Divisible modules over integral domains

Alberto Facchini

1. Introduction

The aim of this paper is to describe an equivalence between the full subcategory of Mod-R whose objects are all the divisible modules over an integral domain Rand a suitable full subcategory of modules over the endomorphism ring E of a fixed divisible module ∂ . This equivalence corresponds to the similar equivalences for torsion divisible abelian groups due to Harrison [6] and for torsion h-divisible modules over an integral domain due to Matlis [7], [8] and [9].

Let R denote a commutative integral domain with 1 (not a field) and let ∂_R denote the divisible right R-module defined by L. Fuchs in [3] (see § 2 for the exact definition of ∂_R). The module ∂_R has interesting properties that are shown in [3], in [4, § VI.3] and in §§ 2 and 3 of this paper. For instance, if E is the endomorphism ring of ∂_R and ∂ is viewed as a left *E*-module $_E\partial$, then End $(_E\partial) \cong R$ and $_E\partial \cong E/I$ for a suitable projective principal left ideal I of E. Moreover, ∂ has flat and projective dimensions equal to one both as a right R-module and a left E-module, and this implies that the class \mathscr{F} of all right E-modules M such that $\operatorname{Tor}_{1}^{E}(M, \partial) = 0$ is the torsion-free class for a (non-hereditary) torsion theory $(\mathcal{T}, \mathcal{F})$ in Mod-E. This torsion theory is generated by the cyclic right E-module $\operatorname{Ext}_{R}^{1}(_{E}\partial_{R}, R)$, and a right E-module M_E is a torsion-free module in this torsion theory (we say that M_E is *I-torsion-free*) if and only if the canonical homomorphism $M \otimes_E I \rightarrow M \otimes_E E \cong M$ induced by the embedding $I \rightarrow E$ is a monomorphism. Dually, we say that a module M_E is an *I-divisible* module if the canonical homomorphism $M \otimes_E I \rightarrow M$ is an epimorphism, and that a right E-module N_E is *I-reduced* if it is cogenerated by the right E-module $\partial^* = \operatorname{Hom}_R(\partial, C)$, where C is the minimal injective cogenerator in Mod-R. It is easy to show that a module M_E is I-divisible if and only if Hom (M, N) = 0 for every *I*-reduced *E*-module N_E .

Now define a right *E*-module *M* to be an *I*-cotorsion module if it is *I*-reduced and $\operatorname{Ext}_{E}^{1}(N, M) = 0$ for every *I*-divisible *I*-torsion-free right *E*-module *N*. The main result of this paper is the proof of the following theorem: the functors $\operatorname{Hom}_R(\partial, -)$: Mod- $R \to \operatorname{Mod}-E$ and $-\otimes_E \partial$: Mod- $E \to \operatorname{Mod}-R$ induce an equivalence between the full subcategory of Mod-R whose objects are the divisible R-modules and the full subcategory of Mod-E whose objects are the *I*-cotorsion E-modules. This generalizes the corresponding results of Harrison for torsion divisible abelian groups [6] and of Matlis for torsion h-divisible R-modules ([7] and [9]). In our equivalence the injective R-modules correspond to the *I*-reduced *I*-pure-injective E-modules. Here *I*-pure-injective means injective relatively to the *I*-pure exact sequences, that is, the sequences $0 \to M' \to M \to M'' \to 0$ of right E-modules for which the sequence $0 \to M' \otimes_E \partial \to M \otimes_E \partial \to M'' \otimes_E \partial \to 0$ is exact. (This extends the corresponding result due to Warfield for Matlis' equivalence between torsion h-divisible modules and torsion-free cotorsion modules, see [4, Th. V.1.8].) Our *I*-purity is a purity in the sense of Warfield [14].

Finally, we prove that *I*-cotorsion *E*-modules are exactly the right *E*-modules of ∂^* -dominant dimension ≥ 2 , that is, the modules M_E for which there exists an exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$ with ∂^{*X} and ∂^{*Y} suitable direct products of copies of ∂^* .

For technical reasons (proof of Lemma 2.2) the way we define the *R*-module ∂ is a little different from the way Fuchs defines it in [3] and [4]. The difference is that our generators are the *k*-tuples $(r_1, ..., r_k)$ of non-zero elements r_i of *R*, and Fuchs' generators are the *k*-tuples $(r_1, ..., r_k)$ of non-zero and *non-invertible* elements r_i of *R*. Fuchs' results in [3] and [4] hold with this small modification as well.

2. The *R*-module ∂_R and its endomorphism ring *E*

In this paper R will be an integral domain and we will assume that it is not a field. We will denote the field of fractions of R by Q.

Let ∂ be the right R-module generated by the set \mathscr{G} of all k-tuples $(r_1, ..., r_k)$ of non-zero elements r_i of R, for $k \ge 0$, with defining relations

$$(r_1, ..., r_k)r_k = (r_1, ..., r_{k-1}), k \ge 1.$$

The right R-module ∂ is obviously divisible, that is, $\partial r = \partial$ for every $r \in R$, $r \neq 0$. The length of $(r_1, ..., r_k)$ is defined to be k, and the unique generator $w = \emptyset$ in \mathscr{G} of length 0 generates a submodule wR of ∂ isomorphic to R [4, § VI.3]. Note that for every $x \in \partial$ there exists $r \in R$, $r \neq 0$, such that $xr \in wR$ (possibly xr = 0). The fundamental property of ∂ is the following one:

The fundamental property of ∂ is the following one:

Proposition 2.1 [4, Lemma VI.3.2]. Let D be a divisible right R-module and $a \in D$. Then there exists a homomorphism $f: \partial \rightarrow D$ with f(w) = a. Let ∂_n be the submodule of ∂ generated by the elements of \mathscr{G} of length $\leq n$, so that in particular $\partial_0 = wR$.

Lemma 2.2. Fix a nonnegative integer n and an element a of R, $a \neq 0$ and $a \neq 1$. Then the correspondence $\mathcal{G} \rightarrow \partial$ defined by

$$(r_1, ..., r_k) \in \mathscr{G} \mapsto \begin{cases} 0 & \text{if } k \leq n \\ (r_1, ..., r_n, 1, r_{n+1}, ..., r_k) - (r_1, ..., r_n, a, r_{n+1}, ..., r_k) a & \text{if } k > n \end{cases}$$

extends to an endomorphism of ∂ whose kernel is ∂_n and whose image is a direct summand of ∂ .

Proof. It is easy to show that the defining relations of ∂ are preserved by the correspondence; for instance, when k=n+1, the relation $(r_1, ..., r_k)r_k=(r_1, ..., r_{k-1})$ is preserved because $[(r_1, ..., r_n, 1, r_{n+1}) - (r_1, ..., r_n, a, r_{n+1})a]r_k=(r_1, ..., r_n, 1) - (r_1, ..., r_n, a)a=(r_1, ..., r_n) - (r_1, ..., r_n)=0$. Therefore the correspondence extends to an endomorphism φ of ∂ . Note that $\partial_n \subset \ker \varphi$ because $\varphi(r_1, ..., r_n)=0$ for every $(r_1, ..., r_n)$. In particular $\varphi = \varphi' \circ \pi$ where $\pi: \partial \to \partial/\partial_n$ is the canonical projection and $\varphi': \partial/\partial_n \to \partial$ is a homomorphism.

Now consider the correspondence $\mathscr{G} \rightarrow \partial/\partial_n$ defined by

$$(r_1, \ldots, r_k) \in \mathscr{G} \mapsto \begin{cases} \partial_n & \text{if } k \leq n+1 \\ \partial_n & \text{if } k > n+1 & \text{and } r_{n+1} \neq 1 \\ (r_1, \ldots, r_n, \widehat{r_{n+1}}, r_{n+2}, \ldots, r_k) + \partial_n & \text{if } k > n+1 & \text{and } r_{n+1} = 1, \end{cases}$$

where $(r_1, ..., r_n, r_{n+1}, r_{n+2}, ..., r_k)$ denotes the (k-1)-tuple in which r_{n+1} has been deleted. The defining relations of ∂ are preserved by this correspondence as well; for instance, when k=n+2 and $r_{n+1}=1$, the relation $(r_1, ..., r_k)r_k=(r_1, ..., r_{k-1})$ is preserved because $[(r_1, ..., r_n, r_{n+1}, r_k) + \partial_n]r_k = (r_1, ..., r_n) + \partial_n = \partial_n$. Therefore this correspondence also extends to a homomorphism $\psi: \partial \to \partial/\partial_n$.

