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O. Introduction 

In [4] a method was given for generating weighted solution kernels to the 0-equa- 
tion, i.e. kernels K such that 

O f K A w  = w, if 0w = 0. 

As a by-product a variety of projection kernels (P such that f = f  Pf, f o r f h o l o -  
morphic) were obtained. These kernels give representation formulas for holomorphie 
functions which in general consist of an integral over the whole domain and a bound- 
ary integral. The projection part and the corresponding representation formulas 
have proved to be quite fruitful. They have been used by several authors (see e.g. 
[2], [3], [5] and [ 10]) to obtain explicit solutions to division and interpolation problems. 

The purpose of this paper is to give a short proof of a generalization of the 
representation formulas in [3] and [4] without making the d6tour to the 0-problem 
and the kernels K. 

We derive in w 1 a quite general formula (Theorem l) which is then turned 
into a more tangible one for bounded domains (Theorem 2). Using logarithmic 
residues we also obtain weighted versions of certain formulas in [13] and [15]. In 
w 2 we give a few examples and comments. 

To motivate what follows, let us take a brief look at the case n= I. Let f be 
holomorphic in a domain f 2 c C  and suppose that 12CCa(OX~). We then have 

.,. OQ d( ̂  d( f J = f ~a fQ d~ 

and by the Cauchy formula it follows that 
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In certain cases l+(z -~)Q(~,z )=O for ~EOI2 so that the boundary integral 
disappears. If  Q is holomorphic in z then so is the kernel. We have now essentially 
proved our theorems in case n =  1. The proof for general n is similar except that 
it requires a certain amount of algebraic organization. 

1. The general formulas 

Let us start out by formulating our  basic result, a rather general representation 
formula for holomorphic functions. 

Theorem 1. Suppose that the function f is holomorphic in some domain 12c C" 
and continuous up to the boundary. Let there be given 
i) continuously diff erentiable functions 

Qk: f2Xf2 ~ C", k = 1, . . . ,p ,  

fi) a function G of  p complex variables, holomorphic in a neighborhood of  the image oj 
Y2XI2 by the mapping (z-~)Q(~, z) defined by 

(r z) ~-~(Z (z~-r162 z) . . . . .  Z (z~-r162 z)), 

and satisfying G (0) = 1. 
Finally, assume that for lal<-n the functions D~G=D'G((z-~)Q(~,z)),  obtained 
by composing ( z -~)Q (~, z) with derivatives of  G, for each fixed zC f2 have compact 
support contained in f2 when considered as functions of  ~. In that case the following 
formula holds for all zC 12: 

(1) f (z)  (2ra)-" f a f ( O  D'G - ~ = Z l . l = . - - g V . ,  (Oq), 

where q~ ((, z ) = Z  Q~ (C, z) d(j and we have used the shorthand notation M =  all ... ~p! 
and (Oq) •-= (OqO ~ ^ . . .  ^ (bqO". 

Specific choices of Q=(Q1 . . . . .  QO and G will be given below. 
Before we embark on the proof proper we digress a little to give some back- 

ground to our method. In one complex variable the simple formula 

(2) 1 f q~(~)d~ 

holds for any continuous function q~. This merely expresses the fact that 1/~( is a 
fundamental solution to the O-equation. Assuming ~p to have compact support we 
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may introduce the following notation: 

[ 1 1 ~  a~r 9(()d~^d~ (9(:) d~^ d~) = lim f ~-o Ir ~--z 

and, consequently: 

~ [ ~_-~1 z] (9 (()d 0 = --lim,.0 f I:-=1>, 09 (0 ^ d ( ( _ z  = ,-01im flr 9 (0 d._.____~(_z 

Equation (2) thus assumes the form 

9 (z) = ~ b (9 (~) d~). 

