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1. Introduction 

The aim of this paper is to describe an equivalence between the full subcategory 
of Mod-R whose objects are all the divisible modules over an integral domain R 
and a suitable full subcategory of modules over the endomorphism ring E of a 
fixed divisible module 0. This equivalence corresponds to the similar equivalences 
for torsion divisible abelian groups due to Harrison [6] and for torsion h-divisible 
modules over an integral domain due to Matlis [7], [8] and [9]. 

Let R denote a commutative integral domain with 1 (not a field) and let OR 
denote the divisible right R-module defined by L. Fuchs in [3] (see w 2 for the exact 
definition of 0R). The module OR has interesting properties that are shown in [3], 
in [4, w VI.3] and in w167 2 and 3 of this paper. For instance, if E is the endomorphism 
ring of OR and 0 is viewed as a left E-module ~), then End (gO)mR and EO~E/I 
for a suitable projective principal left ideal I of E. Moreover, 0 has flat and projec- 
tive dimensions equal to one both as a right R-module and a left E-module, and 
this implies that the class o j  of all right E-modules M such that Torf (M, 0)=0 
is the torsion-free class for a (non-hereditary) torsion theory (J-,  ~ )  in Mod-E.  
This torsion theory is generated by the cyclic right E-module Ext~ (tOg, R), and 
a right E-module M E is a torsion-free module in this torsion theory (we say that 
ME is I-torsion-free) if and only if the canonical homomorphism M | ~ I ~ M  | EE~ M 
induced by the embedding I ~ E  is a monomorphism. Dually, we say that a module 
M E is an I-divisible module if the canonical homomorphism M |  is an 
epimorphism, and that a right E-module N E is I-reduced if it is cogenerated by the 
right E-module 0*=Horn R (0, C), where C is the minimal injective cogenerator 
in Mod-R. It is easy to show that a module M E is /-divisible if and only if 
Hom (M, N ) =  0 for every/-reduced E-module N E. 

Now define a right E-module M to be an I-cotorsion module if it is /-reduced 
and Ext~ (N, M ) - 0  for every /-divisible /-torsion-free right E-module N. The 
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main result of this paper is the proof of the following theorem: the functors 
HOmR(0,--):  Mod-R~Mod-E  and - |  Mod-E-~Mod-R induce an equiv- 
alence between the full subcategory of Mod-R whose objects are the divisible 
R-modules and the full subcategory of Mod-E whose objects are the/-cotorsion 
E-modules. This generalizes the corresponding results of Harrison for torsion divis- 
ible abelian groups [6] and of Matlis for torsion h-divisible R-modules ([7] and [9]). 
In our equivalence the injective R-modules  correspond to the /-reduced /-pure- 
injective E-modules. Here /-pure-injective means injective relatively to the 1-pure 

exact sequences, that is, the sequences O ~ M ' ~ M ~ M " ~ O  of right E-modules 
for which the sequence O ~ M ' | 1 7 4  is exact. (This extends 
the corresponding result due to War field for Matlis' equivalence between torsion 
h-divisible modules and torsion-free cotorsion modules, see [4, Th. V.1.8].) Our 
/-purity is a purity in the sense of  Warfield [14], 

Finally, we prove that l-cotorsion E-modules are exactly the right E-modules 
of 0*-dominant dimension =>2, that is, the modules M~ for which there exists 
an exact sequence O ~ M ~ O * x ~ o  *r with 0 *x and 0 *r suitable direct products of 
copies of 0". 

For technical reasons (proof of Lemma 2.2) the way we define the R-module 0 
is a little different from the way Fuchs defines it in [3] and [4]. The difference is 
that our generators are the k-tuples (rl . . . . .  rk) of non-zero elements r~ of R, and 
Fuchs' generators are the k-tuples (rl . . . . .  rk) of non-zero and non-invertible ele- 
ments r~ of R. Fuchs' results in [3] and [4] hold with this small modification as well. 

2. The R-module O R and its endomorphism ring E 

In this paper R will be an integral domain and we will assume that it is not a 
field. We will denote the field of fractions of R by Q. 

Let 0 be the right R-module generated by the set f# of all k-tuples (rl, ..., rk) 
of non-zero elements ri of R, for k=>0, with defining relations 

(rl . . . .  , rk)r~ = (rl . . . .  , r~-l),  k >- 1. 

The right R-module 0 is obviously divisible, that is, Or=O for every r E R ,  

r ~0.  The length of (rx . . . . .  rk) is defined to be k, and the unique generator w=0  
in ~ of length 0 generates a submodule wR of 19 isomorphic to R [4, w VI.3]. Note 
that for every xE0 there exists r ~ R ,  r~O,  such that x r ~ w R  (possibly x r - 0 ) .  

The fundamental property of 0 is the following one: 

Proposition 2.1 [4, Lemma VI.3.2]. Let  D be a divisible right R-module and a c O. 

Then there exists  a homomorphism f :  O ~ D  with f ( w ) = a .  



Divisible modules over integral domains 69 

Let O. be the submodule of 0 generated by the elements of fq of length <=n, so 
that in particular Oo=wR. 

Lemma 2.2. Fix a nonnegative integer n and an element a o f  R, a r 0 and a ~ 1. 

Then the correspondence f9 ~ 0  defined by 

(rx . . . .  , r~)E~ ~ f~O k n 

(rl,  ..., r . ,  1, r.+1 . . . .  , r k ) - { r  I . . . . .  r n, a, r.+l . . . . .  rk)a i f  k > n t 

extends to an endomorphism o f  O whose kernel is O. and whose image is a direct sum- 

mand o f  O. 

Proof. It is easy to show that the defining relations of 0 are preserved by the 
correspondence; for instance, when k = n + 1, the relation (rl . . . . .  rk)rk = (rl . . . . .  rk-1) 

is preserved because [(rx . . . . .  1"., 1, r . + O - ( r l  . . . . .  r . ,  a, rn+~)a]rk=(r~, ..., r. ,  1)-- 
(rl . . . . .  r. ,  a )a=( r l  . . . . .  I.)--(1"1, ..., r.)=0. Therefore the correspondence extends 
to an endomorphism rp of O. Note that 0 . cke r  (p because q)(rl . . . . .  r . )=0  for 
every (r~ . . . . .  I".). In particular q~=ep'orc where n: 0-*0/0.  is the canonical projec- 
tion and (p': 0 / 0 . ~ 0  is a homomorphism. 

