A class of hyponormal operators and weak*-continuity of hermitian operators

Kirsti Mattila

We will first in this paper consider a class of hyponormal operators which we call *-hyponormal operators. We give an example of a hyponormal operator which is not *-hyponormal. It follows from a theorem of Ackermans, van Eijndhoven and Martens [1] that subnormal operators on a Hilbert space are *-hyponormal. We prove a generalized Fuglede—Putnam theorem and some other results for these operators.

We will also prove some results on the following problem which was mentioned in [4]:

Problem (1). Let T be a bounded linear operator on a Banach space X. If $T^* = H + iK$ for some hermitian operators H and K on X^* , is it true that $T = H_0 + iK_0$ for some hermitian operators H_0 and K_0 on X?

It is known that if T^* is normal, then T is normal (Behrends [4]). We show that (1) is true if T^* is a *-hyponormal operator with a weakly compact commutator. Finally we prove that if X is a dualoid space (in particular a dual space) or a C^* -algebra with a unit element, then (1) is true for all operators T such that $T^* = H + iK$.

Let X be a complex Banach space and X^* the dual space of X. We denote by B(X) the space of all bounded linear operators on X. If X and Y are two Banach spaces, then B(X, Y) is the space of all bounded linear operators from X to Y. A normal operator on X is an operator which can be written in the form H+iK where H and K are commuting hermitian operators on X. We will only be concerned with bounded operators. The adjoint of an operator $T \in B(X)$ is hermitian if and only if T is hermitian (see [6, §9] or [7, §17]). We refer to [6] and [7] for basic facts about numerical ranges and hermitian operators.

Research supported in part by the Swedish Natural Science Research Council.

1. *-hyponormal operators

In the following definition H and K are hermitian operators.

Definition 1. An operator $T \in B(X)$ is called (i) hyponormal if T=H+iK and $i(HK-KH) \ge 0$.

(ii) *-hyponormal if T=H+iK and the inequality

$$\|e^{zT}e^{-\bar{z}T}\| \leq 1,$$

where \overline{T} is the operator H-iK, holds for all complex numbers z.

Normal operators are obviously *-hyponormal. In Proposition 1 we give some sufficient conditions implying that the restriction of a *-hyponormal operator to an invariant subspace is *-hyponormal. If the space is a Hilbert space, it follows that the restriction of every *-hyponormal operator to a closed invariant subspace is *-hyponormal. In particular, subnormal operators on a Hilbert space are *-hyponormal. This was proved in [1].

Proposition 1. Let P be a projection on X with ||P|| = 1 and let N be a *-hyponormal (or normal) operator on X such that

$$NPX \subset PX$$
 and $\overline{N}(I-P)X \subset (I-P)X$.

Then the operator $N|_{PX}$ is *-hyponormal.

Proof. Let N=H+iK and let $T=N|_{PX}$. Let A and B be the operators on PX defined by

$$Ay = PHy$$
 and $By = PKy$.

Then A and $B \in B(PX)$ and T = A + iB. The operators A and B are hermitian. To see that, let $y \in PX$ with ||y|| = 1 and let $f \in (PX)^*$ with ||f|| = f(y) = 1. By the Hahn—Banach theorem there is a functional $g \in X^*$ such that ||g|| = 1 and $g|_{PX} = f$. We have

$$f(Ay) = g(PHy) = (P^*g)(Hy).$$

Since $(P^*g)(y) = g(Py) = f(y) = 1$ and $||P^*g|| \le 1$ it follows that $||P^*g|| = (P^*g)(y) = 1$. Since *H* is hermitian we conclude that *A* is hermitian. Similarly *B* is hermitian.

Since $P\overline{N}P = P\overline{N}$ and PNP = NP, we have

$$\overline{T}^{j}T^{k}y = (P\overline{N})^{j}N^{k}y = P\overline{N}^{j}N^{k}y,$$

whenever $y \in PX$ and j and k are non-negative integers. Therefore

$$\|e^{zT}e^{-\bar{z}T}y\| = \|Pe^{zN}e^{-\bar{z}N}y\| \le \|P\|\|y\| \le \|y\|$$

for every $z \in \mathbb{C}$ and $y \in PX$. This implies (*).

Proposition 2. A *-hyponormal operator is hyponormal.

