~(o f = O 

for every harmonic vector field f defined in a neighbourhood of  12(t), and, in case 
N = 2 ,  also for every analytic function f in a neighbourhood of  12(t). 

Example 1.2. If, in case N = 2 ,  0Eintf2(t) i for all tEI Corollary 1.1 
shows that 

f a  z" = constant in t 
(0 

for every nEZ (z=xl+ix~) whenever {12(t)} is a solution. 

Corollary 1.2. I f  {f2(t): tEI} is a solution then Of~(t) is real analytic for 
every tEL In particular, a solution o f  the initial value problem with f2(0)=12 pre- 
scribed can only exist i f  Of 2 is real analytic. 

Remark 1.2. By "0t2 real analytic" we mean that for every yEOf2 there is 
a neighbourhood U of y in R N and a real analytic function g in U such that 

O ~ n U = { x E U : g ( x ) = O } ,  V g ~ O  on 0~. 

Proof. Consider e.g. O~(t) e for a fixed value of t. Choose zE/, r  Then, 
by (v) of Proposition 1.1 we have a function v which in a neighbourhood D of Off(t) e 
(e.g. D =RN\(f2(z) w cO)) satisfies 

Av=z~(t) in D, 

v > O  in DriP(t) ,  

v = O  in D \ ~ ( t ) .  

By the W~'~ theory for variational inequalities [22], [23], [7] we get 
vECI'I(D). Then a theorem of  CaffareUi [1] (see also [7, Ch. 2, w 5]) shows that 
v E C ~ ( O ( t ~ )  and finally [12, Thin. 1], [7, Thin. 1.1, Ch. 2, w 1] can be applied, 
showing that Of 2(t) is analytic; [] 

Remark 1.3. Notice that in order to prove that Of2(t) e was analytic we had 
to make use of the existence of a z < t  with f2(z)eDD ~2(t) ~. This is an indication 
of the fact that, as t increases, 0~2 (t) e becomes more and more regular in some sence. 
Similarly, O[2(t) ~ becomes more and more irregular as t increases. 
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2. Weak solutions 

Let I be an open interval containing the origin and choose a bounded domain 
cocR N with smooth boundary F=~09. For any bounded domain I2 in R ~ such 
that Fc~2 we set 

~2 t = ~cn  09, 

Thus if f2 is doubly-connected and co contains the "hole" in I2 then 12 1 and t2 e will 
be the bounded and unbounded components of f2 ~ respectively, as in w 1. In gen- 
eral, 09 has the role of dividing the components of f2" into two groups, the interior 
and the exterior ones. 

In view of Proposition 1.1 the following definition seems reasonable. A family 
{~(t): te l}  of bounded domains in R N such that F~f2( t )  for all tEI is called 
a weak solution of our problem if, for every z, tEI, z<t,  there exists a function 
1)=v~,tECl(R N) satisfying 

(2.1) Xu(O- Xu(~) = Av, 

(2.2) O <- v ~_ t - z ,  

to-Z in f2(~) ~, 
(2.3) v =  in t2(t) e. 

Example 2.1. The solutions (1.5) in Example 1.1 are, strictly speaking, not 
weak solutions since for technical reasons weak solutions can be defined only on 
small intervals I (so that F c  t2(t) for all tel). However, restricted to suitable 
small time intervals (containing t=0)  they obviously are weak solutions if 09 is 
chosen so that it covers the "holes" (otherwise they will not be weak solutions). 
Moreover, they can be extended as weak solutions for t<-to by 

(2.4) ~2(t) = (xERN: Ixl N < A} .  

Here {2(to) may be replaced by f2(to)\{0}. 
It follows that weak solutions are not uniquely determined by I2(0) in general. 

In fact, choose I2={xERN: Ixl~<A} and 09={xERN: [x[S<B} for some 0 < B < A .  
Then we have the following sets of weak solutions {f2(t)} with f2(0)=f2: 

(i) f2(t) defined by (2.4) for all tER. 
(ii) ~2(t) defined by (2.4) for t<-to and by (1.5) for to<t<to+8, where t0>0 

and 8>0 are sufficiently small. 
(iii) As in (ii) but with O(t0) replaced by I2(t0)\{0}. 