The composed homomorphism $\psi\varphi: \partial \to \partial/\partial_n$ is defined by $\psi\varphi(r_1, ..., r_k) = \partial_n$ if $k \le n$ and $\psi\varphi(r_1, ..., r_k) = \psi[(r_1, ..., r_n, 1, r_{n+1}, ..., r_k) - (r_1, ..., r_n, a, r_{n+1}, ..., r_k)a] = (r_1, ..., r_n, r_{n+1}, ..., r_k) + \partial_n$ if k > n, i.e., $\psi\varphi: \partial \to \partial/\partial_n$ is the canonical projection π . Therefore $\pi = \psi\varphi = \psi\varphi'\pi$, hence $\psi\varphi'$ is the identity of ∂/∂_n , so that φ' is injective and $\partial = \varphi'(\partial/\partial_n) \oplus \ker \psi$. Since φ' is injective, ker $\varphi = \ker(\varphi'\pi) = \ker \pi = \partial_n$. Moreover $\varphi(\partial) = \varphi'(\partial/\partial_n)$ is a direct summand of ∂ .

Fix the following notations:

- E is the endomorphism ring End (∂_R) of the R-module ∂_R ;

— φ is a fixed *R*-endomorphism of ∂ (i.e., $\varphi \in E$) with ker $\varphi = wR$ and $\varphi(\partial)$ a direct summand of ∂ (it exists by Lemma 2.2);

Alberto Facchini

- ε is a fixed idempotent *R*-endomorphism of ∂ (i.e., $\varepsilon \in E$ and $\varepsilon^2 = \varepsilon$) with $\varepsilon(\partial) = \varphi(\partial)$;

- I is the left ideal $\{f \in E | f(w) = 0\}$ of E;

- J is the two sided ideal $\{f \in E | f(\partial) \subset t(\partial)\}$ of E, where $t(\partial)$ denotes the torsion submodule of ∂ .

Since R is a commutative ring and ∂_R is a faithful module, the ring R is a subring of the center Z(E) of E. In the next theorem we prove that R is equal to Z(E).

Theorem 2.3. The integral domain R is the center of $E = \text{End}(\partial_R)$.

Proof. It is sufficient to show that if f belongs to the center of E then there exists $r \in R$ such that f(x) = xr for every $x \in \partial$. If f is in the center of E and φ denotes the endomorphism defined before the statement of this theorem, then $\varphi f(w) = f\varphi(w) = f(0) = 0$, so that $f(w) \in \ker \varphi = wR$; hence there exists $r \in R$ with f(w) = wr. If $x \in \partial$, then there is a homomorphism $g: \partial \to \partial$ with g(w) = x by Proposition 2.1, and f(x) = f(g(w)) = g(f(w)) = g(wr) = g(w)r = xr. This concludes the proof of the theorem.

If $\alpha: \partial \rightarrow Q$ is the *R*-module homomorphism defined by $\alpha(r_1, ..., r_k) = (r_1 ... r_k)^{-1}$ for $k \ge 1$ and $\alpha(w) = 1$, then ker α is the torsion submodule $t(\partial)$ of ∂ . This is easily seen, because $t(\partial) \subset \ker \alpha$ since Q is torsion-free, and if $x \in \ker \alpha$ and $r \in R$, $r \ne 0$, is such that $xr \in wR$, xr = ws say, then $0 = \alpha(xr) = \alpha(ws) = \alpha(w)s = s$; therefore xr = 0 and $x \in t(\partial)$. In particular $\partial/t(\partial) \cong Q$.

If we apply the functor $\operatorname{Hom}_{R}(\partial, -)$ to the exact sequence $0 \to t(\partial) \to \partial \xrightarrow{\alpha} Q \to 0$, we obtain the exact sequence $0 \to J \to E \to \operatorname{Hom}_{R}(\partial, Q) \to \operatorname{Ext}_{R}^{1}(\partial, t(\partial))$. But $\operatorname{Hom}_{R}(\partial, Q) \cong \operatorname{Hom}_{R}(\partial/t(\partial), Q) \cong \operatorname{Hom}_{R}(Q, Q) \cong Q$ and $\operatorname{Ext}_{R}^{1}(\partial, t(\partial)) = 0$ because $t(\partial)$ is a divisible *R*-module [4, Prop. VI.3.4]. Hence $E/J \cong Q$ and *J* is an ideal of *E* maximal among the two sided ideals of *E*.

Note that the left annihilator of φ , $l(\varphi) = \{g \in E | g\varphi = 0\}$, is $E(1-\varepsilon)$. In fact, $(1-\varepsilon)\varphi=0$ because $\varepsilon(\partial)=\varphi(\partial)$, so that $E(1-\varepsilon) \subset l(\varphi)$. And if $g \in l(\varphi)$, then $g\varphi=0$, i.e., ker $g \supset \varphi(\partial)=\varepsilon(\partial)$; it follows that $g\varepsilon=0$ and $g=g-g\varepsilon=g(1-\varepsilon)\in E(1-\varepsilon)$. The right annihilator of φ , $r(\varphi)=\{g\in E | \varphi g=0\}$, is 0, because if $\varphi g=0$, then $g(\partial)\subset \ker \varphi=wR$. Since $g(\partial)$ is a divisible module, it must be the zero submodule of wR, i.e., g=0.

Theorem 2.4. If B_R is any right R-module and $f: \partial \rightarrow B$ is a homomorphism such that f(w)=0, then there exists $g: \partial \rightarrow B$ such that $f=g\varphi$. In particular, $I=\{f\in E \mid f(w)=0\}$ is the left principal ideal $E\varphi$ generated by φ and is a projective ideal of E isomorphic to Es.

Proof. Since ker $\varphi = wR$ and $\varphi(\partial)$ is a direct summand of ∂ , there exists $\psi: \partial \rightarrow \partial/wR$ such that $\psi\varphi$ is the canonical projection $\pi: \partial \rightarrow \partial/wR$ (this had been

also shown in the proof of Lemma 2.2). Since $f: \partial \to B$ annihilates w, f can be written as $f=f'\pi$ for a suitable $f': \partial/wR \to B$ induced by f. If $g=f'\psi: \partial \to B$, then $f=f'\pi=f'\psi\varphi=g\varphi$. This proves the first assertion.

In particular, $I = \{f \in E | f(w) = 0\} \subset \{g\varphi | g \in \operatorname{Hom}_{\mathbb{R}}(\partial, \partial)\} = E\varphi$, so that $I = E\varphi$, the other inclusion being trivial.

Finally, since $l(\varphi) = E(1-\varepsilon) = l(\varepsilon)$, the ideal $I = E\varphi \cong E\varepsilon$ is projective.

3. The *E*-modules $_{E}\partial$ and ∂_{E}°

Since $E = \text{End}(\partial_R)$, the module ∂ can be viewed as a left *E*-module, and $R = \text{End}(E_{\partial})$ by Theorem 2.3. In this section we shall study the *E*-module E_{∂} .

Lemma 3.1. The left E-module $_{E}\partial$ is isomorphic to E/I.

Proof. Consider the mapping $E \rightarrow \partial$ defined by $f \mapsto f(w)$ for every $f \in E$. Obviously it is a left *E*-module homomorphism. It is surjective by proposition 2.1 and its kernel is *I*.

Fuchs [4, Lemma VI.3.1] has proved that the projective dimension of ∂_R , proj.dim ∂_R , is equal to one (this can also be shown by proving that the relations $(r_1, ..., r_k)r_k - (r_1, ..., r_{k-1})$ generate a free submodule H of the module F freely generated by \mathscr{G}); since ∂_R is not flat (every flat R-module is torsion-free, and ∂_R is not torsion-free) and proj.dim $\partial_R \ge \text{flat.dim } \partial_R$, where flat.dim ∂_R is the flat dimension of ∂_R , it follows that flat.dim $\partial_R = \text{proj.dim } \partial_R = 1$. This holds for the module $_E\partial$ too.

Corollary 3.2. flat. dim $_{E}\partial = \text{proj. dim }_{E}\partial = 1$.

Proof. By Lemma 3.1 and Theorem 2.4 proj.dim $_{E}\partial \leq 1$. If proj.dim $_{E}\partial < 1$, then $_{E}\partial$ is projective, so that $I = E\varphi$ is a direct summand of E, i.e., $E\varphi = E\beta$ for an idempotent $\beta \in E$. Then $wR = \cap \{\ker f | f \in E\varphi\} = \cap \{\ker f | f \in E\beta\} = \ker \beta$ is a direct summand of the divisible module ∂_R , contradiction, because wR is not divisible. This proves that proj.dim $_{E}\partial = 1$. Moreover flat.dim $_{E}\partial \leq \operatorname{proj.dim}_{E}\partial = 1$, and $_{E}\partial$ is not flat, because $_{E}\partial$ is finitely presented by Lemma 3.1 and Theorem 2.4 and every finitely presented flat module is projective [13, Cor. I.11.5]. Therefore flat.dim $_{E}\partial = 1$.