Now consider the correspondence fg~O/O, defined by 

i" if k <= n+ 1 
(rl ,  ..., rk)E~ ~ On if k > n + l  and r.+x ~ 1 

A 
r l , . . . , r , , r , + l , r , + 2 , , . . , r k ) + O ,  if k > n + l  and r . + x = l ,  

m 

where @1, .:., r., r.+l, r.+2 . . . . .  rk) denotes the (k ' l ) - tuple  in which r.+l has been 
deleted. The defining relations of 0 are preserved by this correspondence as well; 
for instance, when k = n + 2  and r .+ i= i ,  the relation (r 1 . . . .  , rk)rk=(rl . . . .  , rk- i )  

rk)- t -On]rk=(rl  . . . . .  rn )q -On=O. .  Therefore this is preserved because [(rl, ..., r. ,  r .+l,  

correspondence also extends to a homomorphism O: 0 ~ 0 / 0 . .  

The composed homomorphism Oqg: 0 ~ 0 / 0 .  is defined by ~/'(p(rl, ..., rk)=O, if 
k<--n and Oq)(rl . . . . .  rk)=O[(rl  . . . . .  r . ,  1, r.+l . . . . .  rk)--(rl . . . . .  r . ,  a, r.+l,  ..., rk)al= 
(r 1 . . . . .  r . ,  r.+l . . . . .  rk)+O, if k > n ,  i.e., 0q~: 0--.0/0. is the canonical projection re. 
Therefore ~z=0q~=OqCrc, hence ~k~0' is the identity of 0/0.,  so that ~0' is injective 
and 0=qr 0. Since ~0" is injective, ker q~=ker (~o'r0=ker re=0.. More- 
over q)(O)=qr is a direct summand of 0. 

Fix the following notations: 
- -  E is the endomorphism ring End (OR) of the R-module OR; 
- -  rp is a fixed R-endomorphism of 0 (i.e., ~o~E) with ker q ) = w R  anti,o(0) 

a direct summand of 0 (it exists by Lemma 2.2); 
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~ is a fixed idempotent R-endomorphism of 0 (i.e., sEE and e2=e) with 
~(0)=~0(0); 

1 is the left ideal {fEEIf(w)=O} of E; 
- -  J is the two sided ideal {fEE[f(O)ct(O)} of E, where tO) denotes the 

torsion submodule of 0. 
Since R is a commutative ring and 0R is a faithful module, the ring R is a sub- 

ring of the center Z(E) of E. In the next theorem we prove that R is equal to Z(E). 

Theorem 2.3. The integral domain R is the center of E=End  (OR). 

Proof. It is sufficient to show that if f belongs to the center of E then there 
exists rER such that f (x)=xr for every xE0. I f f i s  in the center o f E a n d  ~o denotes 
the endomorphism defined before the statement of this theorem, then ~of(w)= 
fq~(w)=f(O)=O, so that f(w)Eker q~=wR; hence there exists rER with f(w)=wr. 
If xEO, then there is a homomorphism g: 0+O with g(w)=x by Proposition2.1, 
and f(x)=f(g(w))=g(f(w))=g(wr)=g(w)r=xr. This concludes the proof of the 
theorem. 

If ~: 0 ~ Q  is the R-module homomorphism defined by a(rl, ..., rk)=(rl...rk) -~ 
for k=>l and a(w)=l ,  then ker~ is the torsion submodule t(O)of 0. This is 
easily seen, because t(O)cker a since Q is torsion-free, and if xEker a and rER, 
r#0 ,  is such that xrEwR, xr=ws say, then O=c~(xr)=a(ws)=a(w)s=s; therefore 
xr=O and xEt(O). In particular O/t(O)~-Q. 

If we apply the functor HomR (0, --) to the exact sequence 0~t(0)  ~0  ~,- Q +0, 
we obtain the exact sequence O-~J~E+HomR (0, Q)~Ext~ (0, t(O)). But 
Hom R (0, Q)~Hom R (O/t(O), Q)~Hom R (O, Q)~-Q and Ext~ (0, t(O))=0 because 
t(O) is a divisible R-module [4, Prop. vi.3.4]. Hence E/J~-Q and J is an ideal of 
E maximal among the two sided ideals of E. 

Note that the left annihilator of ~0, l(~o)={gEElgq~=O}, is E(1--e). In fact, 
(1-~)~o=0 because e(0)--~o(0), so that E(1-e)cl(~o). And if gEl(~o), then 
g9 =0, i.e., ker gD 9(0)=e(0);  it follows that ge=0 and g=g-ge=g(1 -e )EE(1-5) .  
The right annihilator of q~, r(q~)={gEElgg=O}, is 0, because if qgg=0, then 
g(0)cker  q~=wR. Since g(0) is a divisible module, it must be the zero submodule 
of wR, i.e., g=0.  

Theorem 2.4. If  BR is any right R-module and f: O~B is a homomorphism 
such that f (w)=0,  then there exists g: O~B such that f=gq~. In particular, 
l={fEEIf(w)=O} is the left principal ideal Eq~ generated by ~o and is a projective 
ideal of E isomorphic to Ee. 

Proof. Since kerq~=wR and r is a direct summand of 0, there exists 
~: O~O/wR such that ~kcp is the canonical projection n: O--,O/wR (this had been 
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also shown in the proof of Lemma 2.2). Since f :  O--,B annihilates w, fcan be written 
as f=f'rc for a suitable f ' :  O/wR~B induced byf. If g=f'~k: O~B, then f=f'rr= 
f'Oq~=g~o. This proves the first assertion. 

In particular, I={fEEIf(w)=O}~{gq;lgEHom R(O,O)}=Etp, so that l=Eq~, 
the other inclusion being trivial. 

Finally, since l(qo)=E(1-e)=l(e), the ideal I=Erp_~E8 is projective. 

3. The E-modules e0 and 0~ 

Since E=End  (0a), the module 0 can be viewed as a left E-module, and 
R= End (E0) by Theorem 2.3. In this section we shall study the E-module n0. 

Lemma 3.1. The left E-module gO is isomorphic to E/L 

Proof. Consider the mapping E~O defined by f~ f (w)  for every fEE. Obvi- 
ously it is a left E-module homomorphism. It is surjective by proposition 2.1 and 
its kernel is L 

Fuehs [4, Lemma VI.3.1] has proved that the projective dimension of OR, 
proj. dim OR, is equal to one (this can also be shown by proving that the relations 
(rl ..... rk)rk--(rl ..... rg_x) generate a free submodule H of the module F freely 
generated by f#); since 0R is not flat (every flat R-module is torsion-free, and OR 
is not torsion-free) and proj.dim0R~fiat.dim0R, where flat.dim 0R is the flat 
dimension of OR, it follows that flat. dim 0R=proj. dim 0R = 1. This holds for the 
module gO too. 

Corollary 3.2. flat. dim ~9 =proj. dim E0 = 1. 