Proof. Assume that T is *-hyponormal and T=H+iK. We have for all complex numbers z

$$1 \ge \|e^{zT}e^{-zT}e^{-zT}e^{zT}\| = \|I-|z|^2A\| + r(z),$$

where $A = \overline{T}T - T\overline{T}$ and $|r(z)| \le M |z|^3$ for some M > 0 if $|z| \le 1$. Given $\mu \in B(X)^*$ with $\|\mu\| = \mu(I) = 1$, it follows that

$$|1-|z|^2\mu(A)| \le 1+M|z|^3 \quad (|z| \le 1).$$

Since A=2i(HK-KH), A is hermitian [6, Lemma 5.4] and therefore $\mu(A)$ is a real number. We now have

$$-\mu(A) \leq Mt \quad (0 < t \leq 1).$$

Thus $\mu(A) \ge 0$. It follows that $i(HK - KH) \ge 0$.

Remark 1. It is well-known that an operator S on a Hilbert space \mathcal{H} is hyponormal if and only if

$$\|\bar{S}x\| \leq \|Sx\|$$
 for all $x \in \mathscr{H}$.

(Indeed we have $||Sx||^2 - ||\bar{S}x||^2 = (\bar{S}Sx, x) - (S\bar{S}x, x) = ((\bar{S}S - S\bar{S})x, x))$. The condition (*) in Definition 1 can be written

$$||e^{zT}x|| \leq ||e^{\overline{z}T}x||$$
 for all $x \in X$ and $z \in \mathbb{C}$.

If T is an operator on a Hilbert space, the conjugate of e^{zT} is $e^{\overline{z}T}$. Hence we have:

(α) T is *-hyponormal if and only if

 e^{zT} is hyponormal for all complex numbers z.

Also we have:

(β) T is normal if and only if

 e^{zT} is normal for all complex numbers z.

These relations are not in general true in Banach spaces as the following example shows.

Let *H* be a hermitian operator such that the spectrum of *H* is $\{-1, 0, 1\}$ and H^2 is not hermitian. For example, if *P* is a hermitian projection on a Hilbert space \mathscr{H} and $P \neq 0$, $P \neq I$, then the operator $S \mapsto PS - SP$ on $B(\mathscr{H})$ has these properties [3]. Then $H^3 = H$ by the spectral mapping theorem [8, Theorem 7.4(iv)] and by [7, Theorem 27.3]. Now there are real coefficients *a* and $b \neq 0$ such that

$$e^{H} = I + aH + bH^{2}.$$

Since H^2 is not hermitian it is not equal to A+iB for any hermitian operators A and B by [5, (2.12)]. Therefore e^H is neither normal nor hyponormal. Thus (α) and (β) do not hold.

We now give an example of a hyponormal operator which is not *-hyponormal.

Example. Let l_2 be the Hilbert space of all complex sequences $\{\alpha_n\}_{n=0}^{\infty}$ such that the series $\Sigma |\alpha_n|^2$ converges and let U be the unilateral shift on l_2 defined by

$$U(\alpha_0, \alpha_1, ...) = (0, \alpha_0, \alpha_1, ...).$$

The operator $T = \overline{U} + 2U$ is hyponormal. By results of Ito and Wong [14, Remark 4] T is not subnormal. There are vectors x and numbers z such that

$$\|e^{zT}x\|>\|e^{zT}x\|.$$

This can be seen by a direct calculation taking for example z=0.6 and $x=\{\alpha_n\}$ where $\alpha_0=1$ and $\alpha_2=-4$ and otherwise $\alpha_n=0$. It follows that T is not *-hyponormal.

In the case of a normal operator the result of the following theorem is included in [10]. The proof in [10] is different from the next proof. If T is only assumed to be hyponormal and X is strictly *c*-convex, then the conclusion of the following theorem is also true by [16, Theorem 2.4].

Theorem 3. If T is *-hyponormal and Tx=0 for some $x \in X$, then $\overline{T}x=0$.

Proof. Assume that Tx=0. Let $f \in X^*$. Then the function $g(z)=f(e^{zT}x)$ is entire. Since

$$|f(e^{zT}x)| = |f(e^{zT}e^{\bar{z}T}x)| \le ||f|| ||x||,$$

g is bounded. By Liouville's theorem g is constant. Thus $g(z) \equiv g(0)$. We conclude that

$$f((e^{zT}-I)x) = 0$$
 for all $z \in \mathbb{C}$ and for all $f \in X^*$.