An ill-posed moving boundary problem for doubly-connected domains 241 

Although this example is very special (e.g. in the sense that f2(0) c is connected) 
the phenomenon of creation of new holes (in f2(t)noJ as t increases) is completely 
general, See Remark 2.1. [] 

In this section we give a fairly elementary proof of the existence of a weak 
solution with t2(0) prescribed (0f2(0) analytic) for I small. We also prove some 
regularity and uniqueness results. 

Lemma 2.1. Any weak solution is monotone in the sense that, for x<t, 

12('r) ~ c f2(O ~, f2('c) e D f2(t) e a.e. 

(the latter means that [f2(t)%,f2(v)'l--0). If f2(z)~r then actually t2 (~) '~  f2(t) ~. 

Proof In f2(t) Av>-O. Thus either v < t - z  in ~2(t)or v = t - ~  in ~2(t). 
But the latter alternative cannot occur since v is continuous and v=0  in I2 ( t ) e~ .  
Thus v < t - z  in f2(t)showing that f~(t)mf2(z)~=~, hence that f2(~)~cf2(t) ~. 
Similarly, zlv<-O in t2(z) implies that either v>0  in f~(~) or v - 0  in f~(~). In 
the first case we have f2(z)nf2(t)~=~, i.e. f2(t)~ct2(~)L 

Since v is continuous the second case can occur only if 12(z)~=O. Then v=0  
in cocf2(z)tuf2(z) so that v=0  on a l l00( t ) .  Hence v=0  in all RN since Av~_O 
in t2(t). Now (2.1) shows that I~(t)Zx f2(z)l =0. [] 

Proposition 2.1. Let {f2(t): tEI} be a family of  bounded domains in R N such 
that Fct2( t )  for all tilL Then {t2(t): tel} is a weak solution i f  and only i f  

f O(p ds (2.5) e (t-r)  J r - ~  

for all  oESL (a(t))n-SL (O(z)) and all t t. 

Proof Suppose (2.5) and let 

E(x)= 

so that --AE=6. Set 

v(x) = - f . c , ,  

1 
- - ~ - l o g  IxJ if N = 2 

CN if N=~3 
IxIN-  

E(x - y) dy + fu(o E(x - y )  dy. 

OE(x-y) ds(y)= { 10 if xEo9 
- f oo, On if xr 

Then clearly vECX(R N) and Av=zQ(O--Za(,). 
Since q ~ ( y ) = - E ( x - y )  is allowed in (2.5) whenever xr fl(z) and 
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(2.5) shows that v>-t-z in O(~) ~ and v_->0 in O(z) ~. Similarly, q~(y)=E(x-y) 
is aUowed in (2.5) whenever xr showing that v<=t-v in O(t) i, v<-0 in 12(t) ". 

In O(t), Av>-O. Hence maxR, v=maxoo)o v<--t--z by the maximum prin- 
ciple and the above. Similarly, minR, v=minam~ v=>0. Hence O<--v<-t--z in R ~. 
Furthermore, we get v=t-z  in f2(z) * (since we had v~ t - z  in O(~) ~ above) and 
v=O in O(t)" (similarly). Thus {O(t)} is a weak solution. 

To prove the converse we shall use an approximation device due to Sakai 
(see e.g. [18, proof of Lemma 7.3]). Let {~/,.}~'=, be a sequence of C=-functions in R N 
such that 0<_-~p,-<_l, ~kn=0 in a neighbourhood of (O('c)uO(t)) ~, l im, .~ ~kn(x)=l 
for every xEO(,)uO(t)  and 

A= 
(2.6) ID"~,. (x)l <= 

nf(x)l"l log 1/6 (x) 

for all xEO(z)wO(t) and all multi-index a. Here 6(x)=dist (x, (O('c)wO(t)) e) and 
A, are constants. The existence of such a sequence is proved in [10]. 