In the more general case of several variables we consider tensor products such as 

This convenient formalism has its origin in the theory of meromorphic currents 
(cf. [ i l l  [12]), which of course in general is far more delicate than are the simple 
cases we are dealing with here. What matters in this context is that computations like 

and 

1 1 

actually hold. 
In analogy to the iterated Cauchy formula we have 

(3) 9 (z) = c, b ~ A...  A ~ (q, r 

with c.=('l)Ol2)"("-:)(2ni)-" and o(~)=d~l A ... Ad~.. Now we are all set to give 
a quick proof of our theorem. 

Proof of Theorem 1. We start by taking 9=fG((z-~)Q) in formula (3). Since 
9(z)=f(z)G(O)=f(z) we get 
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Now OG((z-~) Q) = ~ = 1  ~ '=1 DkG((z--~) Q) (z.t-~J)OQJ, and since 

(zj-~j)~ [ ~ j _ ~  j ] =~ ( -D  = 0 

only terms containing z 1-~1 give any contribution. We are thus left with 

^ . . . ^~  ~ (fCOZ;~ 

[ 1 ] , 
�9 .. ^~ ~ (f(O Z~=I~D,G^~QI^~o(~)). 

As before we have 

p ~,n ~DkG((z-~)Q) z~,=l ~.i=lD,DkG((z-~)a)(zJ-~J)~atl, 

and we find again that terms involving z j -~ j  for .]=3 . . . . .  n do not contribute. 
Moreover, 

~Q1 A ~Q1 = 0 Z" Z" , - k k = l  1 = 1  

by anticommutativity, so terms corresponding to j =  1 may also be neglected. What 
remains is 

f(z) = (--1)(n-1)+(n-~)Cn~[ ~S l~Z3 ]^. . .  

D 6 Q 

It is clear that this procedure may be repeated n times to yield 

P kn kl (4) f(z) = (-- 1)('~-l)+"'+icn(f(~) Zk,.=IDk,...Dt,,G~O,~ ^ ... n~Ol ^ CO(~)) 

= (2ni)-n f ~  f(r Z ~  =lDk ...Dkxa~Qkn"^ . . . A  ~ _ l  1` A (D(r 

In order to simplify this formula, notice that 

~Q~- ^ . . .  ^ ~Q~' ^ de1 ^ ^ d~, = ~Q~, ^ d; ,  ^ ~Q~- ^ . . .  ^ ~Q~' ^ dC~ ̂ . . .  ^ d;~ . . . .  

. . . .  ~ 1  A d~l A... A ~Q~" A d~,, 
so that on writing 

q~(~,z) ~ = Z~=I Q~ff, z)d~ 
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and keeping in mind that 2-forms do commute we obtain 

P /C n . . .  z~k=l~Qn A A~Q~IAOg(~) = ~ = l ~ a ~ l A d f f l A . . .  A~Q~nAd~n 

1 
= Z~l~l=~ ~l!...~p---------~ (gql)~A"" A(gqP)%' with 1~1 = ~1+... + ~ .  

It follows that the last member in (4) is actually equal to the right hand side in (1) 
and the proof is complete. 

Remark. A special choice of G is 

G =  Go. Gx 

with G o being a function of one single variable. Notice that in this case it suffices 
to assume the functions D~Go to be of compact support. It is this situation that 
we will exploit in proving our next theorem, a representation formula with bound- 
ary terms. 

Theorem 2. Suppose that the function f is holomorphic in some bounded domain 
f2cC ~ and continuous up to the boundary. Let there be given 
i) continuously diff erentiable functions 

Qk: ~ •  ~, k =  l , . . . ,p ,  

ii) a function G of p complex variables, holomorphic ina neighborhood of  the image 
of ~ •  by the mapping (z-~)Q(~,z)  andsatisfying G(0)=I ,  

iii) a smooth map S: O I 2 •  n such that 

Z (zj-r162 z) ~ o, 
unless z=~. 

In that case the following formula holds for all zE f2: 

,-, D ~ G ,-~ , 
(5) f(z) = (2~i) -~ f o f(r ~1~1 (eq) 

+(2ni)-* f oof(r Z o+l i=.-x ^ - " 

where s(~, z ) = ~  Sj(~, z) d~ and (r S ) = Z  (~j-zj)S~(r z). 