By Corollary 3.2 $\operatorname{Tor}_{n}^{E}(-, {}_{E}\partial) = \operatorname{Ext}_{E}^{n}({}_{E}\partial, -) = 0$ for $n \ge 2$. In the sequel we need the exact formulas for the functors $\operatorname{Tor}_{1}^{E}(-, {}_{E}\partial)$ and $\operatorname{Ext}_{E}^{1}({}_{E}\partial, -)$ that are calculated in the next corollary.

Corollary 3.3. If M_E is any right E-module, then $\operatorname{Tor}_1^E(M, \partial) \cong (0:_M \varphi)\varepsilon$, where $(0:_M \varphi) = \{x \in M | x \varphi = 0\}.$

If $_{E}N$ is any left E-module, then $\operatorname{Ext}_{E}^{1}(\partial, N) \cong \varepsilon N/\varphi N$.

Proof. Consider the exact sequence $0 \rightarrow I \rightarrow E \rightarrow \partial \rightarrow 0$. By applying the functor $M \otimes_E -$, we obtain that the sequence $0 \rightarrow \operatorname{Tor}_1^E(M, \partial) \rightarrow M \otimes I \rightarrow M \otimes E$ is exact. Since $I = E\varphi \cong E\varepsilon$ and $M \otimes_E E \cong M$, it follows that $\operatorname{Tor}_1^E(M, \partial)$ is isomorphic to the kernel of the abelian group homomorphism $M\varepsilon \rightarrow M$ defined by $x\varepsilon \rightarrow x\varphi$ for every $x \in M$. It follows that $\operatorname{Tor}_1^E(M, \partial) \cong (0:_M \varphi)\varepsilon$. Similarly for $\operatorname{Ext}_1^E(\partial, N)$.

Note that since proj.dim $\partial_R = 1$, the torsion submodule $t(\partial_R)$ of ∂_R is isomorphic to a submodule of $K^{(X)}$, where K = Q/R and $K^{(X)}$ is a direct sum of copies of K. Namely, if M_R is any module with proj.dim $M_R = 1$, fix a free resolution $0 \rightarrow R^{(X)} \rightarrow R^{(Y)} \rightarrow M \rightarrow 0$ of M (this is possible by [10, page 90, Ex. 3]) and apply the functor $- \bigotimes_R K$ to this sequence. Then the sequence $\operatorname{Tor}_R^1(R^{(Y)}, K) \rightarrow \operatorname{Tor}_R^1(M, K) \rightarrow R^{(X)} \otimes K \rightarrow R^{(Y)} \otimes K$ can be rewritten as $0 \rightarrow t(M) \rightarrow K^{(X)} \rightarrow K^{(Y)}$ by [8, page 10].

Since proj.dim $\partial_R = 1$, it follows that $\operatorname{Ext}_R^n(\partial, -) = 0$ for $n \ge 2$. Consider $\operatorname{Ext}_R^1(\partial, R)$. Since $\operatorname{Ext}_R^1(-, R)$ is a contravariant functor, every *R*-homomorphism $f: \partial \to \partial$ induces an *R*-homomorphism $\operatorname{Ext}_R^1(f, R)$: $\operatorname{Ext}_R^1(\partial, R) \to \operatorname{Ext}_R^1(\partial, R)$, so that $\operatorname{Ext}_R^1(\partial, R)$ is a right *E*-module.

Theorem 3.4. The right E-module $\operatorname{Ext}^{1}_{R}(\partial, R)$ is isomorphic to $\varepsilon E/\varphi E$.

Proof. Let C be the image of the endomorphism $1-\varepsilon$ of ∂ , so that $\partial = \varepsilon(\partial) \oplus (1-\varepsilon)(\partial) = \varphi(\partial) \oplus C$. Consider the exact sequence of R-modules

$$S: 0 \to R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \to 0,$$

where $\alpha(r) = (wr, 0)$ for every $r \in R$ and $\beta(x, y) = \varphi(x) + y$ for every $(x, y) \in \partial \oplus C$. Let \overline{S} be the image of the extension S into $\operatorname{Ext}_{R}^{1}(\partial, R)$. In order to prove the theorem it is sufficient to show that $\Phi: \varepsilon E \to \operatorname{Ext}_{R}^{1}(\partial, R)$ defined by $\Phi(\varepsilon f) = \overline{S}f$ for every $f \in E$ is a well defined surjective E-homomorphism with kernel φE .

If $f \in E$ and $\varepsilon f = 0$, then $f(\partial) \subset \ker \varepsilon = C$, so that it is possible to define a homomorphism $g: R \oplus \partial \to \partial \oplus C$ by setting g(r, x) = (wr, f(x)) for every $(r, x) \in R \oplus \partial$. If Z denotes the trivial extension, the diagram

commutes. This shows that $\overline{S}f$ is zero in $\operatorname{Ext}^{1}_{R}(\partial, R)$ and proves that Φ is a well defined homomorphism of right *E*-modules.

Now we shall show that Φ is surjective. Let

$$T: 0 \to R \xrightarrow{\gamma} A \xrightarrow{\delta} \partial \to 0$$

be any extension and \overline{T} its image into $\operatorname{Ext}_{R}^{1}(\partial, R)$. Since $\operatorname{Ext}_{R}^{1}(\partial, \partial) = 0$ [4, Prop. VI.3.4], the *R*-homomorphism γ^{*} : Hom_R $(A, \partial) \to \operatorname{Hom}_{R}(R, \partial)$ is surjective. Hence

there exists $\chi \in \text{Hom}_R(A, \partial)$ such that $(\gamma^*(\chi))(1) = w$, that is, $\chi(\gamma(1)) = w$. Define $h: A \to \partial \oplus C$ by $h(a) = (\chi(a), 0)$ for every $a \in A$. Then $h(\gamma(1)) = (\chi(\gamma(1)), 0) = (w, 0) = \alpha(1)$, so that $h\gamma = \alpha$ and the left-hand square in the diagram

$$T: 0 \to R \xrightarrow{\gamma} A \xrightarrow{\delta} \partial \to 0$$
$$\parallel \qquad \qquad \downarrow h \qquad \downarrow f$$
$$S: 0 \to R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \to 0$$

commutes; it follows that there exists an $f \in E$ making the right-hand square commute. Then $\overline{S}f = \overline{T}$, and Φ is surjective.

In order to prove that ker $\Phi = \varphi E$, fix an $f \in E$, so that $ef \in eE$. Then $ef \in ker \Phi$ if and only if $\bar{S}f = \bar{Z}$, i.e., if and only if there exists a homomorphism $g: R \oplus \partial \rightarrow \partial \oplus C$ making the diagram

commute. This means that g(r, 0) = (wr, 0) and $\beta g(r, x) = f(x)$ for every $r \in R$ and $x \in \partial$. Since the homomorphisms $g: R \oplus \partial \to \partial \oplus C$ such that g(r, 0) = (wr, 0) for every $r \in R$ are exactly of the form g(r, x) = (wr + h(x), l(x)) for suitable $h: \partial \to \partial$ and $l: \partial \to C$, it follows that $ef \in \ker \Phi$ if and only if there exists $h: \partial \to \partial$ and $l: \partial \to C$ such that $f(x) = \beta g(r, x) = \beta (wr + h(x), l(x)) = \varphi (wr + h(x)) + l(x) = (\varphi h + l)(x)$, i.e., $f - \varphi h = l$. But $C = (1 - \varepsilon)(\partial) = \ker \varepsilon$, so that $ef \in \ker \Phi$ if and only if $\varepsilon (f - \varphi h) = 0$ for some $h: \partial \to \partial$, i.e., $\varepsilon f = \varepsilon \varphi h = \varphi h \in \varphi E$.

We shall often need the right *E*-module $\operatorname{Ext}_{R}^{1}(\partial, R)$ in the sequel, and we shall denote it by ∂° . Hence $\partial^{\circ} = \operatorname{Ext}_{R}^{1}(\partial, R) \cong \varepsilon E/\varphi E$ as a right *E*-module. There are other "presentations" of the module ∂° . For instance the right *E*-modules ∂° and $\operatorname{Ext}_{E}^{1}(\partial, E)$ are isomorphic right *E*-modules by Corollary 3.3. Moreover the functor $\operatorname{Hom}_{R}({}_{E}\partial_{R}, -)$ applied to the exact sequence of *R*-modules $0 \to wR \to \partial \to \partial/wR \to 0$ gives the exact sequence of right *E*-modules $0 \to E \to \operatorname{Hom}_{R}(\partial, \partial/wR) \to \operatorname{Ext}_{R}^{1}(\partial, wR) \to$ $\operatorname{Ext}_{R}^{1}(\partial, \partial)$. The last module is zero by [4, Prop. VI.3.4], so that the right *E*-modules $\partial^{\circ} \cong \operatorname{Ext}_{R}^{1}(\partial, wR)$ and $\operatorname{Hom}_{R}(\partial, \partial/wR)/E$ are isomorphic.