This implies by the Hahn—Banach theorem that $(e^{zT}-I) = 0$ for all z. Taking the derivative at z=0 we obtain $\overline{T}x=0$.

Remark 2. If T is *-hyponormal and $Tx = \lambda x$ for some $\lambda \in \mathbb{C}$ and $x \in X$, then $\overline{T}x = \overline{\lambda}x$ since $T - \lambda I$ is also *-hyponormal.

From Theorem 3 we obtain an extension of the Fuglede—Putnam theorem. There are several extensions of this theorem for hyponormal operators on a Hilbert space. For further references see [16].

Theorem 4. Let T be a *-hyponormal operator on Y and U a *-hyponormal operator on X. If $TS = S\overline{U}$ for some $S \in B(X, Y)$, then $\overline{T}S = SU$.

268

A class of hyponormal operators and weak*-continuity of hermitian operators 269

Proof. We will show that the operator

$$\delta(S) = TS - S\overline{U}$$

is a *-hyponormal operator on B(X, Y). The result then follows from Theorem 3. Note that $\overline{\delta}$ is the operator $S \mapsto \overline{T}S - SU$.

Given $A \in B(Y)$ and $B \in B(X)$, let

$$l(S) = AS, \quad r(S) = SB \quad (S \in B(X, Y))$$

and let d=l-r. Since l and r commute, we have ([6, Theorem 3.2])

 $e^{l-r} = e^l e^{-r}.$

Hence

(2)
$$e^{d}(S) = e^{l}(e^{-r}(S)) = e^{A}Se^{-B} (S \in B(X, Y)).$$

Using (2) and the assumption that T and U are *-hyponormal it follows that for all $z \in \mathbb{C}$ and $S \in B(X, Y)$

$$\|e^{z\overline{\delta}}e^{-\overline{z}\delta}S\| = \|e^{zT}e^{-\overline{z}T}Se^{\overline{z}\overline{U}}e^{-zU}\| \leq \|S\|.$$

This completes the proof.

Corollary 5. Assume that T is a *-hyponormal operator on X and Y is a subspace of X such that the following conditions hold:

(i) Y is a Banach space with respect to a norm |.| on Y and there is a constant M such that $||y|| \leq M|y|$ for all $y \in Y$.

(ii) $TY \subset Y$, $T|_Y$ is bounded and there are hermitian operators A and B on Y such that $T|_Y = A + iB$ and the operator A - iB is *-hyponormal. Then $\overline{T}Y \subset Y$.

Inen IICI.

Proof. Let $T_1 = T|_Y$. The inclusion $j: Y \to X$ is bounded by the assumption (i). Since $T_j = jT_1$ it follows from Theorem 4 that $\overline{T}_j = j\overline{T}_1$. Hence $\overline{T}Y \subset Y$.

2. On the weak*-continuity of hermitian operators

The following theorem was proved in [4] for normal operators. For the case when X is a dualoid space (see Definition 2 below) or a C^* -algebra with unit more general results will be proved in Theorems 7 and 9.

In the proofs of the following two theorems we shall make use of the canonical projection on the third dual of X. If i_X is the canonical embedding of X into X^{**} , then $P = i_{X^*} \circ i_X^*$ is a projection on X^{***} whose range is $(\widehat{X^*})$ and whose kernel is $(\widehat{X})^{\perp}$ (\widehat{X} is the canonical image of X and $(\widehat{X})^{\perp}$ is the annihilator of \widehat{X} in X^{***}). Note that $\|P\| = 1$.

Theorem 6. Assume that an operator $T \in B(X)$ has the following properties: (i) $T^* = H + iK$, where H and K are hermitian, and T^* is *-hyponormal.

(ii) HK-KH is weakly compact.

Then $T=H_0+iK_0$ for some hermitian operators H_0 and K_0 on X and \overline{T} is *-hyponormal.

