On the frequency of Titchmarsh's phenomenon for $\zeta(s)-\mathrm{V}$

R. Balasubramanian and K. Ramachandra

1. Introduction

In a series of papers with the same title (as above) I, II, III, IV ([6], [7], [2] and [1]) we studied (sometimes jointly and sometimes individually) the quantity

$$
\max _{T \leqq t \leqq T+H}|\zeta(\alpha+i t)|
$$

where $C \leqq \log \log T \leqq H \leqq T, \alpha$ is fixed in $\frac{1}{2} \leqq \alpha \leqq 1$ and C is a large positive constant. If $\alpha=1$ we could manage even with the condition $C \leqq \log \log \log T \leqq H \leqq T$. We also studied other quantities like

$$
\min _{T \leqq t \leqq T+H}|\zeta(\alpha+i t)| \quad \text { and } \quad \max _{\sigma \geqq a, T \leqq t \leqq T+H}|\zeta(\sigma+i t)|
$$

and so on. In this paper we continue the investigations of the paper II. In II the second of us proved, amongst other things the following result. Let H be any preassigned quantity with $C \leqq \log \log T \leqq H \leqq \operatorname{Exp}\left(\frac{D \log T}{\log \log T}\right)$, where C is a large positive constant, α fixed $\left(\frac{1}{2}<\alpha<1\right)$, and D is a positive constant depending on α. Let I run over intervals (of length H) contained in [$T, 2 T$]. Then

$$
\log \log \left(\min _{I} \max _{t \in I}|\zeta(\alpha+i t)|\right) \sim(1-\alpha) \log \log H
$$

Moreover in [8] the following result was proved amongst other things. Let $f_{n}=$ $\max _{n \Xi_{t} \leqq n+1}|\zeta(\alpha+i t)|$ where n is an integer satisfying $T \leqq n \leqq 2 T$. Then $\log f_{n} \leqq$ $\frac{D_{0}(\log T)^{1-\alpha}}{(\log \log T)^{\alpha}}$ with the exception of at most $0\left(\operatorname{Exp}\left(\log T-\frac{D_{1} \log T}{\log \log T}\right)\right)$ values of n. Here D_{1} is an arbitrary positive constant and D_{0} is a positive constant depending on α and D_{1}. In [4] it is conjectured by H. L. Montgomery that for all
$t \geqq 1000, \log |\zeta(\alpha+i t)|$ does not exceed a constant multiple of $\frac{(\log t)^{1-\alpha}}{(\log \log t)^{\alpha}}$. The object of this paper is to prove the following theorem. An idea in [2] is very useful in proving the theorem.

Theorem 1. Let α be a fixed constant satisfying $\frac{1}{2}<\alpha<1$ and $E>1$ an arbitrary constant. Let $C \leqq H \leqq T / 100$ and $K=\operatorname{Exp}\left(\frac{D \log H}{\log \log H}\right)$ where C is a large positive constant and D an arbitrary positive constant. Then there are $\geqq T K^{-E}$ disjoint intervals I of length K each contained in [T, 2T] such that

$$
\frac{(\log K)^{1-\alpha}}{(\log \log K)^{\alpha}} \ll \max _{t \in I}|\log \zeta(\alpha+i t)| \ll \frac{(\log K)^{1-\alpha}}{(\log \log K)^{\alpha}}
$$

Remark 1. Here $\log \zeta(s)$ is the analytic continuation along lines parallel to the σ-axis (we choose only those lines which do not contain a zero or pole of $\zeta(s)$) of $\log \zeta(s)$ in $\sigma \geqq 2$.

Remark 2. We can only prove that as I runs over all intervals of length K contained in $[T, 2 T]$,

$$
\frac{(\log K)^{1-\alpha}}{\log \log K} \ll \operatorname{Min}_{I} \operatorname{Max}_{t \in I}|\log \zeta(\alpha+i t)| \ll \frac{(\log K)^{1-\alpha}}{(\log \log K)^{\alpha}}
$$

Hence for the logarithm of the middle quantity we have the asymptotic expression $(1-\alpha) \log \log K+0(\log \log \log K)$. We can also prove this formula for $\log \log \left(\operatorname{Min}_{I} \operatorname{Max}_{t \in I}|\zeta(\alpha+i t)|\right)$.