Furthermore, the functor $\operatorname{Hom}_R({}_{E}\partial_R, -)$ applied to the exact sequence of *R*-modules $0 \to R \to Q \to K \to 0$ gives the exact sequence of right *E*-modules $0 \to \operatorname{Hom}_R(\partial, Q) \to \operatorname{Hom}_R(\partial, K) \to \operatorname{Ext}_R^1(\partial, R) \to \operatorname{Ext}_R^1(\partial, Q)$. The last module is zero by [4, Prop. VI.3.4], and the first module is $\operatorname{Hom}_R(\partial, Q) \cong \operatorname{Hom}_R(\partial/t(\partial), Q) \cong Q$ by the remarks after proposition 2.3. Therefore $\partial^{\circ} \cong \operatorname{Hom}_R(\partial, K)/Q$ as *E*-modules.

If we are only interested in the structure of ∂° as an *R*-module, there is one more "presentation" of ∂° : the functor $\operatorname{Hom}_{R}(-, R)$ applied to the exact sequence $0 \rightarrow H \rightarrow F \rightarrow \partial \rightarrow 0$ (where *F* is the *R*-module freely generated by \mathscr{G} and *H* is the free submodule of *F* generated by the relations) gives $0 \rightarrow \operatorname{Hom}_{R}(F, R) \rightarrow \operatorname{Hom}_{R}(H, R) \rightarrow$ $\operatorname{Ext}_{R}^{1}(\partial, R) \rightarrow 0$, which is a presentation of ∂° as a quotient of two *R*-modules isomorphic to direct products of copies of *R*.

Corollary 3.5. flat.dim $\partial_E^\circ = \text{proj.dim } \partial_E^\circ = 1$.

Proof. Since $r(\varphi)=0$, it follows that $\varphi E \cong E$ is projective, so that $\partial^{\circ} \cong \varepsilon E/\varphi E$ has projective dimension $\cong 1$. Hence $1 \cong \text{proj.dim} \partial^{\circ} \cong \text{flat.dim} \partial^{\circ}$. It remains to prove that $\varepsilon E/\varphi E$ is not flat. But $\varepsilon + \varphi E \in \varepsilon E/\varphi E$ is annihilated by φ (because $\varepsilon \varphi = \varphi$) so that it belongs to $(0:\varphi)\varepsilon \cong \text{Tor}_{1}^{E}(\partial^{\circ}, \partial)$ (Corollary 3.3). Thus $\text{Tor}_{1}^{E}(\partial^{\circ}, \partial) \neq 0$ and ∂° is not flat.

Theorem 3.6. End $(\partial_F^\circ) \cong R$.

Proof. First of all observe that ∂° is a torsion-free *R*-module, because if $r \in R$ and $r \neq 0$, the functor $\operatorname{Hom}_{R}(\partial, -)$ applied to the exact sequence $0 \to R^{-r} \to R \to R/rR \to 0$ gives the exact sequence $\operatorname{Hom}_{R}(\partial, R/rR) \to \partial^{\circ} \to \partial^{\circ}$. The first module is zero because ∂ is divisible and R/rR is torsion of bounded order. Hence the multiplication by *r* is an injective endomorphism of ∂° , and ∂° is a torsion-free *R*-module.

Since $\partial^{\circ} \cong \varepsilon E/\varphi E \cong E/(\varphi E + (1-\varepsilon)E)$ is a cyclic *E*-module, it follows that $\operatorname{End}_{E}(\partial^{\circ}) \cong U/(\varphi E + (1-\varepsilon)E)$, where *U* is the subring $\{f \in E \mid f(\varphi E + (1-\varepsilon)E) \subset \varphi E + (1-\varepsilon)E\}$ of *E* (for instance see [10, page 24]). Similarly, since $\partial \cong E/E\varphi$, the ring $\operatorname{End}_{E}(\partial)$ is isomorphic to $V/E\varphi$, where $V = \{g \in E \mid E\varphi g \subset E\varphi\}$. But $\operatorname{End}_{E}(\partial)$ is canonically isomorphic to *R* (Theorem 2.3), and thus $V = R + E\varphi$.

Now we prove that $U=R+\varphi E+(1-\varepsilon)E$. The inclusion $U\supset R+\varphi E+(1-\varepsilon)E$ is trivial. Conversely, if $f\in U$, that is, $f\in E$ and $f(\varphi E+(1-\varepsilon)E)\subset \varphi E+(1-\varepsilon)E$, then $\varepsilon f\varphi \in \varepsilon (\varphi E+(1-\varepsilon)E) = \varphi E$. Therefore $\varepsilon f\varphi = \varphi g$ for some $g\in E$. In particular $E\varphi g=E\varepsilon f\varphi \subset E\varphi$, that is, $g\in V=R+E\varphi$. Hence $g=r+h\varphi$ for some $r\in R$ and $h\in E$, and $\varepsilon f\varphi = \varphi g = \varphi (r+h\varphi) = (r+\varphi h)\varphi$. Then $(\varepsilon f-r-\varphi h)\varphi = 0$, and since $l(\varphi) =$ $E(1-\varepsilon)=l(\varepsilon)$ (§ 2), we have $(\varepsilon f-r-\varphi h)\varepsilon = 0$, so that $\varepsilon f\varepsilon = r\varepsilon - \varphi h\varepsilon = r-(1-\varepsilon)r - \varphi h\varepsilon \in R+(1-\varepsilon)E+\varphi E$. Moreover $f\in U$ implies $f(1-\varepsilon)\in \varphi E+(1-\varepsilon)E$, so that $f=f(1-\varepsilon)+(1-\varepsilon)f\varepsilon + \varepsilon f\varepsilon \in (\varphi E+(1-\varepsilon)E)+(1-\varepsilon)E+(R+(1-\varepsilon)E+\varphi E)=R+\varphi E+(1-\varepsilon)E$.

It follows that

$$\operatorname{End}_{E}(\partial^{\circ}) \cong U/(\varphi E + (1-\varepsilon)E) = (R + \varphi E + (1-\varepsilon)E)/(\varphi E + (1-\varepsilon)E)$$
$$\cong R/(R \cap (\varphi E + (1-\varepsilon)E)),$$

i.e., every element of $\operatorname{End}_{E}(\partial^{\circ})$ is induced by the multiplication by an element of R. But ∂° is a torsion-free R-module, so that $\operatorname{End}_{E}(\partial^{\circ}) \cong R$. Divisible modules over integral domains

4. The functors $\operatorname{Hom}_{R}(\partial, -)$ and $-\otimes_{E}\partial$

Consider the two functors $\operatorname{Hom}_R({}_{E}\partial_R, -)$: Mod- $R \to \operatorname{Mod}-E$ and $-\otimes_E \partial_R$: Mod- $E \to \operatorname{Mod}-R$. Then $\operatorname{Hom}_R({}_{E}\partial_R, -)$ is the right adjoint of $\otimes_E \partial_R$, for each $M \in \operatorname{Mod}-E$ there is a canonical E-module homomorphism

 $\eta_M: M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$

defined by $\eta_M(m)(x) = m \otimes x$ for every $m \in M$ and $x \in \partial$ (the unit of the adjunction), and for each $A \in \text{Mod-}R$ there is a canonical *R*-module homomorphism ε_A : Hom_R $(\partial, A) \otimes_E \partial \to A$ defined by $\varepsilon_A(f \otimes x) = f(x)$ for every $f \in \text{Hom}_R(\partial, A)$ and $x \in \partial$ (the counit of the adjunction).

Note that if M_E is any *E*-module, the *R*-module $M \otimes_E \partial$ is divisible (because ∂_R is divisible and $- \otimes_E \partial_R$ is right exact). Hence $- \otimes_E \partial$ is a functor of Mod-*E* into the full subcategory \mathcal{D}_R of Mod-*R* whose objects are the divisible *R*-modules.

Theorem 4.1. Let A_R be a right *R*-module. Then ε_A : Hom_{*R*} $(\partial, A) \otimes_E \partial \rightarrow A$ is an isomorphism if and only if *A* is a divisible *R*-module.

Proof. If ε_A is an isomorphism and $F_E \to \operatorname{Hom}_R(\partial, A)$ is a surjective *E*-homomorphism of a free *E*-module F_E onto $\operatorname{Hom}_R(\partial, A)$, then $F \otimes_E \partial \to \operatorname{Hom}_R(\partial, A) \otimes \partial$ is a surjective *R*-homomorphism of the *R*-module $F \otimes_E \partial$ onto $\operatorname{Hom}_R(\partial, A) \otimes \partial \cong A$. Hence *A*, homomorphic image of the divisible *R*-module $F \otimes_E \partial$, is divisible.