Proof. By Lemma 3.1 and Theorem2.4 proj.dimog<-l. If p ro j .d imgg<l ,  
then d9 is projective, so that I=Etp is a direct summand of E, i.e., Eq~=EB for 
an idempotent flEE. Then wR= n {kerflfEEq)}= n {kerflfEEfl}=ker fl is a 
direct summand of the divisible module OR, contradiction, because wR is not divis- 
ible. This proves that proj .d imn0=l .  Moreover fiat.dim E0<--proj.dimE0=l, 
and E0 is not fiat, because e0 is finitely presented by Lemma 3.1 and Theorem 2.4 
and every finitely presented fiat module is projective [13, Cor. 1.11.5]. Therefore 
fiat. dim E0 = 1. 

By Corollary 3.2 Tor~ ( - ,  EO)=Ext~ (E0, - - )=0  for n~2.  In the sequel we 
need the exact formulas for the ftmetors Tor~ ( - ,  E0) and Ext~ (~9, - )  that are 
calculated in the next corollary. 

Corollary 3.3, I f  M E is any right E-module, then Tor~ (M, 0)~(0:u~p)~, where 
(0:Mq~)= {xE MIxq~=O}. 



72 Alberto Facchini 

I f  EN is any left E-module, then Ext~ (9, N)_~oN/q)N. 

Proof. Consider the exact sequence O~I-~E~O~O. By applying the functor 
M |  we obtain that the sequence 0-~Tor~(M, 3)-.-M|174 is exact. 
Since I=Eq)~-E~ and M| it follows that Tor~(M, 9) is isomorphic 
to the kernel of the abelian group hom0morphism M e ~ M  defined by xe~-~xq) 
for every xEM. It follows that Tor~ (M, 3)----(0:uq~)e. Similarly for Ext~ (3, N). 

Note that since pro j .d imga=l ,  the torsion submodule t(gR) of 3R is iso- 
morphic to a submodule of K tx~, where K= Q/R and K tx~ is a direct sum of copies 
of K. Namely, if MR is any module with proj. dim MR= l, fix a free resolution 
O~RCX)~Rtr)~M~O of M (this is possible by [10, page 90, Ex. 3]) and apply the 
functor - | RK to this sequence. Then the sequence Tor~ (R (r), K) ~Tor~ (M, K)-~ 
RtX)|174 can be rewritten as O~t(M)~KtX)-~K (r) by [8, page 10]. 

Since proj .dimgR=l,  it follows that E x t , ( 3 , - ) = 0  for n_->2. Consider 
Ext~ (3, R). Since Ext~ ( - ,  R) is a contravariant functor, every R-homomorphism 
f :  3-~8 induces an R-homomorphism Ext~ (f, R): Ext~ (3, R)-~Ext~ (3, R), so that 
Ext~ (9, R) is a right E-module. 

Theorem 3.4. The right E-module Ext~ (0, R) is i~'omorphic to eE/cpE. 

Proof. Let C be the image of the endomorphism 1 - e  of 3, so that o=e(  )@ 
(1-e)(3)=~0(3)@C, Consider the exact sequence of R-modules 

S: 0 -~ R ~-L- 3@C~-  3 -~ 0, 

where ~(r)=(wr, O) for every rER and p(x,y)=r for every (x,y)E9| 
Let 8 be the image of the extension S into Ext~ (3, R). In order to prove the theo- 
rem it is sufficient to show that ~ :  eE~Ext~ (9, R) defined by ~ ( e f ) = $ f  for 
every fEE is a well defined surjective E-homomorphism with kernel ~0E. 

If fEE and ef=0, then f ( 3 ) c k e r  e=C, so that it is possible to define a 
homomorphism g: R @9-~9 @ C by setting g (r, x)  = (wr, f(x)) for every (r, x) E R @8. 
If Z denotes the trivial extension, the diagram 

Z: O-~ R-~ R@9 -~ 9-~0 
II ~ g ~ f  

S: 0 ~ R ~-~ 3 |  -p,- 3 ~ 0 

commutes. This shows that Sf  is zero in Ext~ (9, R) and proves that �9 is a well 
defined homomorphism of right E-modules. 

Now we shall show that ~ is surjective. Let 

T: O~ R-Y*- A-~. 3 ~  O 

be any extension and Tits image into Ext~ (3, R). Since Ext~ (3, 3)=0 [4, Prop. 
VI.3.4], the R-homomorphism V*: Homa (A, 3)---Homa (R, 3) is surjective. HenCe 
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In order to prove that 
if and only if Sf=Z,  i.e., 
0 @C making the diagram 

there exists zEHomg (A, O) such that (?* (Z)) (1) = w, that is, Z(7(1))=w. Define 
h: A--,-cg@C by h(a)=(z(a),O) for every aEA. Then h(r(l))=(Z(r(1)),O)= 
(w, O)=e(1), so that h7=cr and the left-hand square in the diagram 

T: O--,. R 32~ A ~-L, O ~ O  
II ~ h I f  

S: 0 ~ R-% 0 @ C 2 ,  0-~ 0 

commutes; it follows that there exists an f E E  making the right-hand square com, 
mute. Then Sf= T, and ~ is surjective. 

ker ~=~oE, fix an fEE, so that efEeE. Then efEker 
if and only if there exists a homomorphism g: R @0-* 

Z: O-* R ~ R@O -* O-*O 
11 ~ g ~ f  

S: 0 ~ R ~ -  @@C-P-~ O -* 0 

commute. This means that g(r, 0)=(wr, 0) and fig(r, x)=f(x) for every rER and 
xEO. Since the homomorphisms g: R@O~O@C such that g(r, 0)=(wr, 0) for 
every rER are exactly of the form g(r,x)=(wr+h(x), l(x)) for suitable h: 0 ~ 0  
and h O-*C, it follows that efEker �9 if and only if there exists h: 0-*0 and 
h 0 ~ C such that f (x)  = fig (1", x) = [1 (wr + h (x), l(x)) = ~p (wr + h (x)) + l(x) = (~oh + l) (x), 
i .e.,f-~oh=L But C=(1 -~ ) (0 )=ke r  e, so that efEker �9 if and only if ~(f-~0h)=0 
for some h: 0-~0, i.e,, ef=eq~h=q)hEq~E. This proves that ker ~=~0E. 