Remark 3. Theorem 1 and the results mentioned in Remark 2 can be easily extended to ordinary L-series and also to abelian L-series of quadratic fields. They can also be extended to zeta-function of abelian extension of rationals and also zeta-function of abelian extension of quadratic fields. The last result mentioned in Remark 2 can be extended to $\sum_{n=1}^{\infty}(a n+b)^{-s}$ where a and b are positive integers and also to zeta-function of a ray class in a quadratic field.

2. Outline of the proof

Let β_{0}, β_{1} and β be constants satisfying $\frac{1}{2}<\beta_{0}<\beta_{1}<\beta<\alpha<1$. It is wellknown that

$$
\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=0(\log T)
$$

From this it follows that there are $\gg \frac{T}{H}$ disjoint intervals I_{0} for t (ignoring a bit
at one end) each of length $H+20(\log H)^{2}$ contained in [T, 2T] for which

$$
\begin{equation*}
\int_{2 \geqq \sigma \geqq \beta_{0}} \int_{t \in I_{0}}|\zeta(s)|^{2} d t d \sigma \ll H \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t \in I_{0}}\left|\zeta\left(\beta_{1}+i t\right)\right|^{2} d t \ll H . \tag{2}
\end{equation*}
$$

From (1) and (2) it follows by standard methods that $N\left(\beta, I_{0}\right) \ll H^{1-\delta}$ where δ is a fixed positive constant depending only on α and β. Here $N\left(\beta, I_{0}\right)$ is the number of zeros ϱ of $\zeta(s)$ with $\operatorname{Re} \varrho \geqq \beta$ and $\operatorname{Im} \varrho$ lying in I_{0}. Hence if we divide I_{0} into abutting intervals (ignoring a bit at one end) I_{1} each of length $H^{\theta}+20(\log H)^{2}$ where $\theta=\delta / 2$, the number of intervals I_{1} is $\sim H^{1-\theta}$. Out of these we omit those I_{1} for which ($\sigma \geqq \beta, t$ in I_{1}) contains a zero of $\zeta(s)$. (They are not more than a constant times $H^{1-\delta}$). We now consider a typical interval I_{1} which is such that ($\sigma \geqq \beta$, t in I_{1}) is zero-free. Let us designate this t interval by $\left[T_{0}-10(\log H)^{2}, T_{0}+H^{\theta}+\right.$ $\left.10(\log H)^{2}\right]$. Put

$$
\begin{equation*}
H_{1}=H^{\theta} \quad \text { and } \quad k=\left[\frac{C_{1} \log H}{\log \log H}\right] \tag{3}
\end{equation*}
$$

where C_{1} is a small positive constant. Then we prove the following theorem.
Theorem 2. We have

$$
\begin{equation*}
\int_{T_{0}}^{T_{0}+H_{1}}|\log \zeta(\alpha+i t)|^{2 k} d t>C_{2}^{k} A_{k}^{2 k} H_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{T_{0}}^{T_{0}+H_{1}}|\log \zeta(\alpha+i t)|^{4 k} d t<C_{3}^{2 k} A_{2 k}^{4 k}<2^{4 k} C_{3}^{2 k} A_{k}^{4 k} H_{1}, \tag{5}
\end{equation*}
$$

where $A_{k}=\frac{k^{1-\alpha}}{(\log k)^{\alpha}}$, and C_{2} and C_{3} are positive constants independent of C_{1}.
Corollary. Divide [$T_{0}, T_{0}+H_{1}$] into equal (abutting) intervals I each of length K (neglecting a bit at one end). Then the number N of intervals I for which

$$
\begin{equation*}
\int^{I}|\log \zeta(\alpha+i t)|^{2 k} d t>\frac{1}{4} C_{2}^{k} A_{k}^{2 k} K \tag{6}
\end{equation*}
$$

satisfies $N \geqq-1+\frac{1}{16}\left(\frac{C_{2}}{4 C_{3}}\right)^{2 k} \frac{H_{1}}{K}$ and so in these intervals