Conversely, suppose A_R divisible and apply the functor $\operatorname{Hom}_R(\partial, A) \otimes_E -$ to the exact sequence $0 \rightarrow E \varphi \rightarrow E \rightarrow \partial \rightarrow 0$, where the first homomorphism is the inclusion and the second is defined by $1 \rightarrow w$ (Theorem 2.4 and Lemma 3.1). The first homomorphism in the obtained sequence

$$\operatorname{Hom}_{R}(\partial, A) \otimes_{E} E\varphi \to \operatorname{Hom}_{R}(\partial, A) \to \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \to 0$$

is induced by the multiplication, so that its image is $\{g\phi|g\in \operatorname{Hom}_R(\partial, A)\}$, which is equal to $B = \{f|f\in \operatorname{Hom}_R(\partial, A), f(w)=0\}$ by Theorem 2.4.

The homomorphism χ : Hom_R $(\partial, A) \rightarrow A$ defined by $\chi(f) = f(w)$ for every $f \in \text{Hom}_R(\partial, A)$ is surjective by proposition 2.1 because A is divisible, and has B as its kernel. Moreover the diagram

commutes, because $\chi(f)=f(w)=\varepsilon_A(f\otimes w)$ for every $f\in \operatorname{Hom}_R(\partial, A)$. It follows that ε_A is an isomorphism.

If \mathscr{D}_R denotes the full subcategory of Mod-R whose objects are the divisible modules, the functor $\operatorname{Hom}_R(\partial, -): \mathscr{D}_R \to \operatorname{Mod}-E$ is full and faithful by Theorem 4.1

[11, prop. 5.2], so that \mathscr{D}_R is equivalent to the full subcategory \mathscr{I}_E of Mod-*E* whose objects are the *E*-modules isomorphic to Hom_R (∂, A) for some $A \in \text{Mod-}R$.

In the next sections we shall study and characterize the right *E*-modules isomorphic to $\operatorname{Hom}_R(\partial, A)$ for some $A \in \operatorname{Mod} R$. In order to do this we shall often need the following result.

Proposition 4.2. For every *R*-module A_R , $\operatorname{Tor}_1^E(\operatorname{Hom}_R(\partial, A), {}_E\partial)=0$.

Proof. By Corollary 3.3 we must show that $(0: \varphi) \varepsilon = 0$, where $(0: \varphi) = \{f \in \operatorname{Hom}_R(\partial_R, A) | f\varphi = 0\}$. Now $f\varphi = 0$ if and only if $\varphi(\partial) \subset \ker f$. But $\varphi(\partial) = \varepsilon(\partial)$. Hence if $f \in (0: \varphi)$, then $\varepsilon(\partial) \subset \ker f$, so that $f\varepsilon = 0$. This concludes the proof of the proposition.

Theorem 4.3. Let \mathscr{I} be the class of all right E-modules isomorphic to $\operatorname{Hom}_{\mathbb{R}}(\partial, A)$ for some right R-module A. Let $0 \to L_E \to M_E \to N_E \to 0$ be a short exact sequence of right E-modules.

- (i) If $L, N \in \mathcal{I}$, then $M \in \mathcal{I}$.
- (ii) If $M, N \in \mathcal{I}$, then $L \in \mathcal{I}$.
- (iii) If $L, M \in \mathcal{I}$ and $\operatorname{Tor}_{1}^{E}(N, \partial) = 0$, then $N \in \mathcal{I}$.

Proof. In all of the three cases $\operatorname{Tor}_{1}^{E}(N,\partial)=0$ by proposition 4.2. Hence the functor $-\bigotimes_{E}\partial$ applied to the sequence of the statement of the theorem gives the exact sequence $0 \rightarrow L \otimes \partial \rightarrow M \otimes \partial \rightarrow N \otimes \partial \rightarrow 0$. The functor $\operatorname{Hom}_{E}(\partial, -)$ applied to this sequence and the naturality of the transformation η give the commutative diagram

$$0 \xrightarrow{\qquad } L \xrightarrow{\qquad } M \xrightarrow{\qquad } N \xrightarrow{\qquad } 0$$

$$\downarrow \eta_L \qquad \downarrow \eta_M \qquad \downarrow \eta_N$$

$$0 \rightarrow \operatorname{Hom}_R(\partial, L \otimes_E \partial) \rightarrow \operatorname{Hom}_R(\partial, M \otimes_E \partial) \rightarrow \operatorname{Hom}_R(\partial, N \otimes_E \partial) \rightarrow 0.$$

The second row in this diagram is exact because $\operatorname{Ext}_{R}^{1}(\partial, L \otimes_{E} \partial) = 0$ by [4, Prop. VI.3.4]. Hence if two of the mappings η_{L} , η_{M} , η_{N} are isomorphisms, so is the third. It remains to prove that for a module P_{E} the mapping $\eta_{P}: P \to \operatorname{Hom}_{R}(\partial, P \otimes \partial)$ is an isomorphism if and only if $P \in \mathscr{I}$. But if $P \in \mathscr{I}$, then the functors $- \otimes_{E} \partial$ and $\operatorname{Hom}_{R}(\partial, -)$ give an equivalence $\mathcal{D} \to \mathscr{I}$, so that η_{P} is an isomorphism. And if $P \cong \operatorname{Hom}_{R}(\partial, P \otimes \partial)$, then $P \cong \operatorname{Hom}_{R}(\partial, A) \in \mathscr{I}$ with $A = P \otimes \partial$.

The hypothesis $\operatorname{Tor}_{1}^{E}(N, \partial) = 0$ in part (iii) of Theorem 4.3 cannot be eliminated as the following example shows: set L=M=E and let r be any non-zero and non-invertible element of R. Since $E=\operatorname{Hom}_{R}(\partial, \partial)$ is a torsion-free R-module (because ∂ is divisible), the multiplication by r gives an exact sequence $0 \rightarrow E \rightarrow E \rightarrow$ $E/Er \rightarrow 0$ of E-modules. In this sequence the first two modules are in \mathscr{I} and the third E-module E/Er is torsion of bounded order as an R-module. But $E \neq Er$,

76

otherwise r would be invertible in E, that is, 1 = fr for some $f \in E$, contradiction, because the multiplication by r is not an injective mapping $\partial \rightarrow \partial$. Hence $E/Er \neq 0$ is not a torsion-free R-module, and in particular $E/Er \notin \mathscr{I}$ (every module in \mathscr{I} is torsion-free as an R-module).

5. The torsion theory $(\mathcal{T}, \mathcal{F})$ and its cotorsion theory

In this section S is an arbitrary associative ring with identity and $I=S\varphi$ is a projective principal *left* ideal of S.

If M_S is any right S-module, the inclusion $I \rightarrow S$ induces a homomorphism $M \otimes_S I \rightarrow M$, and we say that M is *I*-torsion-free if this mapping $M \otimes_S I \rightarrow M$ is injective, and say that M is *I*-divisible if it is surjective. Note that the definition of *I*-divisible module is obtained by dualizing the definition of *I*-torsion-free module. Moreover M *I*-divisible simply means $M\varphi = M$.

Denote the class of all *I*-torsion-free right S-modules by \mathcal{F} .

Lemma 5.1. If S is an algebra over a commutative ring R, C is an injective cogenerator in Mod-R, $(S/I)^*$ is the right S-module Hom_R (S/I, C), and M is a right S-module, then

(i) M is I-torsion-free if and only if $\operatorname{Tor}_1^S(M, S/I)=0$, if and only if

$$\operatorname{Ext}_{S}^{1}(M, (S/I)^{*}) = 0;$$

(ii) M is I-divisible if and only if $M \otimes_{S} (S/I) = 0$.

Proof. From the exact sequence $0 \rightarrow I \rightarrow S \rightarrow S/I \rightarrow 0$ we obtain the exact sequence $0 \rightarrow \operatorname{Tor}_{1}^{S}(M, S/I) \rightarrow M \otimes_{S} I \rightarrow M \rightarrow M \otimes_{S} (S/I) \rightarrow 0$. Hence M is *I*-torsion-free if and only if $\operatorname{Tor}_{1}^{S}(M, S/I)=0$, and M is *I*-divisible if and only if $M \otimes_{S} (S/I)=0$. Moreover $\operatorname{Hom}_{R}(\operatorname{Tor}_{1}^{S}(M, S/I), C) \cong \operatorname{Ext}_{S}^{1}(M, (S/I)^{*})$, so that $\operatorname{Tor}_{1}^{S}(M, S/I)=0$ if and only if $\operatorname{Ext}_{S}^{1}(M, (S/I)^{*})=0$.

Proposition 5.2. The class \mathcal{F} is the torsion-free class for a torsion theory $(\mathcal{T}, \mathcal{F})$.