We shall often need the right E-module Ext~ (0, R )  in the sequel, and we shall 
denote it by 0 ~ Hence 0~ (0, R)~-eE/qoE as a right E-module. There are 
other "presentations" of the module 0 ~ For instance the right E-modules 0 ~ and 
Ext~ (0, E) are isomorphic right E-modules by Corollary 3.3. Moreover the functor 
Homa (g0R, --) applied to the exact sequence of R-modules O-~wR~O~O/wR~O 
gives the exact sequence of right E-modules 0 ~ E ~ H o m R  (0, O/wR)-o-Ext 1 (0, wR) 
Ext~ (0, ~). The last module is zero by [4, Prop. VI.3.4], so that the right E-modules 
0~ (0, wR) and Homa (0, O/wR)/E are isomorphic. 

Furthermore, the functor Homg (EOR, - ) a p p l i e d  to the exact sequence of 
R-modules O~R-~Q~K-~O gives the exact sequence of right E-modules 0-* 
Homa (0, Q)~HomR (0, K)~Ext~ (0, R)~Ext~ (0, Q). The last module is zero by 
[4, Prop. VI.3.4], and the first module is HomR (0, Q)~HomR (O/t(O), Q)~Q by 
the remarks after proposition 2,3. Therefore O~ K)/Q as E-modules. 

If we are only interested in the structure of  0 ~ as an R-module, there is one 
more "presentation" of 0~ the functor Horn R ( - ,  R) applied to the exact sequence 
O~H-~F~O~O (where F is the R-module freely generated by ~ and H is the free 
submodule of F generated by the relations) gives 0 ~ H o m a  (F, R)~Homa (H, R)-* 
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Ext~ (0, R)~0 ,  which is a presentation of O ~ as a quotient of  two R-modules 
isomorphic to direct products of  copies of  R. 

Corollary 3.5. flat. dim 0~ =pro j .  dim O~ = 1. 

Proof. Since r(cp)=0, it follows that qgE_~E is projective, so that O~ 
has projective dimension ~ 1, Hence 1 ->proj. dim 0~ dim O ~ It remains 
to prove that eE/~oE is not flat, But e+q~EEeE/q~E is annihilated by tp (because 
eq~ = ~0) so that it belongs to (0:q~)e _~ Tor~ (0 ~ 0) (Corollary 3.3). Thus Tor~ (0o, O)~ 0 
and 0 ~ is not flat. 

Theorem 3.6. End ( ~ )  ~ R. 

Proof. First of all observe that O ~ is a torsion-free R-module, because i f  rE R 
and r ~ 0 ,  the functor Hom R (~, - )  applied to the exact sequence O-~R-%R-~ 
R/rR-~O gives the exact sequence Horn R (0, R/rR)~O~ ~ The first moduIe is 
zero because 0 is divisible and R/rR is torsion of bounded order. Hence the multi- 
plication by r is an injective endomorphism of O ~ and 0 ~ is a torsion-free R-module. 

Since O~ is a cyclic E-module, it follows that 
EndE(O~ where U is the subring {fEEIf(q)E+(1-e)E)c 
tpE+(1 - e ) E }  of E (for instance see [10, page 24]). Similarly, since O~-E/E~o, the 
ring End E (0) is isomorphic to V/Eq~, where V={gEElEq~gcEq~}. But End s (0) 
is canonically isomorphic to R (Theorem 2.3), and thus V=R+Eq~. 

Now we prove that U=R+q)E+(1--e)E. The inclusion UDR+q~E+(1-e)E 
is trivial. Conversely, if fEU, that is, .fEE and f(~oE+(1-e)E)c~oE+(1-~)E, 
then efq~Ee(~oE+(1-e)E)=~oE. Therefore efq~=(pg for some gEE. In particular 
Ecpg=Eefq~cEq~, that is, gEV=R+Eq~. Hence g=r+hq~ for some rER and 
hEE, and efq~=q)g=q~(r+hqO=(r+tph)q~. Then (ef-r-q)h)q)=O, and since 1(~0)= 
E ( 1 - e ) = l ( e )  (w we have (ef-r-(ph)e=O, so that ef~=r~-~ohe=r-(l'e)r- 
(ph~ER+(I-6)E+~oE. Moreover fEU implies f(I--e)Eq~E+(I-e)E, so that 
f=fO - e ) +  (1 -e)f~+efeE(~oE+(1 - e ) E )  + (1 --e)E+(R+(1 -e)E+~oE)=R+(pE+ 
(1 -~)E .  This proves that U=R+q~E+(1--e)E. 

It follows that 

End s (0 ~ -~ U/(q)E+ (1 - e ) E )  = ( R +  (pE+ (1 --~) E)/(q~E+ (1 - ~)E) 

R/( Rn(q) E + (1-~) E)), 

i.e., every element of  End~ (~o) is induced by the multiplication by an element of  R. 
But ~o is a torsion-free R-module, so that End s (0o)_~ R. 
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4. The funetors Horn R (~, - )  and - | 

Consider the two functors HonaR(~0 R, --): Mod-R--*Mod-E and - |  
Mod-E ~ Mod-R. Then HomR (EOR, --) is the right adjoint of | for 

each MC Mod-E there is a canonical E-module homomorphism 

r/M: M ~ Horn R (0, M| 

defined by rtM(m)(x)=m| for every m~M and x~0 (the unit of the adjunc- 
tion), and for each A~Mod-R there is a canonical R-module homomorphism 
eA: HomR (O, A)| defined by ea( f |  for every fEHomR (9, A ) and 
xCO (the counit of the adjunction). 

Note that if ME is any E-module, the R-module M| is divisible (because 
0R is divisible and - |  E0R is right exact). Hence -- |  ~0 is a functor of Mod-E 
into the full subcategory ~R of Mod-R whose objects are the divisible R-modules. 

Theorem4.1. Let A R be a right R-module. Then ~a: Homa (O, A)| is 
an isomorphism if  and only i f  A is a divisible R-module. 

Proof. If ea is an isomorphism and Fr-*Homa (0, A) is a surjective E-homo- 
morphism of a free E-module FE onto Horn R (0, A), then F| a (0, A)| 
is a surjective R-homomorphism of the R-module F| onto Hom R (0, A)| 
Hence A, homomorphic image of the divisible R-module F| is divisible. 

Conversely, suppose Aa divisible and apply the functor HOmR (0, A)| to 
the exact sequence 0~E~0 ~E-~0-*0, where the first homomorphism is the inclusion 
and the second is defined by 1--*w (Theorem 2.4 and Lemma 3.1). The first homo- 
morphism in the obtained sequence 

Homa (9, A)| ~ HOmR (9, A) ~ Horn a (9, A)| --,- 0 

is induced by the multiplication, so that its image is {gcplg~Hom R (0, A)}, which is 
equal to B = { f l f E H o m  R (0, A),f(w)=O} by Theorem 2.4. 

