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1. Introduction 

Let f 2 c C  be a bounded simply connected domain and let Lp(t2), l<-p~_oo, 
be the usual space Lebesgue measurable functionsfon g2 which are pth power integ- 
rable with norm denoted by Ilfllp. For k a positive integer and 1 <=p<= oo let Wk.p(t2 ) 
denote the Sobolev space whose functional elements f a n d  distributional partial deri- 
vations D'f ,  I~1 <--k, satisfy 

Ilfllk,~ = l i f l l ~ + Z l ~ l  ~k l lD~fllp < + oo. 

Let E, 0E, and E c denote the closure, boundary and complement of the set E. In [9], 
P. Jones proved an extension theorem for (e, iS) domains and showed that in two 
dimensions his theorem implied: 

Theorem A. Let k be a positive integer, 1 <-p~_ o% and suppose that f2 is a bounded 
simply connected domain. Then each function in Wk, p ( ~2) extends to a function in W~, p (C) 
i f  and only i f  Of 2 is a quasi-circle. 

Recall that a quasi-circle is the image of the unit circle under a quasiconformal 
mapping of C onto C. In this note we shall be concerned with when the space of infi- 
nitely differentiable functions on C, C~(C), is dense in Wk, r(f2) for k = l ,  2, ..., and 
1 <_-p<- co. If0f2 is a quasi-circle, it follows from Theorem A in a well known way that 
C~(C) is dense in Wk, p(12 ) for k =  1, 2, ..., and 1 <=p<= co. On the other hand, there 
are simple examples which show there is a Jordan domain f2 (i.e., a domain bounded 
by a Jordan curve) and a function fE Wl, p(f2) which can be approximated arbitrarily 
closely by C~176 functions for 1 <_-p<- oo, but does not extend for allp. A standard 
example is the function f ( x ,  y) =y-1 in the domain bounded by the line y = 1 and 
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(1.1) 

whenever (o~,q(Dn). 
weak solution to 

(1.2) 

the curve 
y =  - 1/[In (Ixl)], 0 < Ixl ~- 1/e. 

Thus, extension and approximation problems are in general different. In this note we 
prove the following theorem which partially answers the question raised in [7, pro- 
blem 8.2]. 

Theorem 1. Let f2 be a Jordan domain. Then C~176 is dense in Wi, p(f2) for 
l < p <  oo. 

As for our proof  of  Theorem 1 we note that the case p = 2  follows easily from 
conformal mapping. Our proof  for 1 < p <  co is motivated by this case. To be more 
specific, let (g2n) be a sequence of  bounded Jordan domains with 

~ c__ f2n+l =c f2~, n = 1,2, ... ,  

and such that ~f2~ converges to 0f2 in the Sense of  Hausdorff distance as n-~ oo. That 
is, given ~ >0,  there exists N such that each point of Of 2n lies within 8 of  a point of  
0f2 for n>=N and vice versa. Take, for example, f2~, n = 1, 2, ..., to be the domains 
bounded by certain levels of  the Green's function for Oc with pole at co. Given p, 
1 < p <  o% let q = p / ( p -  1) be the conjugate exponent to p, and suppose that 

A(a, 4r) = {z: I z -a l  < 4r} ~ f2. 

Consider the problem of minimizing the Euler functional, 

fc IV~l~ d a  

where V~k denotes the gradient of  ff and the minimum is taken over all functions 
in l~,~(f2.) with ~k=l on zi(a, r). Here dA denotes two dimensional Lebesgue meas- 
ure and r162 ~(f2n) is the closure of the infinitely differentiable functions with compact 
support  in ~2n under the Wi, ~ (On) norm. It is well known that this functional attains 
its minimum at a unique U.El~l.~(f2.) with 0~U.<=I ,  and U . = I  on A(a,r). 
Moreover, if Dn= I 2 . - 3 ( a ,  r), then 

fc. IvU~l(q-z)vU~" Vc? dA = O, 

Observe from (1.1) and the divergence theorem that U~ is a 

v .  [IVU~l<~-~)VU3 = 0 

in Dn. In w 2 we show that given a compact set K in f2 there exists N = N ( K )  a positive 
integer and t=t(K)>O such that 

(1.3) {~: t/2 ~- r2~,(~) ~_ 0 c= a - K .  
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Next in w 2 we show that 