Proof. We must show that \mathscr{F} is closed under submodules, products and extensions [13, Prop. VI.2.2]. Since *I* is projective, the flat dimension of S/I is ≤ 1 , so that $\operatorname{Tor}_2^S(-, S/I)=0$. In particular the functor $\operatorname{Tor}_1^S(-, S/I)$ is left exact. Hence if $\operatorname{Tor}_1^S(M, S/I)=0$, then $\operatorname{Tor}_1^S(N, S/I)=0$ for every submodule *N* of *M*. Therefore \mathscr{F} is closed under submodules. Moreover if $N \leq M$, $\operatorname{Tor}_1^S(N, S/I)=0$ and $\operatorname{Tor}_1^S(M, S/I)=0$, then $\operatorname{Tor}_1^S(M, S/I)=0$, that is, \mathscr{F} is closed under extensions. Finally, since *I* is a projective principal ideal, *I* is a finitely presented module, so that if $\{M_\lambda|\lambda \in \Lambda\} \subset \mathscr{F}$ is a family of S-modules, $\prod_\lambda (M_\lambda \otimes I)$ and $(\prod_\lambda M_\lambda) \otimes I \approx \prod_\lambda (M_\lambda \otimes I) \to \prod_\lambda M_\lambda$ is injective, and \mathscr{F} is closed under products.

In the statement of Proposition 5.2 the torsion class \mathscr{T} consists of all right S-modules T with Hom_S (T, M)=0 for all $M \in \mathscr{F}$. Note that S_S is an I-torsionfree module. Moreover the torsion theory $(\mathscr{T}, \mathscr{F})$ is not hereditary in general. Our torsion theory $(\mathscr{T}, \mathscr{F})$ generalizes the p-torsion theory of abelian groups, where p is a prime. In fact, it is easy to see that for $S=\mathbb{Z}$ and $I=p\mathbb{Z}$ the I-torsionfree, I-divisible and I-torsion modules are exactly the p-torsion-free, p-divisible and p-torsion abelian groups respectively.

Proposition 5.3. Let φ be a generator of the projective principal left ideal I of S, so that the left annihilator $l(\varphi)$ of φ is equal to $S(1-\varepsilon)$ for an idempotent $\varepsilon \in S$. Then the torsion theory $(\mathcal{T}, \mathcal{F})$ is generated by the right S-module $\varepsilon S/\varphi S$.

Proof. In order to prove that the torsion theory $(\mathcal{T}, \mathcal{F})$ is generated by $\varepsilon S/\varphi S$, we must prove that a right S-module F belongs to \mathcal{F} if and only if $\operatorname{Hom}_{S}(\varepsilon S/\varphi S, F)=0$.

Suppose $F \in \mathscr{F}$ and fix an $f \in \operatorname{Hom}_{S} (\varepsilon S/\varphi S, F)$. Set $x = f(\varepsilon + \varphi S) \in F$. Then $x\varepsilon = f(\varepsilon + \varphi S)\varepsilon = f(\varepsilon + \varphi S) = x$ and $x\varphi = f(\varepsilon + \varphi S)\varphi = f(\varepsilon\varphi + \varphi S) = f(\varphi + \varphi S) = 0$. Consider the element $x \otimes \varphi \in F \otimes I$. Since $x\varphi = 0$ and the mapping $F \otimes I \to F$ is injective because $F \in \mathscr{F}$, it follows that $x \otimes \varphi = 0$. Apply the functor $F \otimes -$ to the exact sequence $0 \to S(1-\varepsilon) \to S \to I \to 0$, where the first homomorphism is the inclusion and the second homomorphism is defined by $1 \to \varphi$. Then the sequence $0 \to F \otimes_S S(1-\varepsilon) \to F \otimes_S S \to F \otimes_S I \to 0$ is exact because I is projective, hence flat. The last sequence can be rewritten as $0 \to F(1-\varepsilon) \to F \to F \otimes_S I \to 0$ where the first homomorphism is the inclusion and the second homomorphism maps x into $x \otimes \varphi$. Since $x \otimes \varphi = 0$, it follows that $x \in F(1-\varepsilon)$, so that $x\varepsilon = 0$. In particular $f(\varepsilon + \varphi S) =$ $x = x\varepsilon = 0$ and $f: \varepsilon S/\varphi S \to F$ is the zero homomorphism. This proves that Hom_S (\varepsilon S/\varphi S, F) = 0.

Conversely, suppose that $\operatorname{Hom}_{S}(\varepsilon S/\varphi S, F)=0$. We must prove that $F\otimes I \to F$ is injective. Since $I=S\varphi$, every element in $F\otimes I$ can be written as $x\otimes\varphi$, $x\in F$. Suppose $x\otimes\varphi$ is in the kernel of $F\otimes I \to F$, i.e., $x\varphi=0$. The mapping $f: \varepsilon S/\varphi S \to F$ defined by $f(\varepsilon s+\varphi S)=x\varepsilon s$ is a well defined homomorphism, because if $\varepsilon s\in\varphi S$, then $x\varepsilon s\in x\varphi S=\{0\}$. It follows that f must be zero, hence $x\varepsilon=0$. Then $x\otimes\varphi=x\otimes\varphi=0$. This proves that $F\in\mathscr{F}$.

Our concept of *I*-divisibility differs from the concept of divisibility in [13, § VI.9], because our *I*-torsion-free modules and *I*-divisible modules are both right *S*-modules.

Define a right S-module M to be *I-reduced* if it is cogenerated by $(S/I)^*$, that is, if it is isomorphic to a submodule of a direct product of copies of $(S/I)^*$. Here $(S/I)^* = \text{Hom}_R(S/I, C)$, where R is a commutative ring such that S is an R-algebra and C is an injective cogenerator of Mod-R. Therefore M_S is *I*-reduced if and only if for every $x \in M$, $x \neq 0$, there exists $\vartheta_x \colon M \to (S/I)^*$ such that $\vartheta_x(x) \neq 0$. Since $\operatorname{Hom}_S(M, (S/I)^*) \cong \operatorname{Hom}_R(M \otimes_S(S/I), C) \cong \operatorname{Hom}_R(M/MI, C)$, this happens if and only if for every $x \in M$, $x \neq 0$, xS is not contained in MI. Therefore a right S-module M is *I*-reduced if and only if MI does not contain nonzero right S-submodules of M.

Note that a module N_s is *I*-divisible if and only if $\operatorname{Hom}_S(N, M) = 0$ for every *I*-reduced *S*-module M_s . In fact, $\operatorname{Hom}_S(N, M) = 0$ for every *I*-reduced *S*-module M_s if and only if $\operatorname{Hom}_S(N, (S/I)^*) = 0$. This happens if and only if $N \otimes (S/I) = 0$, that is, if and only if N is *I*-divisible (Lemma 5.1(ii)).

We conclude this section with a last definition. We say that a right S-module M is an *I-cotorsion* module if it is *I*-reduced and $\text{Ext}_{S}^{1}(N, M)=0$ for every *I*-divisible *I*-torsion-free right S-module N. *I*-cotorsion modules will be studied in § 7.

6. Purity

In this section S is an arbitrary (associative) ring with identity and $I=S\varphi$ is a fixed projective principal left ideal of S. We say that a short exact sequence $0 \rightarrow M' \rightarrow M'' \rightarrow 0$ of right S-modules is *I-pure* if one of the equivalent conditions of next lemma holds.

Lemma 6.1. The following properties of a short exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of right S-modules are equivalent:

(a) The short exact sequence $0 \rightarrow \operatorname{Hom}_{S}(S/\varphi S, M') \rightarrow \operatorname{Hom}_{S}(S/\varphi S, M) \rightarrow \operatorname{Hom}_{S}(S/\varphi S, M'') \rightarrow 0$ is exact.

(b) The short exact sequence $0 \rightarrow M' \otimes S/S \phi \rightarrow M \otimes S/S \phi \rightarrow M'' \otimes S/S \phi \rightarrow 0$ is exact.

(c) $M' \varphi = M' \cap M \varphi$.

Under these equivalent conditions we shall also say that M' is an *I-pure submodule* of M. The proof of this lemma is analogous to the proof of [14, Prop. 2 and 3]. Our purity is a particular case of Warfield's \mathscr{S} -purity [14] with $\mathscr{S} = \{S/\varphi S, S\}$. (See also [12].) It would also be possible to apply Gruson's and Jensen's idea developed in [5] to the study of *I*-purity: if $\mathscr{O} = \{S, S/S\varphi\}$ is viewed as a full subcategory of S-Mod and D(S) is the category of additive functors of \mathscr{O} into the category of abelian groups $\mathscr{A}\overline{\mathscr{O}}$, then the functor $M \mapsto M \otimes_S -$ of Mod-S into D(S) is the left adjoint to the functor $F \mapsto F(S)$ of D(S) into Mod-S and is an equivalence of Mod-S onto a full subcategory of D(S); in this equivalence short exact sequences of D(S) correspond to *I*-pure short exact sequences of Mod-S, and the injective objects in D(S) correspond to the *I*-pure-injective *S*-modules. See also [2]. We shall not need this remark in the sequel.