The homomorphism Z: HomR (9, A)-,-A defined by z ( f )= f (w)  for every 
f~HomR (0, A) is surjective by proposition 2.1 because A is divisible, and has B 
as its kernel. Moreover the diagram 

0 ~ B -~ HomR (9, A)  -* HomR (9, A) | g0 ~ 0 

]l II ~ 8a 
0 ~ B --* HomR O, A) z , A ~ 0 

commutes, because z ( . f )=f (w)=sa( f |  ) for every fEHomR(O,A ). It follows 
that ea is an isomorphism. 

If ~R denotes the full subcategory of Mod-R whose objects are the divisible 
modules, the functor HomR (0, --): ~R~Mod-E is full and faithful by Theorem 4.1 
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[11, prop. 5.2], so that NR is equivalent to the full subcategory or e of Mod-E whose 
objects are the E-modules isomorphic to HomR (9, A) for some A(Mod-R. 

In the next sections we shall study and characterize the right E-modules iso- 
morphic to HomR (9, A) for some ACMod-R. In order to do this we shall often 
need the following result. 

Proposition 4.2. For every R-nwdule As, Tor~ (Homaz (9, A), ~9)= 0. 

Proof. By Corollary3.3 we must show that (0: ~0)e=0, where (0: q~)= 
{fEHomR (OR, A)lfq~=0}. Now r io=0 if and only if qg(0)ckerf. But ~o(O)=e(O). 
Hence if f6(0: tp), then e(0)ckerf ,  so that f s=0 .  This concludes the proof of 
the proposition. 

Theorem 4.3. Let J be the class of  all right E-modules isomoiThic to Horn R (9, A) 
for some right R-module A. Let O--*Lg--*ME~Ne--*O be a short exact sequence of  
right E-modules. 

(i) I f  L, N6 J ,  then MC J .  
(ii) I f  M, NEff, then LEJ.  

(iii) I f  L, ME,f  and Tor~ (N, 9)=0, then NEJ.  

Proof. In all of the three cases Tor~ (N, 0)=0 by proposition 4.2. Hence the 
functor - | applied to the sequence of the statement of the theorem gives the 
exact sequence O~L|174174 The functor HomE(g,-- )  applied to 
this sequence and the naturality of the transformation t/ give the commutative 
diagram 

0 ~ L  ~-M ~ N  , 0  

~L ~ ~M ~ ~N 
0 -+ HomR (0, L|  -~ HomR (0, M|  -~ HomR (0, N|  ~ 0. 

The second row in this diagram is exact because Ext 1 (9, L| by [4, 
Prop. VI.3.4]. Hence if two of the mappings r/z, r/M, r/N are isomorphisms, so is the 
third. It remains to prove that for a module PE the mapping rh,: P-~HomR (9, P| 
is an isomorphism if and only if PE.r But if PC J ,  then the functors --| and 
HomR (9, --) give an equivalence ~ - + J ,  so that r/e is an isomorphism. And if 
P~HomR (9, P| then P ~ H o m  R 0 ,  A ) ~ J  with A=P| 

The hypothesis Tor~ (N, c3)= 0 in part (iii) of Theorem 4.3 cannot be eliminated 
as the following example shows: set L = M = E  and let r be any non-zero and 
n0n-invertible element of R. Since E=HomR (g, ~) is a torsion-free R-module 
(because 0 is divisible), the multiplication by r gives an exact sequence O-~E-~E-~ 
E/Er-~O of E-modules. In this sequence the first two modules are in or and the 
third E-module E/Er is torsion of bounded order as an R-module. Bat E~Er,  
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otherwise r would be invertible in E, that is, 1 =fr for some fEE, contradiction, 
because the multiplication by r is not an injective mapping 0~O. Hence E/Err 
is not a torsion-free R-module, and in particular E/Er ~J  (every module in J is 
torsion-free as an R-module). 

5. The torsion theory (~, ~ )  and its cotorsion theory 

In this section S is an arbitrary associative ring with identity and I =  SO is a 
projective principal left ideal of S. 

If  Ms is any right S-module, the inclusion I ~ S  induces a homomorphism 
M| and we say that M is I-torsion-free if this mapping M Q s I o M  is 
injective, and say that M is I-divisible if it is surjective. Note that the definition of 
/-divisible module is obtained by dualizing the definition of/-torsion-free module. 
Moreover M/-divisible simply means Mqo=M. 

Denote the class of all/-torsion-free right S-modules by ~r. 

Lemma 5.1. I f  S is an algebra over a commutative ring R, C is an injective cogen- 
erator in Mod-R, (S/l)* is the right S-module Horn R (S/1, C), and M is a right 
S-module, then 

(i) M is I-torsion-free if and only if Tor s (M, S/I) = O, if and only if 

Ext~ (M, (S/I)*) = 0; 

(ii) M is I-divisible if and only if M| 

Proof. From the exact sequence O~I~S~S / I~O we obtain the exact sequence 
0 ~ T o r  s (M, S/1)~M|174 Hence M is /-torsion-free if and 
only if Tor s (M, S/I)=O, and M is/-divisible if and only if M| More- 
over HomR (TOrl s (M, S/I), C)~Ext~  (M, (S/I)*), so that Tor f (M, S/I)=O if and 
only if Ext~ (M, (S/I)*)= O. 

Proposition 5.2. The class o~ is the torsion-free class for a torsion theory (~r, ~:). 

Proof. We must show that .~ is closed under submodules, products and exten- 
sions 113, Prop. VI.2.2]. Since 1 is projective, the flat dimension of S/I is <=1, so 
that Tor s ( - ,  S/I)= 0. In particular the functor Tor s ( - ,  S/1) is left exact. Hence 
if Tor s (M, S/I)= 0, then Tor s (N, S/1)= 0 for every submodule N of M. There- 
fore ~" is closed under submodules. Moreover if N<=M, Tor s (N, S/1)=0 and 
Tor s (M/N, S/1)=0, then Tor s (M, S/1)=0, that is, ~ is closed under extensions. 
Finally, since I is a projective principal ideal, I is a finitely presented module, so 
that if {Mal2EA}co~ is a family of S-modules, 1]a(Ma| and (I[aM~)| 
are canonically isomorphic [13, Lemma 1.13.2]. Then the mapping ( / / a  Mx)| 
IIa (MAGI)~//a Ma is injective, and o~ is closed under products. 
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In the statement of Proposition 5.2 the torsion class ~" consists of all right 
S-modules T with Homs (T, M ) = 0  for all M E ~ .  Note that Ss is an /-torsion- 
free module. Moreover the torsion theory (~', .~') is not hereditary in general. 
Our torsion theory (Y', ~ )  generalizes the p-torsion theory of abelian groups, 
where p is a prime. In fact, it is easy to see that for S =  Z and l=pZ the/-torsion- 
free,/-divisible and/-torsion modules are exactly the p-torsion-free, p-divisible and 
p-torsion abelian groups respectively. 