Proof. The idea is to choose the weights so that Go becomes (almost) equal 
to Xn, the characteristic function of g2. To do this we first fix zC f2 and extend the 
mapping S smoothly to all of f2. Then we pick a smooth function Z: ~-~[0, 1], 
vanishing near ~f2 and such that Z(~)=I whenever (~-z ,  S )=0 .  

Next, define a smooth function Q0: ~ • O-~ C ~ by 

S(~, z) 
Q0(~, z) = (1-X(~))  <~-z, S>" 
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(6) 

Now 

Since z is fixed we interpret Q0 as being constant with respect to the second set of 
variables. 

Finally we put Go(to)=(to+ 1) N, with N>n.  It follows that 

N!  
Dta~176 = (~V-0i  zN- ' (0  

so that on extending Q to (Q0, Q) and replacing G(6 . . . . .  tp) by Go(to)G(t , . . . . .  t~) 
we find that the conditions in Theorem 1 are fulfilled. 

Notice that the map S simply serves to allow us to divide by ~ - z .  We get 

= ,~,o+1=1=,----'7- taq ) 0^ 

I i" <~-~,s)  <~-z,s)J 

= (l-z),0 a <~_3, s> -a00  -z )  ~0-1 (~-z, s?~ ' 

the latter equality stemming from the fact that s ^ s = O .  We are going to let Z 
approach the characteristic function of  ~2 (in any suitable way). CIearIy then 

so on recalling that 

Zr~-'~ -Z) '~ -~0, for a0 > 0, 

N! 
D~~176 = (N-ao) !  ZN-~~ 

we see that (6) reduces to 

(7) f(z) = (2~ 0 - ~ fa  f(r Z I,I =, ~ ( q 

All that remains is to see what becomes of  (7) as we let Z tend to Z~. First notice 
that for any continuously differentiable form ~ of bidegree (n, n - l )  we have 

f a x ^ ,  = f,=x~,-f~xa*. 

Since Z= 0 on at2 it follows that 

f~ ax^ ~ -~ - f .  z~ar = -f#~ ~- 

Observe also that we could have used any positive power of )e in this argument. 
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Now, in (7) we are faced with integrals of the form 

(8) f a  i f - ' ~  (1 - X)'~ ^ ~0. 
Using the fact that 

1 O~u+l 
z~bz = M+----S 

and the reasoning above, we find that (8) tends to 

- c~..o fo~ g" 
with the constant given by 

c~,,0 = fo  tN-%(1-- t)~o-l dt 

_ % - -  1 ~ ~ _ , o + 1  . . . . .  [(N)~o]-I  �9 fo t (1 --0% -2 dt N - % +  1 % 

Consequently, (7) becomes 

- "  jr a f ( 0  D ~ G - . ffz) = (2~i) Z 1,1 =,, ~ (Oq) 

s ^ (Os)% "1 " 
+ (2hi)-" fo,, f ( 0  Z,o+ I,I =. ^ ~ (t)q)" 

�9 0-0 ( C - z ,  s ) ' ~  

and the theorem follows. 

Remarks. If Q=0,  (5) reduces to the classical Cauchy--Fantappi6 formula. 
From our proof it is immediate that the formula is not affected if S is multiplied by 
a scalar function, one just looks at the expression for Q0. 

It is possible to improve on the above theorems by letting more general holo- 
morphic mappings play the r61e of the coordinate functions ~ j - z j .  This leads to 
the following result. 