$$
\max _{t \in I}|\log \zeta(\alpha+i t)| \gg A_{k}
$$

Proof. Put $J=\int_{t \in I}|\log \zeta(\alpha+i t)|^{2 k} d t$. Then

$$
\sum_{I} J>\frac{1}{2} C_{2}^{k} A_{k}^{2 k} H_{1}
$$

since the contribution from the neglected bit is not more than $K^{1 / 2}\left(2^{4 k} C_{3}^{2 k} A_{k}^{4 k} H_{1}\right)^{1 / 2}$ on using (5). Let $\sum_{2} J=\sum_{1, J>\frac{1}{2} C_{2}^{k} A_{k}^{2 k} K} J$ and \sum_{1} the sum over the remaining intervals I. Then

$$
\sum_{2} J>\frac{1}{4} C_{2}^{k} A_{k}^{2 k} H_{1}
$$

Put $\sum_{2} 1=N$. Then by Hölder's inequality we have

$$
\begin{aligned}
\frac{1}{4} C_{2}^{k} A_{k}^{2 k} H_{1} & <N^{1 / 2}\left(\sum_{2} J^{2}\right)^{1 / 2} \\
& \leqq N^{1 / 2}\left(\sum_{2} \int_{I}|\log \zeta(\alpha+i t)|^{4 k} d t K\right)^{1 / 2} \\
& \leqq N^{1 / 2} K^{1 / 2}\left(2^{4 k} C_{3}^{2 k} A_{k}^{4 k} H_{1}\right)^{1 / 2}
\end{aligned}
$$

Hence $N>\frac{1}{16}\left(\frac{C_{2}}{4 C_{3}}\right)^{2 k} \frac{H_{1}}{K}$. This proves the corollary.
Theorem 3. Let J_{1} be the maximum over $(\operatorname{Re} s \geqq \alpha, \operatorname{Im} s$ in $I)$ of $|\log \zeta(s)|^{2 k}$. Then with the notation introduced above and with $I=[a, b]$, we have,

$$
\begin{gather*}
\sum_{2} J_{1} \leqq(\log H)^{2} \sum_{2} \int_{a-1 \leqq t \leqq b+1,} \int_{\sigma \geqq a-1 /(\log H)}|\log \zeta(s)|^{2 k} d \sigma d t \tag{7}\\
\leqq \\
2(\log H)^{2} \iint_{\substack{T_{0}-1 \leqq t \leqq T_{0}+H_{1}+1 \\
\sigma \leqq a-1 /(\log H)}}|\log \zeta(s)|^{2 k} d \sigma d t \leqq(\log H)^{2} C_{4}^{k} A_{k}^{2 k} H_{1},
\end{gather*}
$$

where C_{4} is independent of C_{1}.
Corollary. Of any $\frac{N}{2}$ of the summands J_{1} appearing in Σ_{2}, the minimum J_{1} does not exceed

$$
\begin{equation*}
\frac{2(\log H)^{2} C_{4}^{k} A_{k}^{2 k} H_{1}}{-1+\frac{1}{16}\left(\frac{C_{2}}{4 C_{3}}\right)^{2 k} \frac{H_{1}}{K}} \tag{8}
\end{equation*}
$$

Hence the $\max _{t \in I}|\log \zeta(\alpha+i t)|$ over those intervals I is $\ll A_{k}$.
Combining the corollaries to Theorems 2 and 3 we have $\geqq-1+\frac{1}{32}\left(\frac{C_{2}}{4 C_{3}}\right)^{2 k} \frac{H_{1}}{K}$ ($=M$ say) intervals I contained in I_{1} for which there holds

$$
\begin{equation*}
A_{k} \ll \max _{t \in I}|\log \zeta(\alpha+i t)| \ll A_{k} \tag{9}
\end{equation*}
$$

Now by choosing C_{1} small we have $M \geqq H_{1} K^{-E}$ where $H_{1}=H^{\theta}$ and the number of intervals I_{1} is $\sim H^{1-\theta}$. Since I_{1} is contained in I_{0} and the number of intervals I_{0} is $\gg T H^{-1}$, we have, in all

$$
\begin{equation*}
\gg H^{\theta} K^{-E} H^{1-\theta} T H^{-1}=T K^{-E} \tag{10}
\end{equation*}
$$

disjoint intervals of length K each where (9) holds.
This completes the proof of Theorem 1 provided we prove Theorems 2 and 3.