Proposition 5.3. Let cp be a generator of the prqiective principal left ideal I of S, 
so that the left annihilator l(q~) of q~ is equal to S ( 1 - e )  for an idempotent eES. 
Then the torsion theory (~--, ~ )  is generated by the right S-module eS/cpS. 

Proof. In order to prove that the torsion theory (~-, ~ )  is generated by 
eS/~pS, we must prove that a right S-module F belongs to ~ if and only if 
HOrns (eS/q~S, F)=0 .  

Suppose F E ~  and fix an fEHoms(eS/cpS, F). Set x=f(e+q~S)EF. Then 
xe=f(8+~pS)e=f(e+~pS)=x and xcp=f(~+q~S)q~=f(~qg+~oS)=f(cp+qgS)=O. 
Consider the element x|174 Since xq~=0 and the mapping F|  is 
injective because FE~-, it follows that x| Apply the functor F |  to 
the exact sequence O~S(1-t)-~S~I~O, where the first homomorphism is the 
inclusion and the second homomorphism is defined by 1,--~o. Then the sequence 
O~F|174 is exact because I is projective, hence flat. 
The last sequence can be rewritten as 0 ~ F ( 1 - e ) ~ F ~ F |  where the first 
homomorphism is the inclusion and the second homomorphism maps x into x| 
Since x| it follows that xEF(1 -~), so that xe=0. In particular f (e+~0S)= 
x = x e = 0  and f :  eS/~pS~F is the zero homomorphism. This proves that 
Horns (eS/~oS, F)=0.  

Conversely, suppose that Horns (eSIqgS, F)=0.  We must prove that F| 
is injective. Since I=S~o, every element in F| can be written as x| xEF. 
Suppose x| is in the kernel of F| i.e., xq~=0. The mapping f :  eS/~oS~F 
defined by f(es+~oS)=xss is a well defined homomorphism, because if esE~pS, 
then xssEx~pS={O}. It follows t h a t f m u s t  be zero, hence x~=0. Then x| 
x|174 This proves that FE~-. 

Our concept of/-divisibility differs from the concept of divisibility in [13, w VI.9], 
because our/-torsion-free modules and/-divisible modules are both right S-modules, 

Define a right S-module M to be 1-reduced if it is cogenerated by (S/l)*, that 
is, if it is isomorphic to a submodule of a direct product of copies of (S/1)*. Here 
(S/I)*=Hom R (S/l, C), where R is a commutative ring such that S is an R-algebra 
and C is an injective cogenerator of Mod-R. Therefore Ms is/-reduced if and only 
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if for every xEM, x~0 ,  there exists 8x: M~(S/I)* such that 8x(x)r Since 
Homs (M, (S/I)*)~--nomR (M| C)~-HomR (M/MI, C), this happens if and 
only if for every xEM, x~O, xS is not contained in MI. Therefore a right S-module 
M is /-reduced if and only if MI does not contain nonzero right S-submodules 
of M. 

Note that a module Ns is/-divisible if and only if Horns (N, M ) = 0  for every 
/-reduced S-module Ms. In fact, Homs (N, M ) =  0 for every /-reduced S-module 
Ms if and only if Homs (N, (S/I)*):O. This happens if and only if N| 
that is, if and only if N is/-divisible (Lemma 5.1 (ii)). 

We conclude this section with a last definition. We say that a right S-module 
M is an l-cotorsion module if it is/-reduced and Ext~ (N, M ) =  0 for every/-divis- 
ible /-torsion-free right S-module N. /-cotorsion modules will be studied in w 7. 

6. Purity 

In this section S is an arbitrary (associative) ring with identity and l=Sq~ 
is a fixed projective principal left ideal of S. We say that a short exact sequence 
O-~M'-~M-~M"~O of right S-modules is/-pure if one of the equivalent conditions 
of next lemma holds. 

Lemma 6.1. The following properties of a short exact sequence O~M'-*M-* 
M"-*O of right S-modules are equivalent: 

(a) The short exact sequence 0-~Hom s (S/q~S, M ' ) ~ H o m s  (S/~pS, M)-* 
Horns (S/~pS, M")~0 is exact. 

(b) The short exact sequence O-*M'|174174 is 
exact. 

(c) M" q~=M" nMq~. 

Under these equivalent conditions we shall also say that M" is an/-pure sub- 
module of M, The proof of this lemma is analogous to the proof of [14, Prop. 2 and 3]. 
Our purity is a particular case of Warfield's Sa-purity [14] with 60= {S/q~S, S}. 
(See also [12].) It would also be possible to apply Gruson's and Jensen's idea devel- 
oped in [5] to the study of/-purity: if d~ = {S, S/Sq~} is viewed as a full subcategory 
of S-Mod and D(S) is the category of additive functors of ~V into the category of 
abelian groups ~'/~, then the functor M~-~M| of Mod-S into D(S) is the 
left adjoint to the functor F~-~F(S) of D(S) into Mod-S and is an equivalence 
of Mod-S onto a full subcategory of D(S);  in this equivalence short exact sequences 
of D(S) correspond to /-pure short exact sequences of Mod-S, and the injective 
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objects in D(S) correspond to the I-pure-injective S-modules. See also [2]. We shall 
not need this remark in the sequel, 

Note that if M is an/-torsion-free S-module, that is, MC ~ ,  then a submodule 
M '  of M is/-pure in M if and only if M/M' is/-torsion-free. This Can be seen 
from the exact sequence Tor s (M, S/Sq~) ~Tor  s (M/M', S/Sq~)-~M'@ S/Sq~--~M| 
S/S~o, where Tor s (M, S/Sq~)=O because M 6 ~  (Lemma 5.1), so that M ' |  
S/Sq~--,M| is injective if and only if Tor s (M/M', S/S~o)=O. 

The theory developed in [12] applies to our notion of/-purity. If g is the class 
of / -pure  short exact sequences of S-modules, then g is a flatly generated, proper 
class [12, w 3], closed under direct limits and projectively closed [12, Prop. 3.1 and 2.2]. 
For every right S-module M" there is an/-pure exact sequence O~M'~M~M"-~O 
with M/-pure-projective (i.e., M g-projective). Moreover a module M is /-pure- 
projective if and only if it is isomorphic to a direct summand of a direct sum of 
copies of Ss and S/q~S. These statements follow immediately from [12, Prop. 2.3]. 
I-pure-injective modules (that is, g-injectives) are characterized as the direct sum- 
mands of direct products of copies of Hom R (S, C) and Horn R (S/S~p, C); here 
R is any commutative ring such that S is an R-algebra, and C is an injective cogen- 
erator in Mod-R [12, Prop. 3.3]. Finally, every module has a suitably defined/-pure- 
injective envelope [12, Prop. 4.5], and I-pure-injective modules are directs summands 
of every module which contains them as/-pure submodules. 