Suppose {O(t)} is a weak solution. Since the function v in (2.1)--(2.3) is a 
constant multiple of the Newtonian potential of Zoo)--X~(o elementary estimates 
show that 

Vv(x)-Vv(y) = O (Ix- yl log lx@yl ) 

for [x-yl small. Thus, since vECI(R/v) and v=0 in O(t) e 

(2.7) Vv(x) = O (6(x)log 6-~) , v(x)=  O(6(x)~log 6-~) 

in a neighbourhood of Og2(t) e and, similarly, 

in a neighbourhood of OO(z) ~. 
(2.6)--(2.8) show that 

= ~ 1 v(x)--(t-~:) O(6(x) log -~((x~- ) 

2ira [fo fo, o ~oA (~/nV)] = nlirn [f, fo, oq'g .a,, ] 

+ [L  2v .w] 

= f~conrPA(v,(t-z))+f~(o\oq>Av+O+O for ~oELI(RN). 
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Thus, for q~E SLa(O( t ) )n -  SLI(Q(z)) and using also Lemma 2.1 

Leo q' -L,o  q' = fo(~,o~,,,, ~,a~, = f~,o~ov, A(,~-(t-,))+s A,, 
: lira [f~(.,no eA (O.(v_(t_,))) + f~c,,\~, ea (O.v)] 

= ,-•lim [f~(on~ ~P"(v-(t'O)a~~ 
a 

&o ds] - l im[f  O . ( v - ( t - O ) ~ d ~ - f . o o . v - ~  J 
n - ~  L a O ~  on 

= [L,.,no + L,,,\o 
Oq) 

ds ~n  ds, +(t-z) ja,o- ~ f _-> (t--O f r 

completing the proof  of  the proposition. [] 

Theorem 2.1. Let 0 be a bounded domain in R lr with O0 real analytic. Choose 
a bounded domain co with smooth boundary F=O~o such that F c ~2. Then there 
exists a weak solution {O(t): te l}  ( I  some open interval containing the origin) 
with f2 (0) = I2. 

Proof. Let B c R n  be a large ball so that (in particular) g 2 c c B .  We shall 
work in the Sobolev spaces H~(B) and H-I(B) .  H~(B) is provided with the inner 
product 

(u, v) = fB Vu. Vv 

and the corresponding norm IIu][ =l/(u, u). H- I (B)  is provided with that inner 
product and norm (also denoted ( . ,  . ) and I[" I[ respectively) which make the 
Laplacian operator A: Ht(B)-~H-a(B) an isometric isomorphism. 

Let F: H-a(B)-+H-I(B)  denote the orthogonal projection onto the closed 
and convex set { fEH-I(B):  f<_-l}. As is easily seen (see [9] for details) F can 
also be described as 

(2.9) F( f )  = f + A u  

where uEHI(B) is the unique solution of the complementary problem 

A u + f  <= 1, 
(2.10) u ~ 0, 

(au+f -1 ,  u) = o. 
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Here ( . ,  .> denotes the natural pairing between H-i(B) and H~(B). (2.10) is 
equivalent to the variational inequality uEK={vEH~(B): f+Av<=l}, (u, v--u)>=O 
for all vEK. The latter is the variational formulation of the minimum norm prob- 
lem uEK, Ilull~_[Ivll for all vEK. 

If, in (2.9), (2.10), fELO'(B) and there exists a domain D c c B  such that 
f_->l in D, f = 0  outside D and f~f>lDl then 

(2.11) F(f) = Zu, 

where ~={xEB:  u(x)>0} (u is a continuously differentiable function here, since 
fEL~). Moreover, g2 is connected and, if B is large enough, O c c  B. In that case 
t] does not depend upon B. See e.g. [9] for the above matters. 

Now, with ~2 and F as in the theorem, choose a neighbourhood G of F such 
that G c c ~  and choose wECo(B ) such that 0<_-w-<_l and 

{~ in G e, 
w = in G/. 

We claim, first of all, that there exists a domain D, GccDccg2 ,  with smooth 
boundary and a function oEL*~(B) with 

Q = 0 in B\D, 
(2.12) 

t Q---->l+exa in D 
(for some 5>0) satisfying 

(2.13) F(Q) = Za. 

More precisely, it is required that 

(2.14) s = {xEB: u(x) > 0}, 

where u is the function occurring in the definition of F. 
Secondly we claim that, for It[ small enough, 

(2.15) F(O + taw) = X~(t), 

where ~2(t)= {xEB: ut(x)>O} are the desired domains. 
To prove the first claim we construct D and 0 and a function uEHlo(B) sat- 

isfying F(Q)=Q+Au as follows. Set u = 0  in B \ f 2  and continue u into 12 by 
solving the 011-posed) Cauchy problem 

(2.16) ~.Au= 1 in some neighbourhood, in f2, of 0s 
[u=0,  Vu=0 on a~2. 