Proof. Let P be the projection with norm one on X^{***} such that $PX^{***} = (\widehat{X^*})$ and Ker $(P) = (\widehat{X})^{\perp}$. It is obvious that T^{***} commutes with P and the space PX^{***} is invariant for H^{**} and K^{**} . Let $Z = (\widehat{X})^{\perp} = (I-P)X^{***}$. Let A and B be the operators on Z defined by

$$Az = (I-P)H^{**}z, \quad Bz = (I-P)K^{**}z.$$

Then A, $B \in B(Z)$ and $T^{***}|_Z = A + iB$.

We will show that A is hermitian with respect to an equivalent norm on Z. Since $(I-P)H^{**}P=0$, we have for every $z \in Z$ and k=1, 2, ...

$$A^k z = (I - P)(H^{**})^k z.$$

Therefore,

$$\|e^{itA}z\| = \|z + (I-P)(e^{itH^{**}} - I)z\| = \|Pz + (I-P)e^{itH^{**}}z\| \le (\|P\| + \|I-P\|)\|z\|$$

for every $z \in Z$ and $t \in \mathbb{R}$. By [6, Lemma 10.3] there is an equivalent norm on Z such that A is hermitian with respect to this norm. The same is true for B.

Let C=HK-KH. Since C is weakly compact, it follows that $C^{**}X^{***} \subset (\widehat{X^*})$. Thus $(I-P)C^{**}=0$. This implies, since $(I-P)H^{**}P=0$ and $(I-P)K^{**}P=0$, that for every $z \in Z$

$$(AB-BA)z = (I-P)H^{**}(I-P)K^{**}z - (I-P)K^{**}(I-P)H^{**}z$$
$$= (I-P)H^{**}K^{**}z - (I-P)K^{**}H^{**}z = (I-P)C^{**}z = 0.$$

Hence AB = BA. By a theorem of Lumer [7, Lemma 33.8] there is an equivalent norm $|\cdot|$ on Z such that A and B are hermitian with respect to this norm.

By applying Corollary 5 to the operator T^{***} and the space Z provided with the norm $|\cdot|$ we obtain $(\overline{T^{***}})Z \subset Z$. This implies that $H^*\hat{X} \subset \hat{X}$ and $K^*\hat{X} \subset \hat{X}$. We define operators H_0 and K_0 on X by

$$H_0 x = i_X^{-1}(H^* \hat{x}), \quad K_0 x = i_X^{-1}(K^* \hat{x}).$$

Then $H_0^* = H$ and $K_0^* = K$. It follows that H_0 and K_0 are hermitian and $T = H_0 + iK_0$. Since T^* is *-hyponormal and $(\overline{T})^* = (\overline{T^*})$ we have

$$||e^{zT}e^{-\bar{z}T}|| = ||e^{-\bar{z}(T)^*}e^{zT^*}|| \le 1.$$

Thus \overline{T} is *-hyponormal.

270

We do not know whether the condition $T^* = H + iK$ always implies that H and K are weak *-continuous. We will show that this is true if X is a dualoid space or a C^* -algebra with unit. A dualoid space was defined in [11] as follows:

Definition 2. A Banach space X is called a dualoid space, if there is a projection of norm one on X^{**} whose range is \hat{X} .

For example all dual spaces and $L_1(0, 1)$ are dualoid spaces. If K is a compact and extremally disconnected space (=a stonian space), then C(K) is a \mathcal{P}_1 -space [13] and hence a dualoid space. There are stonian spaces K such that C(K) is not isomorphic to any dual space (see [20, § 4] or [18, § 3.9]).

Theorem 7. Let X be a dualoid Banach space and let T be an operator in B(X) such that $T^* = H + iK$ where H and K are hermitian operators on X^* . Then there are hermitian operators H_0 and K_0 on X such that $T = H_0 + iK_0$.

Proof. Let P be a projection of norm one on X^{**} whose range is \hat{X} and let i_X be the canonical embedding of X into X^{**} . The operators

$$A = i_X^{-1} P H^* i_X$$
 and $B = i_X^{-1} P K^* i_X$

are bounded linear operators on X. Since $T^{**}\hat{X} \subset \hat{X}$, we have

$$i_X T = T^{**} i_X = P T^{**} i_X = P H^* i_X + i P K^* i_X.$$

It follows that T=A+iB. It remains to show that A and B are hermitian. Since

$$A^{**}\hat{x} = PH^*\hat{x} \quad (x \in X)$$

we can show in the same way as in the proof of Proposition 1 that the operator $A^{**}|_{\hat{X}}$ is hermitian. But

$$||e^{itA}x|| = ||e^{itA^{**}}\hat{x}|| = ||\hat{x}|| = ||x||$$

for all $t \in \mathbf{R}$ and $x \in X$ and therefore A is hermitian. Similarly B is hermitian.