7. The equivalences 

Now we apply the theory developed in w167 5 and 6 to the study of the functors 
HomR (EOR, --): Mod-R~Mod-E and - |  Mod-E~Mod-R introduced in w 4. 

As in the first four sections R is an integral domain, OR is the R-module of w 2, 
E is its endomorphism ring End (0R), ~0 is an endomorphism of OR whose kernel 
is wR and image is a direct summand of OR. The left ideal I =  Ecp of E is a projective 
principal ideal by Theorem 2.4, so that the theory developed in w 5 can be applied. 
Let C be the minimal injective cogenerator in Mod-R and 0*=Hom~ (0, C). There 
is a torsion theory (oj-, ~ )  for Mod-E where the/-torsion-free class ~" consists of 
the right E-modules M with Tore (M, 0)= 0, or, equivalently, with Ext~ (M, 0")= 0 
(Lemmas 3.1 and 5.1). The class of/-divisible E-modules consists of the right E-mod- 
ules M with M| The torsion theory (oj-, ~-) is generated by the right 
E-module 0~ (0, R) (Proposition 5.3 and Theorem 3.4) and EE is a torsion- 
free E-module in the torsion theory (~-, ,~). 
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The /-reduced E-modules are the right E-modules cogenerated by 0"; and a 
module M E is/-reduced if and only if MI does not contain nonzero right E-sub- 
modules of M. 

Theorem 7.1. Let R be an integral domain and A a right R-module. Then 
Homa (0, A) is an l-cotorsion E-module. 

Proof. Since C is an injective cogenerator in Mod-R, A<=C x for some set X, 
so that HomR (~, A)<=HomR (O, cX)~(O*)x; hence Homg (O, A) is cogenerated 
by O*, that is, it is/-reduced. 

Now let Ng be an I-divisible/-torsion-free E-module and let D be an injective 
R-module containing A. Then the functor Hom R (0, - )  applied to the exact sequence 
O--AoD--~D/A-*O gives an exact sequence 0-*HomR (0, A)-~HomR (O, D ) ~ P ~ O  
for a suitable E-submodule P of Hom R (/), D/A). Apply the functor HomB (N, - )  to 
this sequence and obtain the exact sequence Hom e (N, P)--,Ext~ (N, HomR (O, A)) 
Ext~ (N, Homg (0, D)). But 

Home (N, P) _<- Homg (N, Hom~ (0, D/A)) ~ HomR (N| D/A) = 0 

because NNE0=0 since N is I-divisible. Moreover TorE(N, 0)=0 (because N is 
/-torsion-free) and D is injective, and thus 

Ext]~ (N, Hom R (0, D)) _-__ Hom• (Torf (N, 0), 19)= O. 

Therefore Ext~ (N, Homg (0, A))=0 and HomR (0, ,4) is I-cotorsion. 

Note that E/q)E~((1-e)E(D~E)/q)E~(1--~)E| ~ (Theo- 
rem 3.4), so that E/qoE is projective relatively to an exact sequence of right E-mod- 
ules if and only if 0 ~ is projective relatively to that exact sequence. It follows that 
an exact sequence O ~ M ' ~ M ~ M " - * O  of right E-modules is /-pure, that is, 
M'I=M'c~MI,  if and only if O~M'Q~O~M| is exact, if and 
only if 0~Homg (0 ~ M')~HomE (0 ~ M)~Homg (0 ~ M")~O is exact. Moreover, 
if C is the minimal injective cogenerator in Mod-R and 0* is the right E-module 
HomR (0, C) then O~M'-~M~M"-*O is /-pure if and only if 0-*Homg (M ~, 0")~ 
Hom E (M, 0*)--Horn E (M', 0")-~0 is exact. 

By the general theory developed in w 6, the /-pure-projective E-modules are 
exactly the direct summands of direct sums of copies of E E and 0 ~ and the I-pure- 
injective E-modules are exactly the direct summands of direct products of copies of 
Hom R (E, C) and Horn R (0, C)=0*. 

Theorem 7.2. Let M be a right E-module and /et r/M: M~HomR (0, M| 
be the canonical homomorphism. Then: 

(a) ker ~u is the largest E-submodule of  M contained in ML 
(b) The image of  tim is an 1-pure submodule of  HomR (0, M| 
(c) coker t/M is an 1-torsion-free 1-divisible E-module. 
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Proof. (a)Since O~E/I, the R-module M |  is isomorphic to M/MI, so 
that x~M is in the kernel of r/~t if and only if xeEMl for every eEE, that is, 
if and only if xEcM1. In particular ker qM is an E-submodule of M contained 
in MI. And if N is any E-submodule of M contained in M1, then xEcMI  for 
every xEN, that is, xEkerqM for every xEN. This proves that N~kerq~t.  

(b) By Theorem 2.4 Homg (0, M| {f~HomR (0, M| There- 
fore ~M(M)c~HomR (0, M| I= {q~(x)lx~ M, q~t(x)(w)=O}= {qu(x)lx~ M, x| 
is the zero element of M| Since the homomorphism O~E/L w ~ l + I  is an 
isomorphism of E-modules (Lemma 3.1), it follows that M|174 and 
x| if and only ifx~M1. Hence r/u(M)c~Hom~ (0, M| 
qM(MI)=qM(M)I. 

(c) Suppose that ~/~ is injective (by Part (a) this happens if and only if M is 
/-reduced). Under this hypothesis consider the exact sequence 

0 ~ M -~ HomR (0, M| ~ coker r/M -~ O. 

This sequence is/-pure by Part (b) and Hom R (0, M| is/-torsion-free by Prop- 
osition 4.2. Therefore coker qu is/-torsion-free. 

Now apply the functor - | to the above/-pure exact sequence and obtain 
the exact sequence 0-~M| (0, M|174 rlM| The homo- 
morphism r/M| M |  (~, M|174 is equal to e ~  a (where e is the 
counit of the adjunction and eM~ 0 is an isomorphism by Theorem 4.1) because if 
xEM and yEO then rlM|174174 where f~EHomR (0, M| and fx(z)=- 
x| for every z(O. Therefore eM,O(qM|174174174 
i.e., qM|174 ) and r/M|174 Hence t/~t| is an isomorphism, 
and the exactness of the above sequence gives (coker q~t)| i.e., coker t/~ is 
/-divisible. 

