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1. Introduction 

In a series of papers with the same title (as above) I, II, III, IV ([6], [7], [2] and 
[1]) we studied (sometimes jointly and sometimes individually) the quantity 

max I((~+ it)l 
T~_t~_T+H 

where C~-loglog T<=H<-T, ~ is fixed in 1<-~<=1 and C is a large positive con- 
stant. If ~= 1 we could manage even with the condition C - l o g  log log T<-H<-T. 
We also studied other quantities like 

min I((~q-it)[ and _max _l((a+it)[ 
T:~t~, Th-H a~_a, T~_t~_T + H 

and so on. In this paper we continue the investigations of the paper II. In II the 
second of us proved, amongst other things the following result. Let H be any pre- 

DlogT ] 
assigned quantity with C~_loglogT<-H<-Exp l ~ ) '  where C is a large 

positive constant, ~ fixed (~<~<1) ,  and D is a positive constant depending 
on ~. Let I run over intervals (of length H) contained in [T, 2T]. Then 

log log (m}n max 1((~+ it)l) ~ ( 1  - c~) log log H. 
t E I  

Moreover in [8] the following result was proved amongst other things. Let f~= 
max~at_~,+l [~(~+it)l where n is an integer satisfying T<-n<=2T. Then logf~_ ~ 
Do(log T) 1-~ [ ( DxlogT)]  

with the exception of at most 0 Exp log T -  values 
(log log T) ~ log log T)) 

of n. Here Dl is an arbitrary positive constant and Do is a positive constant de- 
pending on ~ and/)1.  In [4] it is conjectured by H. L. Montgomery that for all 
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(log t) 1-" 
t=>1000, log I~(a+it)l does not exceed a constant multiple of . The ob- 

(log log t) ~ 
ject of this paper is to prove the following theorem. An idea in [2] is very useful in 
proving the theorem. 

Theorem 1. Let  ~ be a f ixed constant satisfying ~-<c~<l and E > I  an arbi- 
T~ ~ ( D l o g H  ] 

trary constant. Let C<--H<-T/IO0 and h--t~xP[i-~-og-i-~-og ~ J where C is a large 

positive constant and D an arbitrary positive constant. Then there are >=TK -n dis- 
joint intervals I of  length K each contained in [T, 2T] such that 

(log K) 1-~ (log K) 1-~ 
<< max Ilog ff (c~ + it)] << "(log log K) ~ " (log log K) ~ , ~ i 

Remark 1. Here log r is the analytic continuation along lines parallel to 
the a-axis (we choose only those lines which do not contain a zero or pole of ~(s)) 
of log~(s) in a=>2. 

Remark 2. We can only prove that as I runs over all intervals of length K 
contained in [T, 2T], 

(log K) 1-~ 
(log K) 1-" << Min Max llog if(a+ it)l << 
log logK : t~: (loglog K) ~ 

Hence for the logarithm of the middle quantity we have the asymptotic 
expression (1 - a )  log log K+0( log  log log K). We can also prove this formula for 
log log ( S i n  I Maxt~: l~(ce+it)l). 

Remark 3. Theorem 1 and the results mentioned in Remark 2 can be easily 
extended to ordinary L-series and also to abelian L-series of quadratic fields. They 
can also be extended to zeta-function of abelian extension of rationals and also 
zeta-function of abelian extension of quadratic fields. The last result mentioned in 
Remark 2 can be extended to ~ = 1  (an+b) -s where a and b are positive integers 
and also to zeta-function of a ray class in a quadratic field. 

2. Outline of the proof 

Let /~o, /~1 and // be constants satisfying -~<f lo<f l l<f l<a<l .  It is well- 
known that 

1 
f I j ' r l~ +it  dt 0(logT). 

T r 

T 
From this it follows that there are >>--  disjoint intervals lo for t (ignoring a bit 

H 
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at one end) each of length 

(1) 

and 

(2) 

H + 2 0 ( l o g H )  ~ contained in [T, 2T] for which 

-f~_~,,_~,o -f,E,0 IC(s)P dt da << H 

f,,io + i t)l  ~ dt << H .  

From (1) and (2) it follows by standard methods that N(~, Io)<<H *-~ where 5 is 
a fixed positive constant depending only on e and /L  Here N(~, 10) is the number 
of  zeros ~ of~(s)  with Re Q->B and Im ~ lying in Io. Hence if we divide lo into 
abutting intervals (ignoring a bit at one end) /1 each of  length H a + 2 0 ( l o g H )  2 

where 0=5/2,  the number of intervals 11 is . , .H ~-a. Out of  these we omit those/1 
for which (a->B, t in/1) contains a zero of  if(s). (They are not more than a con- 
stant times H~-~). We now consider a typical interval/1 which is such that (o'=>~, 
t in/1)  is zero-free. Let us designate this t interval by [To-- lO(logH) 2, T o + H a +  
10(log//)2]. Put 

[. Ca log//" ] ,  
(3) /-/1 = H  a and k =  [ l o g l o g H J  

where Ca is a small positive constant. Then we prove the following theorem. 