(1.4) VU, ~ 0 and U n is real analytic in D,, 

for n = I, 2 . . . . .  From (1.4) and standard ordinary differential equation theory (see 
[3, Ch. 5]) or by constructing a "conjugate" to U, as in w 3, it follows that for given 
zo~D, there exists an open real analytic arc J0 containing z0 with VU, tangent to J0. 
The theory also guarantees that if J1 is another such arc through zl~f2~, then J0, Jx 
are locally close together in the sense of Hausdorff distance when zl, zo are near 
each other. We observe that if the parametrization of Jo is properly chosen, then U. 
decreases along 3o. Thus J0 is a Jordan arc. A maximal Jordan arc containing Jo for 
which VU. is tangent will be called an orthogonal trajectory. It follows from the above 
discussion and the maximum principle for elliptic equations of the form (1.2) that 
there is a unique orthogonal trajectory through z0 which must approach 01). as one 
proceeds along it in either direction from z0. 

It suffices to prove Theorem 1 for fixedp, l < p <  ~o, and 

(1.5) fEWl,p(~2)c~C~(~?), 

since this space is dense in Wl, p(O) (see [12]). Given 5>0 choose M > 0  so large 
that i f  E={zC~2: [f(z)l>-M}, then 

f E(lfff +lVfl ~) dA ~_ 5". 

Put f ~ = f  in f 2 - E  and f~=(Sgnf )M in E. Then f~EWl, p(g2), 

(1.6) JJf-f~lJa,~ <-- 35, 

andf~ is locally Lipschitz in g2. With M now fixed, choose K a compact set so that 

(1.7) M .  area [g2-K] I/p -<_ 5, 

(1.8) ll(VA)x - ll, <- 5. 

From (1.3), (1.4), and the coarea formula (see [4, 3.2.12]) we find 

t 

for some positive integer N and t >0. Here ds denotes arc length. Hence, there exists 
~, t/2<-z<-t, such that 

(1.9) IVfxlP/IV UNI ds ~_ 2~v/~. 

Given zED~r let z* denote the point in {W: UN(W)=r which lies on the same 
othogonal trajectory as z. Define f2 in g2 N by f~=fl  in {W: UN(W)>-~} and f~(z)= 
fl(z*) when zE {W: 0<  UN(W)<z }. In w 3 we show thatf~ is Lipschitz in f2 s and 

(1.10) "tf'o-<vN~-O IVf2lP dA ~_ ~ f'vs=O, t [Vfllv/[VUsl ds ~_ 2~ v. 
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Note that the last inequality follows from (1.9). Using (1.6)--(1.8) and (1.10) we 
deduce that Ilf-f~l[a,p<_-Se. Finally, convoluting f2 with a suitable approximate 
identity we obtain a C = function on C which approximates f i n  W~,p(O) within 95. 
Thus to prove Theorem 1 it remains to prove (1.3)--(1.4) and (1.10). 

Next, let Aa, p(f2) denote the space of  analytic functions in f2 whose real and 
imaginary parts are in Wl, p(f2) with norm induced from this space. In w 4 we easily 
obtain from (1.10) and Theorem 1. 

Corollary 1. Polynomials in z are dense in A1, p(f2). 

The author would like to thank Professor Lars Inge Hedberg for suggesting 
these problems to him. 

2. Preliminary reductions 

Let (fin) and ~2 be as in w 1. Recall that 

A (a, 4r) c fl c ft ,  c A (a, R), 

n = l ,  2 . . . .  for R > 0  large enough. For fixed q, l < q <  ~,  let U, be defined relative 
to q as in w 1. We first prove (1.3). To do this, we note from a Harnack inequality of  
Serrin (see [13, Thin. 1.1]) that for a given compact set K ~  O there exists t=t(K) 
such that U,~-2t on K f o r  n =  1, 2, .... To prove (1.3) for this t, it clearly sufficesto 
show 

(2.1) U,(z) ~_ kl[d,(z)/r[ k, zCa,, 

where k~=k~(q) and k=k(q)are positive constants independent of  n, since 0 0 ,  
converges to 0 ~  in the sense of Hausdorff distance. In (2.1), d, (z) denotes the distance 
from z to 0~ , .  If  q > 2, then (2.1) is a consequence of  the fact that functions g in/4/1, q (C) 
are H61der continuous with exponent 1 - 2 / q  and norm bounded by a constant times 
[[gJ[a,q. If  q=2 ,  then (2.1) is a consequence of  the Milloux--Schmidt inequality 
(in this case k = l / 2 ) .  If  l < q < 2 ,  z lE~-3(a ,  2r), and O<o<r/2 weusetheinequal-  
ities; 

(2.2) 

(2.3) 

M(Q) ~ ~- ko-~ f U~,dA (see [13, Thin. 1.3]), 
A(za, 2Q) 