We shall finally prove that the result of Theorem 7 is also true for all C^* -algebras which have a unit. There are C^* -algebras which are not dualoid spaces, for example c_0 . Such are more generally all infinite dimensional C^* -algebras which are separable or which are ideals in their second duals. This follows from the next proposition.

Proposition 8. Let A be a C^* -algebra such that \hat{A} is complemented in A^{**} .

- (i) Then $A \supset l_{\infty}$ or A is finite dimensional.
- (ii) If \hat{A} is also an ideal of A^{**} , then A is finite dimensional.

Proof. (i) Assume that $A \pm c_0$. Then the identity operator on A is weakly compact by [2, Theorem 4.2]. Thus A is reflexive and by a result of Ogasawara [17, Theorem 2] A is finite dimensional.

If $A \supset c_0$, then $A \supset l_{\infty}$ by a theorem of Rosenthal [19, Corollary 1.5].

(ii) If \hat{A} is an ideal of A^{**} , then \hat{A} is an *M*-ideal of A^{**} [22, Proposition 5.2]. It follows from [12, Corollary 3.6(c)] that *A* is reflexive. Then, by [17, Theorem 2], *A* is finite dimensional.

Remark 3. Let A be a C^{*}-algebra. Then by [23] \hat{A} is an ideal of A^{**} if and only if A is dual in the sense defined by Klaplansky [15]. By Proposition 8 a C^{*}-algebra which is dual in this sense is not complemented in its second dual, in particular it is not isomorphic to a dual space, unless it is finite dimensional.

Theorem 9. Let A be a C*-algebra with a unit element. If $T \in B(A)$ and $T^* = H + iK$ for some hermitian operators H and K on A*, then there are hermitian operators H_0 and K_0 on A such that $T = H_0 + iK_0$.

Proof. The space A^{**} with the Arens product is a W^* -algebra with unit [8], [9]. Given $u \in A^{**}$, let Δ_u be the inner derivation

$$\Delta_u(x) = ux - xu$$
 for all $x \in A^{**}$.

If $\Delta_{u}(\hat{A}) \subset \hat{A}$, then $\Delta_{\bar{u}}(\hat{A}) \subset \hat{A}$, since $(\bar{a}) = (\bar{a})$ for every $a \in A$ (see [8, Theorem 38.19]).

There are hermitian elements h, h', k and k' in A^{**} such that the hermitian operators H^* and K^* can be written

$$H^* = L_h + \Delta_{h'}, \quad K^* = L_k + \Delta_{k'}$$

where L_h and L_k are left multiplication operators on A^{**} . This follows from the results of Sinclair [21, Remark 3.5] and Sakai and Kadison [18, Corollary 8.6.6]. Since $T^{**}\hat{A} \subset \hat{A}$ and A has a unit, we conclude that $h+ik\in \hat{A}$. Thus $h\in \hat{A}$ and $k\in \hat{A}$. We also have $L_h+iL_k=L_c^{**}$

for some $c \in A$. Now

 $T^{**} - L_c^{**} = \Delta_{h'+ik'}.$

From the beginning of the proof it follows that

$$\Delta_{k'}(\hat{A}) \subset \hat{A}$$
 and $\Delta_{k'}(\hat{A}) \subset \hat{A}$.

Therefore $H^*\hat{A} \subset \hat{A}$ and $K^*\hat{A} \subset \hat{A}$. This implies that H and K are weak*-continuous operators on A^* which completes the proof.

Remark 4. Let A be a C^{*}-algebra such that \hat{A} is not an ideal of A^{**} . We will show that there are hermitian operators on A^* which are not weak^{*}-continuous. Since \hat{A} is a self-adjoint subspace of A^{**} , it follows that \hat{A} is not a right (nor a left) ideal of A^{**} . Let F be an element of A^{**} such that $\hat{A}F \subset \hat{A}$. Notice that A^{**} has a unit element even if A does not have one ([8, Corollary 29.8 and Lemma 39.14]). We can assume that F is a hermitian element of A^{**} . The right multiplication R_F is then a hermitian operator on A^{**} and it is the adjoint of the left multiplication L_F on A^* . The operator L_F is hermitian and it is not weak*-continuous.