T h e o r e m  3. Suppose that the function f is holomorphic in some bounded domain 
f2c  C" and continuous up to the boundary. Let there be given 
i) a holomorphic map g: ~- -C"  such that g-X(0) is a finite subset of  O, 

ii) continuously differentiable functions 

QS,: / ' J x ~  ~ C", k = 1, . . . , p ,  

iii) a function G of p complex variables, holomorphic in a neighborhood of  the image 
of  ~ •  by the mapping - g ( O Q ( ( ,  z) and satisfying G(O)=I, 

iv) a smooth map S: 0 ~ •  cn such that (g(O, S((, z))~O. 
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In that case the following formula holds: 
D~G 

(9) Zz~g-i(0) mz(g)f(z) = (2hi)-" f~ f(~) ~1~1=* ~-. (~q(g))~ 

+(2~i)-"fauf(Oz~o+l~l=.-1 s (g) ^ (~s ( g ) ) ~ * ( g ,  S)~o+1 ^ ~D~G (Oq(g)),'- "= 

where m~(g) denotes the multiplicity of the zero z, D*G=D*G{-g(()Q(~, z)), q~(g)= 
Z Q~jdgl and s (g )=Z Sjdg J. 

Remark. The multiplicity m~(g) may be defined in several equivalent ways, 
see e.g. [1, w 2], [8, p. 663]. 

Proof of Theorem 3. The logarithmic residue current 

A . . . A ~ t T ,  j ( -  1)Cl/2)"C"-1)0 A.. .A~ A c0(g) 

has the following structure (cf. [6, p. 52]): 

(10)  ^ . . . .  

for any continuous function (p. 
With (i0) as the starting point instead of (3) the theorem is proved precisely as 

our previous ones except that (~-z j  has to be replaced by g j ( 0  and d[j by dgj((). 
The fact that the necessary computational rules still are true is a consequence of g 
being a complete intersection (see [12]). 

Remarks. With the weight factors removed, i.e. Q = 0, (9) becomes a formula 
obtained by Roos in [13]. If we also set S = g  we arrive at Yuzhakov's generaliza- 
tion of the Bochner--Martinelli formula [15]. 

2. Some applications 

We give here a few concrete examples to show how the above formulas can 
be used. For further applications see e.g. the references mentioned in the intro- 
duction. 

Example 1. Let s be a strictly pseudoconvex domain with Ck+2-boundary and 
let O be a defining function for I2. There exist functions /-/1 . . . .  , H, in ck+I(~X~]), 
holomorphic in z and such that 

(11) 2 Re </-/, ~ -z> _~ Q(0 -Q (z)+ d I~-zl ~, 

for some ~ > 0 ,  see [7]. 
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If f2 is strictly convex we take 

Hj(~, z) = (ao/a~j)(~). 

Choosing S=H in (5) and Q holomorphic in z, we obtain a representation formula 
with holomorphic kernel. 

For instance, if f2 is the unit ball B={I(12--1<0} and Q = 0  one gets the 
familiar Szeg5 representation 

f(z) = (2rri)-"f0 B ff$)01r (n--1)! f f(r da(~) 
(1-~.z)"  = ~ J ~  (1-~.~)""  

In general, if Q = 0, Theorem 2 gives integrals over 0f2. If one instead applies Theo- 
rem 1 as in the proof of Theorem 2, without taking limits, the representation occurs 
as an integral over a neighborhood Of 0f2, i.e. a kind of thickened boundary integral 
but still with holomorphic kernel. 

Hfl~, z) and GoG instead of G in Now we put Go(to)=(to+l)-', r>0,  Q~- e (~ ) -~  

(5). When e~0  the boundary integral vanishes and if we set h=~Hjd~j we 
obtain the weighted formula 

(-. O) ,-1 
(12) f(z) = (2~i)-" f~ f(~) ~,,o+1~,1=. C~o,, ((//, ~-z ) - e ) '+% 

where 

A (Q ~h - % DO A h) A (~h)% -x A D ~  (~q)~, 

- r ( r +  1) . . .  ( r + ~  o -  1) 
C,,o,, = So! 

Notice that, by virtue of (11), f may be allowed to grow somewhat near 0f2. 
If f2=B and Q=0,  (12) is the Bergman integral representation with respect 

to the weight (1-lfflZ) "-1. 
As r approaches zero (12) tends to (5) (with S=H) and in Example 3 we shall 

see what happens when r ~  co. 
Particular choices of G and Q may be used to obtain weighted solution formulas 

for certain division problems, of. [3], [10]. 