3. Preliminaries to the proofs of Theorems 2 and 3

From (1) using the fact that the absolute value of an analytic function at a point does not exceed its mean-value over a disc (say of radius $\frac{1}{\log H}$) round that point as centre, we obtain

$$
|\zeta(s)| \leqq H^{2} \quad \text { in } \quad\left(\sigma \geqq \beta+\frac{1}{\log H}, T_{0}-9(\log H)^{2} \leqq t \leqq T_{0}+H_{1}+9(\log H)^{2}\right)
$$

Hence in this region $\operatorname{Re} \log \zeta(s) \leqq 2 \log H$. Now $\log \zeta(2+i t)=0(1)$ and hence by Borel-Carathéodory theorem we have

$$
\log \zeta(s)=0(\log H) \quad \text { in } \quad\left(\sigma \leqq(\alpha+\beta) / 2, T_{0}-8(\log H)^{2} \leqq t \leqq T_{0}+H_{1}+8(\log H)^{2}\right)
$$

Now put

$$
\begin{equation*}
X=(\log H)^{B} \tag{11}
\end{equation*}
$$

where B is a large positive constant.
We have

$$
\sum_{p} p^{-s} \exp \left(-\frac{p}{X}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \log \zeta(s+w) X^{w} \Gamma(w) d w+0(1)
$$

where $T_{0}-7(\log H)^{2} \leqq t \leqq T_{0}+H_{1}+7(\log H)^{2}$ and $\sigma=\alpha$. Here first break off the portion $|\operatorname{Im} w| \geqq(\log H)^{2}$ and move the rest of the line of integration to $\operatorname{Re} w$ given by $\operatorname{Re}(s+w)=(\alpha+\beta) / 2$. Also observe that

$$
\sum_{p \geqq X^{2}} p^{-s} \exp \left(-\frac{p}{X}\right)=0(1)
$$

Collecting our results we have (since $|\Gamma(w)| \ll \exp (-|\operatorname{Im} w|))$

$$
\begin{equation*}
\log \zeta(s)=\sum_{\left.p \leqq X^{2} p^{-s} \exp \left(-\frac{p}{X}\right)+0(1), ~\right)} \tag{12}
\end{equation*}
$$

where $\sigma=\alpha$ and $T_{0}-7(\log H)^{2} \leqq t \leqq T_{0}+H_{1}+7(\log H)^{2}$. Let
(13) $X^{2 k} \leqq H_{1}^{1 / 2}$ and $\left(\sum_{p \leqq X^{2}} p^{-s} \exp \left(-\frac{p}{X}\right)\right)^{k}=\sum_{n \leqq X^{2 k}} a_{k}(n) n^{-s}=F(s)$,
say.
Then we have

$$
\begin{equation*}
|F(s)|^{2} \leqq\left(|\log \zeta(s)|+C_{5}\right)^{2 k} \leqq 2^{2 k}|\log \zeta(s)|^{2 k}+\left(2 C_{5}\right)^{2 k} \tag{14}
\end{equation*}
$$

and also

$$
\begin{equation*}
|\log \zeta(s)|^{2 k} \leqq 2^{2 k}|F(s)|^{2}+\left(2 C_{5}\right)^{2 k} \tag{15}
\end{equation*}
$$

We now integrate these inequalities from $t=T_{0}$ to $t=T_{0}+H_{1}$. Also we note that these inequalities are valid even when $\frac{11}{10} \geqq \operatorname{Re} s \geqq \alpha-\frac{1}{\log H}, T_{0}-6(\log H)^{2} \leqq$ $t \leqq T_{0}+H_{1}+6(\log H)^{2}$. Now in $\sigma \geqq \frac{11}{10}$, we have $|\log \zeta(s)| \ll 2^{-\sigma}$ and so

$$
\begin{equation*}
\iint_{\sigma \geqq(11 / 10), T_{0}-1 \leqq t \leqq T_{0}+H_{1}+1}|\log \zeta(s)|^{2 k} d \sigma d t \ll \iint 2^{-2 k \sigma} C_{6}^{k} d \sigma d t \ll H_{1} C_{6}^{k} \tag{16}
\end{equation*}
$$