(4) 

and 

(5) 

Theorem 2. W e  have 

[ r~ I1og ~(~+ it)l 2k dt > ,~ -~k ~,1, 
J T  o 

fro+n1 Ilog ((0~ + it)l 4k d t < t"~2k d 4 k  ~ '34k fW2k A4k ~l" 
J T o 

k l  - at 

where Ak=-(log k) ~ , and C2 and C3 are positive constants independent o f  C1. 

Corollary. Divide [To, To+Ha] into equal (abutting) intervals I each o f  length 
K (neglecting a bit at one end). Then the number N o f  intervals I for  which 

f 1 CkA2kK (6) IIlog~(~+it)12kdt > u 2 k 

. 1 [ C 2 ~2kH 1 
satisfies N_-->--l+-i-ff[~--~-aJ ~ and so in these intervals 

max Ilog ( (0~ + it)l >> Ak. 
t e l  

Proof. Put J=f,~i I I~  2k dt. Then 

~ i  J > 1 CkA2kH 
-~  2 k 1 
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since the contribution from the neglected bit is not more than Tc'll2go4kf'2kd4kr-r "~112 
on using (5). Let z~J=Zh~>~c~,Ap~:J and z~l the sum over the remaining inter- 
vals I. Then 

"u  ~ 2  ~ k  "t~l " 

Put z~,2 1 =N. Then by H51der's inequality we have 

1 CkA2kH N~/~(z~2j2)1/2 " i  2 k 1 < 

f Ilog ((~ + it)l ak dt K) 1/2 <- N1/~(Z~ 

- -  Al1/2 K71/2[ '~4kt~2k d 4 k  T-.F "h l /2  
~:Z ~v  ~tx I , ~  " " 3  z ' t k  " t a l ]  " 

1 
[ C2 )~k //1 This proves the corollary. Hence N>-i-~-(~C-~3 ) K '  

Theorem 3. Let J1 be the maximum over (Res_->e, Ims  in 1) of  Ilog~(s)[ ~'. 
Then with the notation introduced above and with I=[a, b], we have, 

(7) z~Jx <- (log H) 2 Z 2  f,~a-llOog n)Ilog ~ (s)[ ~k da dt 

<-- 2(log H)2 [log ((s)l dt ~_ (log H) 2 CkA~,kH1, 
~_.:-l/(7ogu) 

where C 4 is independent of Cx. 

N 
Corollary. Of  any - ~ 

J~ does not exceed 

(8) 

of the summands Jx appearing in Z2 ,  the minimum 

2(log 2 k 2k H) Cl& H~ 
( C2 )~k H1 

-- 1 + 1-~- ~,--~8 / K 

Hence the maxte z [log((e+it)[ over those intervals I is <<Ag. 
1 . r- ,2k HI 

C~ the c~176 t~ The~ 2 and 3 we have =>- 1 + ~ - [  4-~8 ) K  

( = M  say) intervals I contained in/1 for which there holds 

(9) A k < <  max ]log ( ( e +  it)l << Ak. 
t E I  

Now by choosing C1 small we have M ~ H 1 K  -E where H I = H  e and the number 
of intervals/1 is ~ H  1-~ Since/1 is contained in I0 and the number of intervals 
I0 is >>TH -1, we have, in all 

(10) >> H ~ 1 7 6  -1 = TK -~ 

disjoint intervals of length K each where (9) holds. 
This completes the proof of Theorem 1 provided we prove Theorems 2 and 3. 
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3. Preliminaries to the proofs of Theorems 2 and 3 

From (1) using the fact that the absolute value of an analytic function at a 

point does not exceed its mean-value over a disc say of radius lo 

that point as centre, we obtain 

]~(s)[ <- H 2 in a =>flq l o g H '  T~176  < t < T o + H ~ + 9 ( l o g H )  2 

Hence in this region Re log~(s)<-21ogH. Now l o g ~ ( 2 + i t ) = 0 ( l )  and hence 
by Borel--CaratModory theorem we have 

log~(s) = 0( logH) in (a => (a+fi)/2, To -8 ( logH)  ~ <= t <= T o + H t + 8 O o g H ) 2 ) .  

Now put 

(11) X = (log H )  B 

where B is a large positive constant. 
We have 

1 f 2 + ~  Z p p - S  exp ( - - P )  = - ~  - 2 _ i l o g ( ( s + w ) X W F ( w ) d w + O ( 1 )  

where T o - 7 ( l o g H ) ~ < - t < - - T o + H l + 7 ( l o g H )  ~ and tr=a.  Here first break off the 
portion Jim w[=>(logH) ~ and move the rest of the line of integration to Re w 
given by Re ( s+w)=(c t+f l ) /2 .  Also observe that 

~v>x,p-~exp ( - -  p )  = 0(1). 