Note that if M is an *I*-torsion-free *S*-module, that is, $M \in \mathscr{F}$, then a submodule M' of M is *I*-pure in M if and only if M/M' is *I*-torsion-free. This can be seen from the exact sequence $\operatorname{Tor}_{1}^{S}(M, S/S\varphi) \to \operatorname{Tor}_{1}^{S}(M/M', S/S\varphi) \to M' \otimes S/S\varphi \to M \otimes S/S\varphi$, where $\operatorname{Tor}_{1}^{S}(M, S/S\varphi)=0$ because $M \in \mathscr{F}$ (Lemma 5.1), so that $M' \otimes S/S\varphi \to M \otimes S/S\varphi$ is injective if and only if $\operatorname{Tor}_{1}^{S}(M/M', S/S\varphi)=0$.

The theory developed in [12] applies to our notion of *I*-purity. If \mathscr{E} is the class of *I*-pure short exact sequences of *S*-modules, then \mathscr{E} is a *flatly generated, proper* class [12, § 3], closed under direct limits and *projectively closed* [12, Prop. 3.1 and 2.2]. For every right *S*-module *M*" there is an *I*-pure exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ with *M I*-pure-projective (i.e., $M \mathscr{E}$ -projective). Moreover a module *M* is *I*-pureprojective if and only if it is isomorphic to a direct summand of a direct sum of copies of S_s and $S/\varphi S$. These statements follow immediately from [12, Prop. 2.3]. *I*-pure-injective modules (that is, \mathscr{E} -injectives) are characterized as the direct summands of direct products of copies of $\operatorname{Hom}_R(S, C)$ and $\operatorname{Hom}_R(S/S\varphi, C)$; here *R* is any commutative ring such that *S* is an *R*-algebra, and *C* is an injective cogenerator in Mod-*R* [12, Prop. 3.3]. Finally, every module has a suitably defined *I*-pureinjective envelope [12, Prop. 4.5], and *I*-pure-injective modules are directs summands of every module which contains them as *I*-pure submodules.

7. The equivalences

Now we apply the theory developed in §§ 5 and 6 to the study of the functors $\operatorname{Hom}_{R}(_{E}\partial_{R}, -)$: Mod- $R \rightarrow \operatorname{Mod}-E$ and $-\otimes_{E}\partial_{R}$: Mod- $E \rightarrow \operatorname{Mod}-R$ introduced in § 4.

As in the first four sections R is an integral domain, ∂_R is the R-module of § 2, E is its endomorphism ring End (∂_R) , φ is an endomorphism of ∂_R whose kernel is wR and image is a direct summand of ∂_R . The left ideal $I = E\varphi$ of E is a projective principal ideal by Theorem 2.4, so that the theory developed in § 5 can be applied. Let C be the minimal injective cogenerator in Mod-R and $\partial^* = \text{Hom}_R(\partial, C)$. There is a torsion theory $(\mathcal{T}, \mathcal{F})$ for Mod-E where the I-torsion-free class \mathcal{F} consists of the right E-modules M with $\text{Tor}_1^E(M, \partial) = 0$, or, equivalently, with $\text{Ext}_E^1(M, \partial^*) = 0$ (Lemmas 3.1 and 5.1). The class of I-divisible E-modules consists of the right E-modules M with $M \otimes_E \partial = 0$. The torsion theory $(\mathcal{T}, \mathcal{F})$ is generated by the right E-module $\partial^\circ = \text{Ext}_R^1(\partial, R)$ (Proposition 5.3 and Theorem 3.4) and E_E is a torsionfree E-module in the torsion theory $(\mathcal{T}, \mathcal{F})$. The *I*-reduced *E*-modules are the right *E*-modules cogenerated by ∂^* ; and a module M_E is *I*-reduced if and only if *MI* does not contain nonzero right *E*-sub-modules of *M*.

Theorem 7.1. Let R be an integral domain and A a right R-module. Then $\operatorname{Hom}_{R}(\partial, A)$ is an I-cotorsion E-module.

Proof. Since C is an injective cogenerator in Mod-R, $A \leq C^X$ for some set X, so that $\operatorname{Hom}_R(\partial, A) \leq \operatorname{Hom}_R(\partial, C^X) \simeq (\partial^*)^X$; hence $\operatorname{Hom}_R(\partial, A)$ is cogenerated by ∂^* , that is, it is *I*-reduced.

Now let N_E be an *I*-divisible *I*-torsion-free *E*-module and let *D* be an injective *R*-module containing *A*. Then the functor $\operatorname{Hom}_R(\partial, -)$ applied to the exact sequence $0 \rightarrow A \rightarrow D \rightarrow D/A \rightarrow 0$ gives an exact sequence $0 \rightarrow \operatorname{Hom}_R(\partial, A) \rightarrow \operatorname{Hom}_R(\partial, D) \rightarrow P \rightarrow 0$ for a suitable *E*-submodule *P* of $\operatorname{Hom}_R(\partial, D/A)$. Apply the functor $\operatorname{Hom}_E(N, -)$ to this sequence and obtain the exact sequence $\operatorname{Hom}_E(N, P) \rightarrow \operatorname{Ext}_E^1(N, \operatorname{Hom}_R(\partial, D)) \rightarrow \operatorname{Ext}_E^1(N, \operatorname{Hom}_R(\partial, D))$. But

 $\operatorname{Hom}_{E}(N, P) \leq \operatorname{Hom}_{E}(N, \operatorname{Hom}_{R}(\partial, D/A)) \simeq \operatorname{Hom}_{R}(N \otimes_{E} \partial, D/A) = 0$

because $N \otimes_E \partial = 0$ since N is I-divisible. Moreover $\operatorname{Tor}_1^E(N, \partial) = 0$ (because N is I-torsion-free) and D is injective, and thus

 $\operatorname{Ext}^{1}_{E}(N, \operatorname{Hom}_{R}(\partial, D)) \cong \operatorname{Hom}_{R}(\operatorname{Tor}^{E}_{1}(N, \partial), D) = 0.$

Therefore $\operatorname{Ext}_{E}^{1}(N, \operatorname{Hom}_{R}(\partial, A))=0$ and $\operatorname{Hom}_{R}(\partial, A)$ is *I*-cotorsion.

Note that $E/\varphi E \cong ((1-\varepsilon)E \oplus \varepsilon E)/\varphi E \cong (1-\varepsilon)E \oplus (\varepsilon E/\varphi E) \cong (1-\varepsilon)E \oplus \partial^{\circ}$ (Theorem 3.4), so that $E/\varphi E$ is projective relatively to an exact sequence of right *E*-modules if and only if ∂° is projective relatively to that exact sequence. It follows that an exact sequence $0 \to M' \to M \to M'' \to 0$ of right *E*-modules is *I*-pure, that is, $M'I = M' \cap MI$, if and only if $0 \to M' \otimes E \partial \to M \otimes_E \partial \to M'' \otimes_E \partial \to 0$ is exact, if and only if $0 \to \text{Hom}_E(\partial^{\circ}, M') \to \text{Hom}_E(\partial^{\circ}, M'') \to 0$ is exact. Moreover, if *C* is the minimal injective cogenerator in Mod-*R* and ∂^* is the right *E*-module Hom_R(∂, C) then $0 \to M' \to M'' \to 0$ is *I*-pure if and only if $0 \to \text{Hom}_E(M'', \partial^*) \to \text{Hom}_E(M, \partial^*) \to \text{Hom}_E(M', \partial^*) \to 0$ is exact.

By the general theory developed in § 6, the *I*-pure-projective *E*-modules are exactly the direct summands of direct sums of copies of E_E and ∂° , and the *I*-pure-injective *E*-modules are exactly the direct summands of direct products of copies of Hom_{*R*}(*E*, *C*) and Hom_{*R*}(∂, C)= ∂^* .

Theorem 7.2. Let M be a right E-module and let $\eta_M: M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ be the canonical homomorphism. Then:

- (a) ker η_M is the largest E-submodule of M contained in MI.
- (b) The image of η_M is an *I*-pure submodule of $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$.
- (c) coker η_M is an 1-torsion-free I-divisible E-module.

Alberto Facchini

Proof. (a) Since $\partial \cong E/I$, the *R*-module $M \otimes_E \partial$ is isomorphic to M/MI, so that $x \in M$ is in the kernel of η_M if and only if $x \in MI$ for every $e \in E$, that is, if and only if $x \in MI$. In particular ker η_M is an *E*-submodule of *M* contained in *MI*. And if *N* is any *E*-submodule of *M* contained in *MI*, then $x \in CMI$ for every $x \in N$, that is, $x \in \ker \eta_M$ for every $x \in N$. This proves that $N \subset \ker \eta_M$.