Q(q-2)fa [VU.] ~ dA ~= kM(40)[M(4~)-M(Q)] (~-1) (see [5, Thm. 2.1]), 
(zx, ~)  

M(t) = M(t, Zl) = ess. sup U,. 
A (zx, t) 

where k=k (q ) .  
Here, for t > 0  
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Now if d, (z0)<--a<r/4 it follows from Poincar6's inequality applied to Un restricted 
to OA(zo, t) a<t<2a, that 

(2.4) ,q f IVUnlq(z) dA >-- 2-" f ~ [ f ~  = loU./oOl~(zo+tei~ 
A(Zo, ~a) 

= > U da 
z- .<Iz-z01<m.}  

Again k = k ( q )  is a positive constant not  necessarily the same at each occurrence. 
>_1 From the weak maximum principle implied by (1.1) we see that U~(z2)=T M(a, Zo) 

5 a<[z2_z0l<{_a ,  Using this inequality, (2.2) with o=a/8, for some z2 with T 
zl=z2; (2.4), and (2.3) with 0 = a ,  z 1 =z0, we get 

m(a, Zo) q = M(a) ~ <-- ka-2 f {z:.<,_,ol<~.} U# dA 

ka(q-2) f IVU~lada ~ kM(4a)[M(4a)-M(a)] (q-l). 
,d ACzo, 2a) 

Hence, 

[M(~)/M(4a)I q -<_ k 1 M(4a) 

from which it follows that 

(2.5) M(a)  <= 7M(4~), 

for some T=Y(q), 0 < V <  1. Iterating (2.5) with a=4Jd,(zo), j = 0 ,  1, , m, where 
m is the least integer such that 4m+ld,(zo)<r, we get 

M[d.(zo)] <= ~)m .<:= kl[d,(zo)/r]k, 

w h e r e  kl=kl(q), k=k(q). Hence (2.1) is valid when d,(zo)<r/4. If  d,(zo)>-r/4, 
then clearly (2.1) holds for:k~ large enough, and k as previously. We conclude from 
(2.1) that (1.3) is true. 

Finally in w 2 we prove (1.4). To do so we cannot apply elliptic regularity theory 
directly since (1,2) is degenerate elliptic. Instead, given , > 0  and n a positive integer, 
let V=  V(- ,  e, n) be the minimizer of the Euter functional 

f c  [e+ IV~Plz] q/2 dA 

where the minimum is taken over ~EgVl, q(f2~) with ~- -  1 on z](a, r). 
As in w i we see that V i s a  weak solution in D. to 

(2.6) 0 = V. [(e+ IVVI2)((q/2)-I)VV] = ~ f , j  auVx, x.f, 

where at Z=Xl+iX2ED,, 

(2.7) a i j  = (n+lVVl2)q/z-X[(q-2)Vx, V~(e+lVVl2)-l+6J = (e+lVVlS)q/2-ab~j, 
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l~ i , j~2 .  In (2.7), ~ij denotes the Kronecker delta. It is easily seen for z6Dn and 
= ~1 + i~  that 

(2.8) ~xl~l z ~- Z l . j  b,jr ~_ ~zl~l ~, 

where g l=min  ( q - 1 ,  I), ~2=max ( q - 1 ,  1). It follows from (2.6) and (2.8) (see 
[10, Ch. 4]) that V is infinitely differentiable in D,.  Hence V is a strong solution to 
(2.6). Moreover, from (2.8) it follows as in [6, 11.20] that if z~ D,,  V,~ ~ 0, and 2 = V z, 
then 

(2.9) ;t~ =/~(z)gz, lU(z)l <- fl < 1, 

where f l = p ( q ) i s  independent of n and e. Thus 2 is quasiregular in D,.  Put v = #  
in D, when V:z ~ 0 and let v = 0  on the rest of C. L e t  "c be the unique quasiconformal 
solution to the Beltrami equation satisfying 

z~ = v (z )~ ,  z~C, 

for almost every z in C with respect to two dimensional Lebesgue measure and z(0) = 1, 
z(1) = 1, z ( ~ ) =  ~ (see [2, Ch. 5]). Then 

(2.10) 2 = goz 

where g is analytic in z(D,). It follows from (2.10) and (2.6) (see [6, Thm. 11.4]) that 
for a given compact subset EC_O~ there exists ~ = ~ ( q ) > 0  and k=k(q,E)  (inde- 
pendent of e) such that 

(2.11) max IZl <- k, 
z ( E  

(2.12) I2(z)-,~(w)l <= klz-wl  ~', z, w~E. 