The analyticity of Of 2 guarantees, by the Cauchy--Kovalevskaya theorem, that 
(2.16) has a solution u. Clearly, u will be (strictly) positive in some neighbourhood 
(in fa) of Ofa. 
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Choose a domain D with analytic boundary and G c c D c c ~  such that u 
is defined by the above and positive in ~ \ D  and constant on OD. Finally, con- 
tinue u as a bounded positive function into all of D such that AuEL=(B), u is 
smooth in D and such that, for some 5>0, Au <- -sXa in D. All this is easily seen 
to be possible. See [9, proof of Lemma 2] for more details. 

Set O=xg-Au. Then D and Q satisfy (2.12) and uEHJ(B) satisfies Au+0=Xa,  
u>0  in ga and u=0  in B \ f a ,  showing (by (2.10), (2.11)) that (2.13), (2.14) hold. 

To prove the second claim (2.15) just define ~( t )  by 

a ( 0  = u,(x) > 0} ,  

where u, is the function u occurring in (2.9) for f = f = o + t A w .  Then f = 0  outside 
D and, for ltl<a:=~lilAwll=, f>=l on D and fof>[D[. Thus it follows from 
(2.11) that (a(t) is a domain satisfying F(o+tAw)=xa~,) for ItI<& Also, by 
(2.14) fa (0) = fa. 

We now assume that B was chosen so large so that f a ( t ) ccB  for Itl<a. 
(It is easy to estimate apriori a sufficient radius for B.) 

Set, for , < t ,  Izl, Itl<6 v=v,,t=u,-u,+(t-v)w. Then vEH~(B) and 

ZaC,)-Zo{,) = o+ tAw+ Au,-(o+ zAw+ Au,) = Av, 

proving (2.1). 
(2.2) follows easily from the maximum/minimum principles, using that u,, 

u,=>0 and u ,=0  in B \O(z ) ,  u,=0 in B\Q(t ) .  Infact, we have v<=t-z in 
B\fa(t),  v=0  on OB and Av>-O in O(t) showing that v<-t-z  inB. Similarly, 
v~0  in B. 

In fa(v) t u ,=0  so that v>=t-~ there. Similarly, v<=0 in O(t) e. Hence (2.3) 
follows, using (2.2). 

Observe finally that v=0  in a neighbourhood of OB since O ( t ) c c  B so that v 
extends to a function in Ca(R N) by setting v =0  outside B. This finishes the proof of 
the theorem. [] 

Remark 2.1. Theorem 2.1 also applies when 0~2 contains certain kinds of singu- 
lar points, e.g. when some of the (finitely many) components of OQ consist of just one 
point (and the other are real analytic curves). Infact, the hypotheses on Off are needed 
only to guarantee the existence of a solution, positive in ~, of (2.16) and if yEOga is 
an isolated point in OQ then, in a neighbourhood of y, (2.16) has the solution u(x)= 
(1/2N)Ix-yI ~. As an example, take ~2 = {xERN: 0< IxIN<A} and r = {xERN: [x]N<B} 
where 0 < B < A .  Then Theorem 2.1 will produce the weak solution (iii) in Example 
2.1 (with t6=0). In general, if yEOY~ is an isolated point in 0~2 and yEco then, if 
{~(t)} is a solution produced by Theorem 2.1, yE~( t )  for t < 0  and yEga(t/ for 
t->0. If y ~  then yEO(t) ~ for t<_-0 and yEO(t) for t > 0  (assuming that 
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The above shows that weak solutions are far from being unique (given f2(0)). 
For given a weak solution {O(t): te l}  we can initiate the creation of a new hole at 
an arbitrary point yEl2(t0)n~o for t= t0>0  by applying Theorem 2.1 with f2"= 
f2(t0)\{y} as initial domain. Then we get a weak solution {f2'(t)} with the property 
that f2"(t-to)=f2(t)  for t<to but not for t>=to . Similar statements, with reversed 
inequalities, hold if yE f2(t0)\~. 