This proves Part (c) under the additional hypothesis that r/M is injective. In the 
general case the naturality of r/applied to the canonical projection r~: M~M/ker rh~ 
gives the equality r/Ul~ ~ �9 z~=Hom (0, ~|  r/u. But ~|  M| tlu)| 
is an isomorphism because 

(M/ker r/~)| ~ (M/ker ~M)| "~ (M/ker qM)/(M/ker q~t)I 

-~ M/(kerqM+M1) ~- M/MI ~ M| ~ M| 

Therefore Horn (0, re| is an isomorphism and 

coker q ~ c o k e r  (Hom (0, z~| �9 r/~t) =coker (rtM/k~n �9 n)=coker ~Mlkertl" 

Now M/ker q is/-reduced by Part (a), so that coker qu~coker  ~lM/k,,, is/-torsion- 
free and/-divisible by the previous case. 
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As a corollary to Theorem 7.2 it must be noted that every/-reduced E-module 
is/-torsion-free. This holds because if M s is/-reduced, then ~/M is injective (Theo- 
rem 7.2(a)) and HOmR (0, M| is /-torsion-free (Proposition 4.2), so that M is 
/-torsion-free too. Nevertheless this fact does not hold for an arbitrary ring S (take 
S = Z ,  1=2Z and M any abelian group with 2M=0, so that M is/-reduced and 
is not/-torsion-free). 

Theorem 7.3. Let M be a right E-module. Then t/M: M~HomR (0, M| is 
an isomorphism i f  and only i f  M is 1-cotorsion. 

Proof. If M~HomR (0, M| M is bcotorsion by Theorem 7.1. Conversely, 
if M is /-cotorsion, the homomorphism r/M is injective by Theorem 7.2(a) and the 
exact sequence 0~M-*HomR (0, M| r/M--0 splits because 

Ext~ (coker r/M, M) = 0 

(coker r/M is /-torsion-free and /-divisible by Theorem 7.2(c)). Hence coker r/M is 
isomorphic to a submodule of HomR (0, M@~).  But coker r/M is/-divisible, and 
HOmR (0, M| is/-reduced. Therefore coker ~/M-----0 and t/M is an isomorphism. 

Theorem 7.3 has the following corollary: if M is any right E-module, every 
E-homomorphism from M into an/-cotorsion module N E can be uniquely factored 
over r/M: M~HomR (0, M| Hence HomR (0, M| is a sort of "/-cotorsion 
completion" of M. The factorization of f :  M ~ N  is f=(r /~l .  HomR (0,f| 
(this equality is given by the naturality of the transformation r/). The uniqueness 
of the factorization is proved as follows: if f= f~ .  ~/M =f2" r/M, then (f~--f2)" r/M =0, 
SO that ft--f2: HomR (0, M | g0)-~ N induces a mapping coker r/M-* N. But coker r/M 
is/-divisible (Theorem 7.2(c)) and N is/-reduced, so that this mapping is zero. Hence 
f t - f ~ = 0 .  This proves the corollary. 

It must be remarked that our "/-cotorsion completion" HomR (0, --| is 
substantially different from the cotorsion hull in a hereditary torsion theory devel- 
oped in [1], since our torsion theory (~d-', ~ )  is not hereditary. 

Theorem 7.4. I f  R is an integral domain and E=End  (OR), the functors 
HomR (0,--) :  ~R--C~E and - - |  c ~ E ~  R give an equivalence between the full 
subcategory ~R of divisible R-modules and the full subcategory ~#~ of Mod-E whose 
objects are the /-cotorsion E-modules. In this equivalence injective R-modules cor- 
respond to 1-reduced 1-pure-injective E-modules. 

Proof. By Theorems 4.1 and 7.3 Horn R (0, - )  and - | give an equivalence 
between the categories ~R and c~ E. Let us prove that if BR is an injective right R-mod- 
ule then HOmR (0, B) is an /-pure-injective E-module. If BR is injective, then B 
is isomorphic to a direct summand of C x, where C is a minimal injective cogenerator 
in Mod-R. Then HomR (0, B) is isomorphic to a direct summand in Hom~ (0, C x) 
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HomR (0, c)X=c3 *x. By the remark immediately above Theorem 7.2, Hom e (0, B) 
is an 1-pure-injective E-module. 

Conversely, if M E is an /-reduced, I-pure-injective E-module, then t/M: M ~  
HomR (0, M| is an / -pure  monomorphism (Theorem 7.2). Let D be an injective 
R-module containing M| so that Hom R (~), M| (~, D). The sub- 
module Hom R (0, M| is /-pure in HomR (0, D), because HomR (tg, D)I= 
{fE Homg (0, D)] f(w)-- 0} by Theorem 2.4, so that Homg (~, D)Ic~Hom R (0, M| = 
{fEHom g (~, M| R (0, M| by Theorem 2.4 again. Therefore 
M is isomorphic to an / -pure  submodule of Hom R (0, D). Since M is I-pure-injec- 
tive, M is isomorphic to a direct summand of Horn g (~, D). Then M| is iso- 
morphic to a direct summand of Home (0, D)| This proves that M| is 
an injective R-module. 

Thus we have seen that the class we had denoted by ~" in Theorem 4.3, i.e., the 
image of the functor Horn R (0, - ) :  Mod-R~Mod-E,  is exactly the class egg of  
I-cotorsion E-modules. There is a further characterization of these modules: they 
are exactly the right E-modules of tg*-dominant dimension _->2, that is, the right 
E-modules M for which there exists an exact sequence 0 ~ M  ~ 0 * x ~ 0  *r for suitable 
direct powers 0,x and 0 , r  of the E-module 0". In order to see this, note that if M 
is an l-cotorsion E-module, then there is an exact sequence of R-modules 0-~M| 
C X ~ c  r because C is an injective cogenerator in Mod-R, so that by applying the 
left exact functor Homg (~, - )  to this sequence one obtains an exact sequence 
0 ~ M ~ H o m  R (~, M| *r. Conversely, if M has 0*-dominant dimension 
_~2, from the exact sequence 0~M-~O*x---0 *r we obtain that M is cogenerated 
by 0* (i.e., it is/-reduced) and that there is an exact sequence O~M~O*X~N~O 
with N<_-3 *r. If  F is any I-divisible 1-torsion-free E-module then the sequence 
Hom E (F, N)~Ext~ (F, M)~Ex t~  (F, 0 *x) is exact, Hom E (F, N ) = 0  (because F 
is /-divisible and N is/-reduced), and Ext~ (F, 0*x)=0 (because O*X--~HomR (0, C x) 
is in ~', i.e., it is I-cotorsion). Therefore Ext~ (F, M ) = 0  and M is l-cotorsion. 
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