From (2.10) it is clear that 2 has only isolated zeros in D, .  We in fact show 

(2.13) 2 r  in D~. 

Indeed, if 2(z0) = 0  for some zoED~, then from (2.7) we see that A V(zo) =0.  Since 
Vis real analytic in D~ it follows from (2.6), (2.7) that for some positive integer m=>2, 

V(z)-V(zo) = e ( z -  zo)+O(Iz- zol "§ 

in a neighborhood of  z0, where P is a homogeneous, harmonic polynomials of  degree 
m. Hence for some r/~C 

(2.14) V(z)-V(zo) = Re [~l(Z-zo)m]+O([z-zo[ ''+1) 

in a neighborhood of  z 0. 
Now from the maximum principle for solutions to (2.6) we see that 

{z: V(z) > V(z0)} has exactly one component. However, (2.14)implies that this set has 
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more than one component. To see why, choose rays/1, Is, 13, 14, beginning at z0 such 
that 

Re [r/(z-z0) m] < 0, zEllul2-{Zo}, 

Re [tl(z- zo) m] > O, zE l3ul4- {zo}. 

We also choose 13, 14, so that 13 lies in one of  the sectors determined by 11,/2, and 14 lies 
in the other sector. Then from (2.14) it is clear that there are segments a 1 c_./1, a2 c= 12, 
each containing z0 with V >  V(zo) on (al u a 2 ) -  {z0}. Since {z: V(z) > V(z0)} is connect- 
ed, there exists a curve a contained in this set joining el to a2. If  T =axucr2ua, then 
an argument similar to [1, Ch. 4, Lemma 2] shows that V(z)< V(zo) at some point z 
in one of the bounded components K of C - ? .  But from the minimum principle for 
solutions to (2.6) it would follow first that (C-  f2,)nKr and thereupon from con- 
nectivity of C -  f2, that C -  f2n c= K. From this contradiction we conclude that (2.13) 
is valid. 

Let (ej) be such that 0 < e j < l ,  j = l ,  2 . . . .  and liml_.~ ~ = 0 .  With n still fixed, 
let Vj=V(.,  e~, n), 2j=(Vj)  z, j = l ,  2 . . . . .  Then from (2.10) we see there exists 
zj quasiconformal in C with zj (0)=0,  z j (1 )= l ,  z~(~o) = co, and gj analytic on zj(D,), 
j =  1, 2, ... such that 2j=g~ozj. From the normalization on (zj)~* and (2.9) it fol- 
lows (see [2, Ch. 3, Thm. 2]) that a subsequence of  (zj)~ (also denoted (~j)~) converges 
uniformly on compact subsets of  C to a quasiconformal function z. From (2.11)-- 
(2.12) and the fact that Vj~U~ in lJz~,p(g2n) (see, for example, [11, (1.6)]) it follows 
that 2j converges uniformly to (U,)z on compact subsets of  D, .  Thus (gj) converges 
uniformly to an analytic function g on compact subsets of z(D~) and (U,)z=gOz. 
It follows from this representation of  (U~)~, (2.13), and Hurwitz's theorem that 
(U.), ~ 0 in D~. Also (U,), is H61der continuous as follows from (2.11)---(2.12) or the 
fact that -c is H/51der continuous. Using these facts we see that U. is a weak solution to a 
locally uniformly elliptic equation with H61der continuous coefficients. From a slight 
generalization of Schauder's Theorem and a "bootstrap" method, we conclude that 
U~CC~(D,) (see [10, Ch. 4, Thrn. 6.3]). Applying a Theorem of E. Hopf  [8], it then 
follows that U, is real analytic in D,,. Hence (1.4) is valid. 

3. Proof  of  Theorem 1 

Given p, I < p <  oo, 
fE l4"~l, v(O)nC~o(f2), 

and e > 0  we choose M a s  in w I and definef~ relative to M a s  in w 1. Using (1.3)--(1.4) 
and proceeding as in w 1, we obtain ((1.7)--(1.9)) for some z>0.  In (1.9) it is under- 
s tood of course that z > 0  is chosen so that Vf~ exists almost everywhere with respect 
to arc length measure on {z: UN(z)=z}. Next we definer2 relative to z andf~ as in w 1. 
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We claim thatf~ is Lipschitz in D n. To prove this claim, let zoED n and suppose 5>0  
is so small that ~+5<1.  Let 7 be an orthogonal trajectory in DN with z0r and put 

a = {zEDN: 0 < UN(z) < ~-t-5}-~. 