This phenomenon, the possibility of spontaneous creation of new holes in 
O(t)nco as t ingreases (and in O ( t ) \ ~  as t decreases) when {[2(t)} is a weak solu- 
tion, is an indication of extreme unstability of Of2(t) ~ as t increases (and of OO(t) e 
as t decreases). It perhaps also suggests that our notion of weak solution is "too 
weak". [] 

Remark 2.2. In Theorem 2.1 f2(t) is obtained as the non-coincidence set for the 
variational inequality (in complementarity form) 

i 
Au <- 1 - Q - t A w ,  

(2.17) u ~ 0, 
. ( A u - l + Q + t A w ,  u) = 0  

(u=utEH~o(B)). It may be interesting to see what (2.17) means when interpreted as an 
obstacle problem. 

Define an obstacle function ~bEH~(B) by A~=0- -1  (corresponding to t=0)  
and let (for arbitrary t) v = u + r  (v=vtEH~(B)). Then (2.17) is equivalent to 

Av ~ O, 
(2.18) v >- ~+tw,  

(Av, v - ~ - t w )  = 0 

and I2 ( t )= {xCB: v >~p + tw}. (2.18) is the variational inequality (in complementarity 
form) of the usual obstacle problem with obstacle function ~k +tw and f2(t) is the 
non-coincidence set for its solution. 

In view of our particular forms of ~b and w the picture will be that of Fig. 2 (one- 
dimensional section). The middle hump is raised (lowered) according as t increases 
(decreases). 

Theorem 2.2. The weak solution constructed in Theorem 2.1 has the following 
additional properties. 

(i) O < v < t ' z  in f2(z)Uf2( t ) (z<t)  unless v---O. In the latter case 12(~)~=0, 
f2(t)~O(z) and If2(z)\O(t)l=0. 

Oi) Of 2(t) is real analytic for ItI sujffciently small. 



An ill-posed moving boundary problem for doubly-connected domains 247 

~O+tw 

(t)' f~ (t) f2 (t)' r~ (t) ~ (t)" 

0 / .... 

Fig. 2 

(iii) f2(t) depends continuously on t e.g. in the following senses. 

Ilz.c0-Zo(oLl~-l~B~ ~- C It -~l  

i f  B is any ball containing 12(t) for all tE I; 

llzn(0-ZQ(,)llz-o~) ~ 0 as t -~ z for all p < ~,. 

(iv) [O(t)~l > 0  for It[ small enough. In particular f2( t ) has connectivity at least two 
(for Itl small). 

Proof. (i) For  a weak solution in general we have v < t - z  in f2(t) and, unless 
v - 0 ,  v > 0  in f2(z). In fact, by the definition of a weak solution f2(t) is connected, 
v~_t--x and Av>=O in f2(t). Hence either v = - t - z  in f2(t) or v < t - ~  in f2(t). 
But the first alternative is impossible since v is continuous and v = 0  in f2(t) e. Hence 
v < t - z  in f2(t). Similarly, v > 0  in f2(z) if v~_0. 

I f  now v = u t - u , + ( t - z ) w  as in the proof of Theorem 2.1 we also have v=  
- u , + ( t - z ) w < t , z  in g2(x)\12(t) since u t=0 outside f2(t), u ,>0  in f2(z) and 
w ~ l ,  Thus v < t , z  in all fl(-c)wf2(t). Similarly, v > 0  in g2(t)\f2(-c). Hence 
v > 0  in all 12(z)wl2(t) unless v - 0 .  In the latter case necessarily f 2 ( t ) \ O ( z ) = 0  
and, since [f2(t)l =lf2(z)l by Proposition 2.1, [Q('c)\Q(t)[ =0.  
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(ii) We have f2(t)={xEB:u(x)>O}c.cB, where uEH~(B) solves 

{ A u ~ f ,  
u ~ 0 ,  

O ~ - f ,  ~) = o ,  

with f = l - ~ o - t A w  (and ~o+tAw>-I in D, =0 i n B \ D ,  It l<6).  Thus u>0  and 
Au<-O in D c  f2(t). From this and the fact that 0D is smooth (real analytic) andf i s  
smooth in D it follows that D c c  t2(t). Indeed, u=0, Vu=0 in B\f2( t )  (the latter 
because u>-O, uECI(B)) so at a point xE~O(t)c~OD we would have a contradiction 
to the Hopf maximum principle (applied to - u  in D). Hence D c c  12( t )cc  B for 

Itl<~. 
In particular, f = l  in a neighbourhood of 0t2(t) Also, by the W2'~-regularity 

of solutions of variational inequalities [22], [23], [7] uEC 1'1 i n a  neighbourhood of 
12 (t). Finally, recall that ~ f2 (0) is smooth (real analytic). 