Collecting our results we have (since [F(w)[<<exp ( "  [Im wD) 

l o g ( ( s ) =  ~ p ~ x , p - ~ e x p ( - P ) + o ( l )  

To-7( log H)=<-t<=To+H,+ 7(log H)  *. Let 

and ~p~_x2p -~ exp - = Z.~_x,~ ak(n)n -~ = F(s), 

a = a  and 

X 2k <= H~/* 

Then we have 

(12) 

where 

(13) 

say. 

(14) 

and also 

(15) 

(11 r II g r  +(2C5) ~k, IF(s)[ = <-- og s =k < = 2 =k O S 2k 

Ilog s 2k <= 22giF(s)12+(2Cs) 2k. 



18 R. Balasubramanian and K. Ramachandra 

We now integrate these inequalities from t=To to t=To+H~. Also we note 
11 1 

that these inequalities are valid even when --=>Res=>~ - H '  T o - 6 ( l o g  H)~<= 
10 log 

11 
t<=To+H~+6(logH) 2. Now in a=>-~,  we have Ilogff(s)l<<2 - "  and so 

(16) ~o-~-~,~-~o+,,,+~ [log ~ (s)[ 2k aa at << f f  2 cr d~ dt << H t  Cg. 

Therefore in order to prove Theorem 3, it suffices to consider 

(17) f f IF(s)l ~ dcr dt + H1 C~ 
11 1 

where the area integral extends over - -  => Re s-> ~ -- - - ,  To - 1 -< t <= To +/-/1 + 1, 
10 log H 

By a simple computation, we have since Xak<=H~ 12, 

(18) 

where 

(19) 

1 fTo+Hx--t 
a(a) << ~ JTo_  1 lF(s)l z dt << a(a) 

G(a) = Z . ~ x , ~  (ak(n))2 
- n2a 

4. Upper and lower bounds for G(o-) 

Things similar to G(a) were first studied by H. L. Montgomery (see [5]). We 
consider upper and lower bounds for (G(a)) 112k. Let p t = 2 , p 2 = 3  . . . . .  Pk be the 
first k primes. By prime number theorem 

(20) Pl-.-Pc = exp (pk + O(k)) = exp (k log k +  k log log k+O(k)). 

Taking only the contribution to G (a) from n =pt . . .pk ,  we have since exp -- ~ 

( i=1  to k), 

(21) (G(a))l12~ >(  (k')22-2k ) 1/~ kt-" 
= (Pl...Pk) 2" :~ (log k) ~ - Ak(a) say. 

This proves the lower bound 

(22) G(a) >= (Ak(a))2kC~ k. 
As regards the upper bound we write 

(23) Z , ,~x ,p-S  exp ( - - P }  = ~ 1 + ~ ,  

where ~ extends over p<=k log k a n d Z a  the rest. 
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Note that 

(24) 

Put 

(25) 

and 
Ck(n) 

(26) ~ k  = Z~ n ~ 

By a simple computation we have 

1 fro+H~+l 
(27) "~-~JTo-1 IFl(s)l~at<<Od~) 

where 

(28) Gl(a) = z~ ( b ~ ) ) 2  f ~ '  bk(n) ~2 -'<2 ,~_ 

and 

(29) 

IF(s)l ~ ~ 22k ~ '  I=k+2=~ w 21, - -  ,~,a 1| ~,,2 �9 

bk(n) 
, ~ k =  Z n ~ = Fl(s) say, 

= F2(s) say. 

1 I'To+H1 +1 , ~  t x~ 2 
and -~-~ Jro-1 Ir2ts)l dt << G2(a) 

_ o . 

(G(.)) ~ 
G2(~r) = ~ n~ 

If t r< l  we have easily 

(k log k) 1-~ k 1-~ 
(30) (Gl(O'))l]2k < <  log k = (log k) - ' ' ' - - ~  

and by Sterling's approximation for k! we also have 

(31) (Gz( t r ) )  1/2k<< k1]2 ( . ( k l o g  k)l_2o. )1/2 k l _ a  
o 

log k (log k)" 

This proves the upper bound 

f 1 fro+rq+x ~/2k (32 )  (G(6)) 1/2k << ~-~l J To_ 1 IV(s)]  2 dtJ << ak(O" ) 

which in turn gives an upper bound for (G(a)) 1/2k if /~0<=a<-1-01 uniformly in tr 
11 

for every 01>0. If  - -  _-> o- =>1- 61 the bounds for the area integral are negligible 
10 

if 61 is small since it is 

I I ~ )  ~ ~ . ~ p  ,~oxp 

where o-1=1-3 .  
This completes the proofs of  Theorems 2 and 3. Thus the proof  of Theorem 1 

is complete. 
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