Clearly G is a simply connected domain. Put U= U N and consider the differential 

IVVl(a-~)[- Uy dx + Vx dy]. 

From (1.2) it follows that this differential is exact. Hence there exists a real analytic 
function Vin G with 

g~ =-IVUl(a-~)uy,  vy = IVU[(q-~)u:. 
Note that Vis constant on arcs of orthogonal trajectories and is increasing on an arc 
contained in a level of U provided the parametrization is properly chosen. It follows 
that W = U + i V  maps G one-one into a square S in the Wplane. If q~ denotes the 
inverse of W, then q~ is real analytic on S and by construction for W= U+iVE S 

(3.1) Aoq,(w) =Z(q,(w)), u > ~, 

Aoq,(w) =A(~(~, v)), u_-<~. 

Sincef~ is Lipschitz and ~o(C~176 it follows that f2o q~ is Lipschitz in a neighborho- 
od of W(zo). Hence fz is Lipschitz in a neighborhood of z0. Applying Rademacher's 
theorem, we see that fz is differentiable for almost every z in f2~ with respect to two 
dimensional Lebesque measure. 

Let F={z:  0 < U ( z ) ~ }  zoEE , and supposef~ is differentiable at zo. Sincef~ 
is constant on arcs of orthogonal trajectories in F, we see that IVA(z0)l= 
Idf~(zo)/dsl, where df~(z)/ds denotes the directional derivative off~ in a tangential 
direction to {4: U(~)= U(z)} at z. Let zg' be the point in {z: U(z) ='c} which lies on 
the same orthogonal trajectory as zo. Then from the above remarks and (3.1) we deduce 
for almost every zo(F, 

[0~ (w(zo)) 

d , 

Since [Oqg(W)/OV[=[VUla-q)(z), we conclude that 

d , (3.2) [Vf~(zo)l = ITS fl(z0) 1 [VU(zo)l'q-l']VU(g~)l (1"') 

for almost every z0EF. Observe that p = q / ( q - 1 )  and that the Jacobian of Wat  zo 
in F is  [VU(zo)[ q. Raising (3.2) to the pth power, integrating over F, and changing 
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variables, we get 

d P 
(3.3) f F[Vf2IP dA = f FlVU(z)l~ l-~s f~(z*) l IVU(z*)I-q dA 

= {f0 ](..~_fl ) d .))IPlvu(~($,V))I_qdv)f:dU_~_ $ f{u=.}ldfl]]~U[_lds. 
Here, 

0 = fry=,} IVUl(~-l) ds 

and we have used the fact that dV=]VU]Cq-~)ds on {z: U(z)=z}. From this equa- 
lity and (1.9) we conclude that (1.10) is valid. 

4. Proof of Corollary 1 

Let g =h +ilC A1, q(f2). Arguing as in w167 1--2 wi thfreplaced by h,/, respectively, 
we get h2,/2, defined on t2N=D ~ which approximate h, l, respectively in the  norm of 
Wl, q(O) within 88. Moreover from (1.10), it is clear that 

(4.1) fo~,_o ([Vh2IP+ IV/2[ p) dA ~_ 4~ p. 

Let g2=h2+il~ in f2N. Wewri te  g2=~+Pg2 in O N where 

1 
Pg2(z) = w f o~ (g2);[(z-O-l-(a-O-q dA, zCf~N. 

Since g2-g has norm in Wl, p(O) at most  16e and (4.1) holds, we deduce that 
II(g2);llp<_-24~, where the norm is in O N. Now (see [2, Ch. 5]), (Pg~)~--(g2)~ when 
~6 O N and (Pg2)~ = 0  in C -  O N almost everywhere with respect to two dimensional 
Lebesgue measure. Thus from Weyl's lemma, ~k is analytic in O N. Using Calder6n--  
Zygmund theory it follows that 

(4.2) ll(Pg~)~ll, <-- k II(g~);ll, <-- ks, 

(4.3) [IPgzll, <= tqll(g2);l[, <-- kxe, 

where k~=kl(p, f2) and k=k(p). Also, all norms in (4.2)--(4.3) are taken relative 
to O N. From (4.1)--(4.3) we conclude that ~k is analytic in ON and [Ig-Oll~,p~_k2e 
where k2=k2(f2,p) and the norm is in f2. Since ~ I 2  N it follows from Runge's 
theorem that there is a polynomial Q which approximates ~ within e in Wx,p(f2). 
Thus, 

I IQ-gL,  p <= (k2+ 1)8, 

and the proof  of  Corollary 1 is complete. 
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