Now a stability result of Caffarelli [2, Corollary 6] (see also [7, Ch 2 w 10]) can be 
applied to show that Of 2(t) is smooth (e.g. C a) for Itl sufficiently small and then also 
the analyticity of Ol2(t) follows (sincefis real analytic in a neighbourhood of 0f2(t)) 
as in [12] or [7, Ch 2 w 1]. 

(iii) The first estimate follows from (2.15) and the fact that F is an orthogonal 
projection in H-I(B):  IlZ~(t)-Zo~oll <- II ~o +tAw-(~o +zAwll = l t - z l  llAwllH-,~nr The 
second assertion follows from [17, Thm 2]. 

(iv) It follows from (iii), choosing the Ll-norm, that I O(t)~l depends continuously 
on t. Since [f~(0)tl >0 the conclusion follows. [] 

Remark 2.3. Probably the solution constructed in Theorem 2.1 is actually a clas- 
sical solution for It l small enough. One reason for believing that is the fact that, under 
certain assumptions, obstacle problems with smooth data in a neighbourhood of the 
data of a known solution for which the boundary of the coincidence set is a smooth 
hypersurface can be solved also by means of the Nash--Moser implicit function theo- 
rem. See [19]. This kind of method gives additional information on the smoothness of 
the solution and applied to our variational inequality (e.g. (2.17)) it should show that 
{t2(t)} actually is a classical solution for It[ small. [] 

It is obvious from the definitions that a classical solution always is a weak solu- 
tion when restricted to a sufficiently small interval and with o~ chosen in the obvious 
way. However, weak solutions (with t2(0) prescribed) are not unique (Remark 2.1) 
and it is not immediately clear that, if a classical solution (with t2(0) prescribed) 
exists, the weak solution constructed in Theorem 2.1 really coincides with this classi- 
cal solution. The next theorem shows at least that if the weak solution constructed in 
Theorem 2.1 turns out to be doubly-connected (which is very plausible for ]t l small, 
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by Remark 2.3) then it is the only possible classical solution. The theorem is related to 
[18, CoT. 4.8]. 

Theorem 2.3. Let {I2'(t): t e l }  be a classical solution and let {t2(t): t e l }  be 
a weak solution with f2 (0) = I2" (0) and constructed as in the proof  o f  Theorem 2.1 
with co D I2"(O) i. Then, for  each particular tE I small enough, either Q' ( t )= t2 ( t )  or 
i)f2"(t)c f2(t). In particular, f2' ( t )=  f2(t) i f  I2(t) is doubly-connected (in such a way 
that f2(t) ~ and ~2(t) e are both connected). 

Proof. Let B, D, Q, w and u s be as in the construction of {I2(t)} in the proof of 
Theorem 2.1. Thus 

(2.19) F(Q+ tAw) = Q+ tAw+ Au t = X~(,), 

ut > 0  in f2(t), 

u s = O  in B\ f2 (O .  

We first consider the case that t > 0  and assume that [tl is so small so that D c c  
t 2 " ( t ) c c B .  From Proposition 1.1 we obtain v=vo.sECZ(R N) such that 

Xa'(t)-- Xa'(o) ---- Av, 

O<=v<--t, 

v = 0  in g2'(t) ~, 

v = t  in t2'(0) i. 

Set u~=v+uo- tw .  Then, by (2.19) for t = 0  and f2"(0)=f2(0), 

(2.20) Au[ = X a . ( o - o - t A w .  