Therefore in order to prove Theorem 3, it suffices to consider

$$
\begin{equation*}
2^{2 k} \iint|F(s)|^{2} d \sigma d t+H_{1} C_{7}^{k} \tag{17}
\end{equation*}
$$

where the area integral extends over $\frac{11}{10} \geqq \operatorname{Re} s \geqq \alpha-\frac{1}{\log H}, \quad T_{0}-1 \leqq t \leqq T_{0}+H_{1}+1$. By a simple computation, we have since $X^{2 k} \leqq H_{1}^{1 / 2}$,

$$
\begin{equation*}
G(\sigma) \ll \frac{1}{H_{1}} \int_{T_{0}-1}^{T_{0}+H_{1}-1}|F(s)|^{2} d t \ll G(\sigma) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
G(\sigma)=\sum_{n \leqq X^{2 k}} \frac{\left(a_{k}(n)\right)^{2}}{n^{2 \sigma}} \tag{19}
\end{equation*}
$$

4. Upper and lower bounds for $G(\sigma)$

Things similar to $G(\sigma)$ were first studied by H. L. Montgomery (see [5]). We consider upper and lower bounds for $(G(\sigma))^{1 / 2 k}$. Let $p_{1}=2, p_{2}=3, \ldots, p_{k}$ be the first k primes. By prime number theorem

$$
\begin{equation*}
p_{1} \ldots p_{k}=\exp \left(p_{k}+0(k)\right)=\exp (k \log k+k \log \log k+0(k)) \tag{20}
\end{equation*}
$$

Taking only the contribution to $G(\sigma)$ from $n=p_{1} \ldots p_{k}$, we have since $\exp \left(-\frac{p_{i}}{X}\right) \geqq \frac{1}{2}$ ($i=1$ to k),

$$
\begin{equation*}
(G(\sigma))^{1 / 2 k} \geqq\left(\frac{(k!)^{2} 2^{-2 k}}{\left(p_{1} \ldots p_{k}\right)^{2 \sigma}}\right)^{1 / 2 k} \gg \frac{k^{1-\sigma}}{(\log k)^{\sigma}}=A_{k}(\sigma) \quad \text { say. } \tag{21}
\end{equation*}
$$

This proves the lower bound

$$
\begin{equation*}
G(\sigma) \geqq\left(A_{k}(\sigma)\right)^{2 k} C_{8}^{2 k} \tag{22}
\end{equation*}
$$

As regards the upper bound we write

$$
\begin{equation*}
\sum_{p \leqq X^{2}} p^{-s} \exp \left(-\frac{p}{X}\right)=\Sigma_{1}+\sum_{2} \tag{23}
\end{equation*}
$$

where \sum_{1} extends over $p \leqq k \log k$ and \sum_{2} the rest.

Note that

$$
\begin{equation*}
|F(s)|^{2} \leqq 2^{2 k}\left|\sum_{1}\right|^{2 k}+2^{2 k}\left|\sum_{2}\right|^{2 k} \tag{24}
\end{equation*}
$$

Put

$$
\begin{equation*}
\sum_{1}^{k}=\sum \frac{b_{k}(n)}{n^{s}}=F_{1}(s) \quad \text { say } \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2}^{k}=\sum \frac{c_{k}(n)}{n^{s}}=F_{2}(s) \tag{26}
\end{equation*}
$$

By a simple computation we have
(27) $\frac{1}{H_{1}} \int_{T_{0}-1}^{T_{0}+H_{1}+1}\left|F_{1}(s)\right|^{2} d t \ll G_{1}(\sigma)$ and $\frac{1}{H_{1}} \int_{T_{0}-1}^{T_{0}+H_{1}+1}\left|F_{2}(s)\right|^{2} d t \ll G_{2}(\sigma)$
where