Example 2. Although Theorem 1 (and 2) does not give solution formulas for 
the ~-equation in general we can easily obtain a formula for the boundary values 
of a solution to Ou=w, w being a ~-closed (0, 1)-form (or current) in a strictly 
pseudoconvex domain g2. 

To this end (using the same notation as in Example 1) we first take gECl(~) 
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and define 

Cn, (--0) "-~ (@~h_n~oAh)A(~h)n. 
? g  (z) - (2=i)----; f ~  g r162 ((H, r  z ) -  e)" +~ 

According to (12), Pg=g if g is holomorphic. 

Mj Then N o w  put Mj(& z )= -H~(z ,  ~) and Qj=(g(z)-g(~))(M ' ~ - z ) - o ( z ) .  

Q~ is smooth for zE s and, since Mj is holomorphic in ~, we have 

m A~g, where m=ZM.id~. i .  
bq = (M,~--z)--O(z) 

We next observe that if G(0)=C then all our formulas get multiplied by c. In par- 
titular, if f = l  and G(t)=t+g(z) in (12), then the resulting integral equals g(z). 
Letting z~0s we get in fact that (12) becomes 

where 

03) 

g (z) = ?g (z) + KOg (z), 

Kag(z) = 

_ C.-I::r (--Q)'-I m (oah_(n_l)aoAh)A(ah)._=Aag" 
-- (2z~i) J ~  ( (H,  ~ - z > - - ~ )  "+"-* (M, ~--z> 

If w is any ~-closed smooth (0, 1)-form it follows that bKw=w. Using the explicit 
expression (13) and an appropriate choice of r it is now easy to obtain the Ll-esti - 
mates on 0s originally given by Henkin [9] and Skoda [14]. 

Example 3. Here we consider the case s C". Let us assume that the func- 
tion O is strictly convex in C n and that D~G((z-~)Q) is defined on C"X C n. Apply- 

ing formula (12) with H i = - - ~ j  in s  

- c~o,, ( (14) f(z) = (2r:i)-"fo< Z,o+f,t= . ( r - o ) ' o  1 

we get after an easy rewriting 

~QA~QA(~Q)% -1 ] D~G 
[ 00Q)~~ ~~ r -  ~ J A -7- . '  0q)~" 

in0 
Recalling that -C~0,,=~0!+0(:o-1 ) and letting r~oo one obtains 

(15) f(z)=(2,~o-"fc.f(Oexp ~ , z - r  Z~o§ :,o! --aT-.(Oq). 
Evidently we have to restrict the rate of growth of the entire function f.  In view of 
the strict convexity of Q it is enough to have ]f(~)[_~const exp (~(~)/2). Of course 
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formula (15) can be derived directly from Theorem 1 by choosing G0(t0)=exp to, 
but we wanted to emphasize the connection between the representations (12) and 
(15). 

Example 4. We conclude by presenting formulas for vector-valued functions. 
They come out easily by the technique of  this paper, whereas it is not clear how 
to obtain them by the methods of [4]. 

Let r be an integer, f an r-column of holomorphic functions and QO . . . .  , QO, 
r•  of functions in C I ( D •  

We also choose Go(to)=(to+l)',  mCN, and to simplify notations we put  
A = ( z - ~ ) Q ~  In the scalar case Theorem 1 gives 

(m)  Am-%(~q~ ~ .  (~q)% (16) f (z )  = (2ni ) -" fa f (~)  Z*0+l~l=, c~ ~ 

Now, if r > l  and Q0 are diagonal matrices, the same formula holds and it is 
obtained just by applying the usual one componentwise. For  arbitrary Q~ a similar 
formula holds but in every term of (16) the factor 

m] A,,,_%(~qO)~ ~ 
go/ 

must be replaced by 

.~1#1 =~o (~q~ #~ A (0q~ A... A (~q~176 A (~qO)t~m-~o. 

The proof  is essentially a repetition of  the proof  of  Theorem 1, but since matrices 
do not commute in general, each term occurs together with all permutations of  its 
factors. 
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