References

- 1. ACKERMANS, S. T. M., VAN ELINDHOVEN, S. J. L. and MARTENS, F. J. L., On almost commuting operators. *Indag. Math.* 45 (1983), 385–391.
- 2. AKEMANN, C. A., DODDS P. G. and GAMLEN, J. L. B., Weak compactness in the dual space of a C*-algebra. J. Functional Analysis 10 (1972), 446-450.
- 3. ANDERSON, J. and FOIAS, C., Properties which normal operators share with normal derivations and related operators. *Pacific J. Math.* 61 (1975), 313-325.
- BEHRENDS, E., Normal operators and multipliers on complex Banach spaces and a symmetry property of L¹-predual spaces. Israel J. Math. 47 (1984), 23-28.
- BERKSON, E., Hermitian projections and orthogonality in Banach spaces. Proc. London Math. Soc.
 (3) 24 (1972), 101–118.
- 6. BONSALL, F. F. and DUNCAN, J., Numerical ranges of operators on normed spaces and of elements of normed algebras. London Math. Soc. Lecture Note Series 2, Cambridge 1971.
- 7. BONSALL, F. F. and DUNCAN, J., *Numerical ranges II*. London Math. Soc. Lecture Note Series 10, Cambridge 1973.
- 8. BONSALL, F. F. and DUNCAN, J., Complete normed algebras. Springer-Verlag, Berlin-Heidelberg-New York 1973.
- CIVIN, P. and YOOD, B., The second conjugate space of a Banach algebra as an algebra. *Pacific J.* Math. 11 (1961), 847–870.
- Dowson, H. R., GILLESPIE, T. A. and SPAIN, P. G., A commutativity theorem for hermitian operators. *Math. Ann.* 220 (1976), 215-217.
- GODEFROY, G., Étude des projections de norme 1 de E" sur E. Unicité de certains préduaux. Applications. Ann. Inst. Fourier (Grenoble) 29 (1979), 53-70.
- 12. HARMAND, P. and LIMA, Å., Banach spaces which are *M*-ideals in their biduals. *Trans. Amer. Math. Soc.* 283 (1984), 253-264.
- HASUMI, M., The extension property of complex Banach spaces. Tôhoku Math. J. 10 (1958), 135-142.
- Ito, T. and Wong, T. K., Subnormality and quasinormality of Toeplitz operators. Proc. Amer. Math. Soc. 34 (1972), 157-164.
- 15. KAPLANSKY, I., The structure of certain operator algebras. Trans. Amer. Math. Soc. 70 (1951), 219-255.
- MATTILA, K., Complex strict and uniform convexity and hyponormal operators. Math. Proc. Cambridge Philos. Soc. 96 (1984), 483—493.
- OGASAWARA, T., Finite-dimensionality of certain Banach algebras. J. Sci Hiroshima Univ. Ser. A. 17 (1954), 359—364.
- 18. PEDERSEN, G. K., C*-algebras and their automorphism groups. Academic Press, London-New York-San Francisco 1979.
- ROSENTHAL, H. P., On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1970), 13—36.

274 Kirsti Mattila: A class of hyponormal operators and weak*-continuity of hermitian operators

- 20. ROSENTHAL, H. P., On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ . Acta Math. 124 (1970), 205–248.
- 21. SINCLAIR, A. M., Jordan homomorphisms and derivations on semisimple Banach algebras. Proc. Amer. Math. Soc. 24 (1970), 209-214.
- 22. SMITH, R. R. and WARD, J. D., *M*-ideal structure in Banach algebras. J. Functional Analysis 27 (1978), 337-349.
- TOMIUK, B. J. and WONG, P. K., Arens product and duality in B*-algebras. Proc. Amer. Math. Soc. 25 (1970), 529-535.

Received August 1, 1985

Department of Mathematics University of Stockholm Box 6701 S—113 85 Stockholm Sweden

Current address:

Department of Mathematics Royal Institute of Technology S—10044 Stockholm Sweden