$$
\begin{equation*}
G_{1}(\sigma)=\sum \frac{\left(b_{k}(n)\right)^{2}}{n^{2 \sigma}} \leqq\left(\sum \frac{b_{k}(n)}{n^{\sigma}}\right)^{2}=\left(\sum_{p \leqq k \log k} p^{-\sigma} \exp \left(-\frac{p}{X}\right)\right)^{2 k} \tag{28}
\end{equation*}
$$

and
(29) $\quad G_{2}(\sigma)=\sum \frac{\left(C_{k}(n)\right)^{2}}{n^{2 \sigma}} \leqq k!\sum \frac{C_{k}(n)}{n^{2 \sigma}} \leqq k!\left(\sum_{p \geqq k \log k} p^{-2 \sigma} \exp \left(-\frac{p}{X}\right)\right)^{2 k}$.

If $\sigma<1$ we have easily

$$
\begin{equation*}
\left(G_{1}(\sigma)\right)^{1 / 2 k} \ll \frac{(k \log k)^{1-\sigma}}{\log k}=\frac{k^{1-\sigma}}{(\log k)^{\sigma}} \tag{30}
\end{equation*}
$$

and by Sterling's approximation for k ! we also have

$$
\begin{equation*}
\left(G_{2}(\sigma)\right)^{1 / 2 k} \ll k^{1 / 2}\left(\frac{(k \log k)^{1-2 \sigma}}{\log k}\right)^{1 / 2}=\frac{k^{1-\sigma}}{(\log k)^{\sigma}} \tag{31}
\end{equation*}
$$

This proves the upper bound

$$
\begin{equation*}
(G(\sigma))^{1 / 2 k} \ll\left(\frac{1}{H_{1}} \int_{T_{0}-1}^{T_{0}+H_{1}+1}|F(s)|^{2} d t\right)^{1 / 2 k} \ll A_{k}(\sigma) \tag{32}
\end{equation*}
$$

which in turn gives an upper bound for $(G(\sigma))^{1 / 2 k}$ if $\beta_{0} \leqq \sigma \leqq 1-\delta_{1}$ uniformly in σ for every $\delta_{1}>0$. If $\frac{11}{10} \geqq \sigma \geqq 1-\delta_{1}$ the bounds for the area integral are negligible if δ_{1} is small since it is

$$
\leqq 2\left(\sum \frac{a_{k}(n)}{n^{\sigma_{1}}}\right)^{2} \leqq 2\left(\sum_{p \leqq \dot{x}^{2}} p^{-\sigma_{1}} \exp \left(-\frac{p}{X}\right)\right)^{2 k}
$$

where $\sigma_{1}=1-\delta$.
This completes the proofs of Theorems 2 and 3. Thus the proof of Theorem 1 is complete.

References

1. Balasubramanian, R., On the frequency of Titchmarsh's phenomenon for $\zeta(s)$-IV, (to appear).
2. Balasubramanian R. and Ramachandra, K., On the frequency of Titchmarsh's phenomenon for $\zeta(s)$-III, Proc. Indian Acad. Sci., Section A, 86 (1977), 341-351.
3. Balasubramanian, R. and Ramachandra, K., On the zeros of a class of generalized Dirichlet series-III, J. Indian Math. Soc., 41 (1977), 301-315.
4. Montgomery, H. L., Extreme values of the Riemann zeta-function, Comment. Math. Helv., 52 (1977), 511-518.
5. Montgomery, H. L., On a question of Ramachandra, Hardy-Ramanujan J., 5 (1982), 31-36.
6. Ramachandra, K., On the frequency of Titchmarsh's phenomenon for $\zeta(s)-1, J$. London Math. Soc. (2), 8 (1974), 683-690.
7. Ramachandra, K., On the frequency of Titchmarsh's phenomenon for $\zeta(s)-I I$, Acta Math. Acad. Sci. Hungarica, 30/1-2 (1977), 7-13.
8. Ramachandra, K., Mean-value of the Riemann zeta-function and other remarks-I, Colloq. Math. Soc. János Bolyai, 34, Topics in classical number theory, Budapest (Hungary), (1981), 1317-1347.
(Manuscript completed on 14th April 1985)
Received May 22, 1985

R. Balasubramanian
K. Ramachandra
School of Mathematics
Tata Institute of Fundamental Research Homi Bhabha Road
Bombay 400005
(India)