Further, since u0=0 outside I2(0)=f2'(0), O'(t) 'cf2'(O) e and v - t w = O i n t 2 ' ( O ) t u  
f~'(t)" 

u' t=O in O'(0)~uf2'(t) e. 
Even moTe, we get 

(2.21) u~ = 0 in O'(t) c = f2"(t)'ut2"(t)', 

since f2'(t) ~ is the closure of its interior which is a (connected) domain containing 
f2'(0) ~ (which has nonempty interior) and, by (2.20), Au" t =0  in int (f2'(t)~). 

Now consider r  o in f~'(t). Since, by (2.19), (2.20), 
At# = Xa,(t)-- X~cO 

Atp_~0 in I2'(t). 

On tg~2'(t) u [=0  and Vu~ = 0  by (2.21) and using that utEC 1 and that I2'(t) c is the 
closure of its interior. Since u t>0 in f2( t )and  ut=0, Vus=O in f2(t) ~ (the last 
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assertion depends on urn=O, utEC~), we obtain 

< 0 on 0t '(0nt2(0. 

q ~ = 0  
0 on  OO'(t)\o(O. 

Suppose now that O~2"(t)\f2(t) is non-empty. Then it follows from the Hopf  maxi- 
mum principle that q~--0 in f2"(t). (The fact the ~o is not necessarily of  class C 2 in 
f2'(t) as required in the maximum principle can easily be handled by considering, 
instead of  q~, the harmonic function ~ in f2"(t) with ~9=q~ on 0f2'(t); then ~ q ~  
and hence O~/On<=Oq~/On at any point of Of 2"(t)\f2(t).) 

Thus Of 2"(t)nf2(t)=O, i.e. Of 2'(t)cf~(t) c, i.e., since f2(t) is connected and 
t2"(t)nI2(t)~D~O, f2(t)~f2"(t). Finally, O( t )=f2 ' ( t )  since Ol2(t) is smooth 
(Theorem 2.2)and 112(t)l=ll2'(t)l (choose q ~ = •  and z = 0  in Propositions 1.1 
and 2.1). 

To prove the final claim suppose that O0"(t)cO(t). Then Q(t)iCg2"(t) ~ by 
the connectedness of  f2(t) i and the fact that f2(t)~nf2'(t)i~ f2(0)fr Similarly, 
f2( t)~cf2 ' ( ty .  It foUows that f 2 " ( t ) c c  f2(t) which contradicts [12 ' ( t ) l=[o ' (0)I= 
1~2(t)l. 

The case t < 0  is handled similarly. In the final part one can use the continuity 
of  It2(t)~l ((iii) of Theorem 2.2) to infer that f2(t) inf2 ' ( t ) i r  (the argument for 
t > 0  does not  work for t<0) .  [] 

3. Generalizations 

Theorem 2.1 generalizes without troubles to domains f2 of  arbitrary finite con- 
nectivity as follows. 

Theorem 3.1. Let t 2 c R  n be a bounded domain of  finite connectivity m + l  
(re->l) and with real analytic boundary. Let co~, ..., co,. be bounded domains in R N 
with smooth boundaries F~=Oco i such that {r are pairwise disjoint, F~cI2 and cot 
contains the i: th bounded component of  f2" for each i = i  . . . .  , m. Then there is a 
neighbourhood I of  the origin in R N and a family {s t=(q . . . .  , t,.)EI} of  pertur- 
bations off2 satisfying F i c  f2(t) for all i and t, f2(0) = f2 and 

- Oq~ ds f.i,, = Z '=I Jr,-ys 
for every 9 harmonic and integrable in O(z)uI2(t) ( t=( t l  . . . .  , t,,), ~ = ( q  . . . .  , z,.)). 

In particular 

LO) cp = L(t)  q~ 
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i f  q~ is a component o f  a harmonic vector field or, in the case N=2 ,  ~p is an analytic 
function (defined and integrable in ~ (r ~ (t)). 

Remark 3.1. This theorem is related to some matters in [18, w 5]. See also [8, w 7]. 

Proof. Choose small (and disjoint) neighbourhoods Gj of Fj and functions 
wjCCo(R N) satisfying wj=0 and 1 in Gj~,xmj and GsC~O~ j respectively 
( j =  1, ..., m). Construct a domain D and Q~L~176 as in the proof of Theorem 2.1, 
now with G=Gxu. . .UGz.  Thus F(Q)=X~. Now the desired domains O( t )=  
Q(q . . . .  , tin) are obtained as 

F n ( +Xj=ltjawj) = x,ao, a ( O  = u,(x) > o} 

for Itl small enough and B large enough. (u t is the function u in (2.9), (2.10) for f =  
+ ~ t j A w  i.) Then, for (say) q~EH](B) harmonic in Q(~)wQ(t) 

fo,,,  = <xo,,,-xo,,,, 

= <e+XtjAwj+Aut--(~o+xvjawi-f-Au,) , q)) 

= (, , ,  A(p)--(u~, A~o)+~,(tj-'cj)(Awj, ~o) = 

For general q~EHLl(Q(z)uE2(t)) one has to use an approximation argument as in 
the proof of Proposition 2.1. [] 

Another generalization is that, in the classical formulation (1.2) of the problem, 
we may allow the velocities of the two components of 0~( t )  to be proportional to 
-Ouoct)/On with different constants of proportionality on the two components. More 
generally, we may replace (1.2) by 

d f _ f "̂ ~ Ought) ds, 
dt ~( t )  cp = JoQ(t) q' On 

where a =a(x)  is a given smooth function in R n satisfying O<cl~-a<-e~< oo. (1.4) 
then takes the form 

d 
Xo(t) = ~A u~e ). 

This generalization may be of significance e.g. in the electro-chemical interpretation 
of the problem since the material transported between the anode and the cathode may 
contribute differently to the volume change at the two electrodes. Also, part of the 
material may be transported away by the electrolyte. 

For the Hele Shaw model the above generalization means that the distance bet- 
ween the two surfaces may be noneonstant (proportional to 1/~). 
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Our method of constructing weak solutions applies to this more general problem. 
In the definition of a weak solution (2.1) is changed to Z~r in the con- 
struction of weak solutions as in the proof of Theorem 2.1 the operator F: H-1(8)-*  
H - I ( B )  now will the orthogonal projection onto { fEHI(B) : f~_  1/~} and the Cauchy 
problem to be solved initially will be Au= 1/0~ in some neighbourhood in Q(0) of  
0~(0), 

u = O  
(3.1) Vu 0 on 0~(0) .  

The solvability of (3.1) (with u > 0  in f2(0)) is a hypothesis on Of 2(0) which is neces- 
sary e.g. for a classical solution to exist. I f  ~ is real analytic in a neighbourhood of  
0f2(0) this hypothesis reduces to that 00(0) shall be real analytic, as in Corollary 1.2 
and Theorem 2. I. 

As a final generalization, the concept of a weak solution also makes sense e.g. 
for time intervals of the kind 

I = [ 0 , 6 ) = { t E R : O < - t < 6 }  (6_-->0) or I = ( - 8 , 0 ]  

and we then have the following result. 

Theorem 3.2. Let f2 be as in Theorem 2.1 except that we require only Of 2 i to be 
real analytic; about Of 2 e we make no regularity assumptions at all. Then there exists 
a weak solution {f2(t): tEI} on some interval I=[0,  6) satisfying f l (0 )=fL  Simi- 
larly for intervals I =  ( - f i ,  0] i f  instead Of 2 e is real analytic. 

Proof(outline): If  0f2 ~ is real analytic choose a domain E with o9 c c  E c  f2ul2 ~ 
and with 0Ereal  analytic. Then f2c~E satisfies the hypotheses of  Theorem 2.1. Choose 
Q and w as in the proof of Theorem 2.1 but now with f2c~E as initial domain. Thus 
F(Q)=Z~nE. Define f2(t)by 

(3.2) f2(t) = e u { x E B :  ut(x ) > 0} 

where ut is the function u in (2.9) for f =  O + Z a \ r  + tA w. The term E in (3.2) is needed 
only when t=0 .  Compare [9, Prop. 1 (h)]. Then F(Qq-Z~\l~-q-tAw)=x~(t ) for 0~_ 
t<6,  6 > 0  sufficiently small, and it is straightforward to check that 
{t2(t): tel0, 6)} is the required weak solution. Similarly for I = ( - 6 ,  0] i f 0 0  e is real 
analytic. 
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