(b) By Theorem 2.4 Hom_R $(\partial, M \otimes_E \partial) I = \{f \in \text{Hom}_R (\partial, M \otimes_E \partial) | f(w) = 0\}$. Therefore $\eta_M(M) \cap \text{Hom}_R (\partial, M \otimes_E \partial) I = \{\eta_M(x) | x \in M, \eta_M(x) (w) = 0\} = \{\eta_M(x) | x \in M, x \otimes w\}$ is the zero element of $M \otimes \partial$. Since the homomorphism $\partial \to E/I$, $w \mapsto 1 + I$ is an isomorphism of *E*-modules (Lemma 3.1), it follows that $M \otimes \partial \cong M \otimes E/I \cong M/MI$, and $x \otimes w = 0$ if and only if $x \in MI$. Hence $\eta_M(M) \cap \text{Hom}_R (\partial, M \otimes_E \partial) I = \{\eta_M(x) | x \in MI\} = \eta_M(MI) = \eta_M(M)I$.

(c) Suppose that η_M is injective (by Part (a) this happens if and only if M is *I*-reduced). Under this hypothesis consider the exact sequence

$$0 \rightarrow M \rightarrow \operatorname{Hom}_{R}(\partial, M \otimes_{E} \partial) \rightarrow \operatorname{coker} \eta_{M} \rightarrow 0.$$

This sequence is *I*-pure by Part (b) and $\operatorname{Hom}_{R}(\partial, M \otimes_{E} \partial)$ is *I*-torsion-free by Proposition 4.2. Therefore coker η_{M} is *I*-torsion-free.

Now apply the functor $-\bigotimes_E \partial$ to the above *I*-pure exact sequence and obtain the exact sequence $0 \to M \otimes \partial \to \operatorname{Hom}_R(\partial, M \otimes_E \partial) \otimes_E \partial \to \operatorname{coker} \eta_M \otimes_E \partial \to 0$. The homomorphism $\eta_M \otimes \partial \colon M \otimes \partial \to \operatorname{Hom}_R(\partial, M \otimes_E \partial) \otimes_E \partial$ is equal to $\varepsilon_{M \otimes \partial}^{-1}$ (where ε is the counit of the adjunction and $\varepsilon_{M \otimes \partial}$ is an isomorphism by Theorem 4.1) because if $x \in M$ and $y \in \partial$ then $\eta_M \otimes \partial(x \otimes y) = f_x \otimes y$, where $f_x \in \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ and $f_x(z) =$ $x \otimes z$ for every $z \in \partial$. Therefore $\varepsilon_{M \otimes \partial}(\eta_M \otimes \partial(x \otimes y)) = \varepsilon_{M \otimes \partial}(f_x \otimes y) = f_x(y) = x \otimes y$, i.e., $\eta_M \otimes \partial(x \otimes y) = \varepsilon_{M \otimes \partial}^{-1}(x \otimes y)$ and $\eta_M \otimes \partial = \varepsilon_{M \otimes \partial}^{-1}$. Hence $\eta_M \otimes \partial$ is an isomorphism, and the exactness of the above sequence gives (coker $\eta_M) \otimes_E \partial = 0$, i.e., coker η_M is *I*-divisible.

This proves Part (c) under the additional hypothesis that η_M is injective. In the general case the naturality of η applied to the canonical projection $\pi: M \to M/\ker \eta_M$ gives the equality $\eta_{M/\ker \eta} \cdot \pi = \text{Hom}(\partial, \pi \otimes \partial) \cdot \eta_M$. But $\pi \otimes \partial: M \otimes \partial \to (M/\ker \eta_M) \otimes \partial$ is an isomorphism because

$$(M/\ker \eta_M) \otimes \partial \cong (M/\ker \eta_M) \otimes (E/I) \cong (M/\ker \eta_M)/(M/\ker \eta_M)I$$
$$\cong M/(\ker \eta_M + MI) \cong M/MI \cong M \otimes (E/I) \cong M \otimes \partial.$$

Therefore Hom $(\partial, \pi \otimes \partial)$ is an isomorphism and

coker $\eta_M \cong \operatorname{coker} (\operatorname{Hom} (\partial, \pi \otimes \partial) \cdot \eta_M) = \operatorname{coker} (\eta_{M/\ker \eta} \cdot \pi) = \operatorname{coker} \eta_{M/\ker \eta}$

Now $M/\ker \eta$ is *I*-reduced by Part (a), so that coker $\eta_M \cong \operatorname{coker} \eta_{M/\ker \eta}$ is *I*-torsion-free and *I*-divisible by the previous case.

As a corollary to Theorem 7.2 it must be noted that every *I*-reduced *E*-module is *I*-torsion-free. This holds because if M_E is *I*-reduced, then η_M is injective (Theorem 7.2(a)) and Hom_R $(\partial, M \otimes \partial)$ is *I*-torsion-free (Proposition 4.2), so that *M* is *I*-torsion-free too. Nevertheless this fact does not hold for an arbitrary ring *S* (take S=Z, I=2Z and *M* any abelian group with 2M=0, so that *M* is *I*-reduced and is not *I*-torsion-free).

Theorem 7.3. Let M be a right E-module. Then $\eta_M: M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is an isomorphism if and only if M is I-cotorsion.

Proof. If $M \cong \operatorname{Hom}_{\mathbb{R}}(\partial, M \otimes \partial)$, M is *I*-cotorsion by Theorem 7.1. Conversely, if M is *I*-cotorsion, the homomorphism η_M is injective by Theorem 7.2(a) and the exact sequence $0 \to M \to \operatorname{Hom}_{\mathbb{R}}(\partial, M \otimes_{\mathbb{R}} \partial) \to \operatorname{coker} \eta_M \to 0$ splits because

$\operatorname{Ext}^{1}_{E}(\operatorname{coker} \eta_{M}, M) = 0$

(coker η_M is *I*-torsion-free and *I*-divisible by Theorem 7.2(c)). Hence coker η_M is isomorphic to a submodule of $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$. But coker η_M is *I*-divisible, and $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is *I*-reduced. Therefore coker $\eta_M = 0$ and η_M is an isomorphism.

Theorem 7.3 has the following corollary: if M is any right E-module, every E-homomorphism from M into an *I*-cotorsion module N_E can be uniquely factored over $\eta_M: M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$. Hence $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is a sort of "*I*-cotorsion completion" of M. The factorization of $f: M \to N$ is $f = (\eta_N^{-1} \cdot \operatorname{Hom}_R(\partial, f \otimes \partial)) \cdot \eta_M$ (this equality is given by the naturality of the transformation η). The uniqueness of the factorization is proved as follows: if $f = f_1 \cdot \eta_M = f_2 \cdot \eta_M$, then $(f_1 - f_2) \cdot \eta_M = 0$, so that $f_1 - f_2$: $\operatorname{Hom}_R(\partial, M \otimes_E \partial) \to N$ induces a mapping coker $\eta_M \to N$. But coker η_M is *I*-divisible (Theorem 7.2(c)) and N is *I*-reduced, so that this mapping is zero. Hence $f_1 - f_2 = 0$. This proves the corollary.

It must be remarked that our "*I*-cotorsion completion" Hom_R $(\partial, -\otimes_E \partial)$ is substantially different from the cotorsion hull in a hereditary torsion theory developed in [1], since our torsion theory $(\mathcal{T}, \mathcal{F})$ is not hereditary.

Theorem 7.4. If R is an integral domain and $E = \text{End}(\partial_R)$, the functors $\text{Hom}_R(\partial, -): \mathcal{D}_R \rightarrow \mathcal{C}_E$ and $-\bigotimes_E \partial: \mathcal{C}_E \rightarrow \mathcal{D}_R$ give an equivalence between the full subcategory \mathcal{D}_R of divisible R-modules and the full subcategory \mathcal{C}_E of Mod-E whose objects are the I-cotorsion E-modules. In this equivalence injective R-modules correspond to I-reduced I-pure-injective E-modules.

Proof. By Theorems 4.1 and 7.3 $\operatorname{Hom}_R(\partial, -)$ and $-\bigotimes_E \partial$ give an equivalence between the categories \mathscr{D}_R and \mathscr{C}_E . Let us prove that if B_R is an injective right *R*-module then $\operatorname{Hom}_R(\partial, B)$ is an *I*-pure-injective *E*-module. If B_R is injective, then *B* is isomorphic to a direct summand of C^X , where *C* is a minimal injective cogenerator in Mod-*R*. Then $\operatorname{Hom}_R(\partial, B)$ is isomorphic to a direct summand in $\operatorname{Hom}_R(\partial, C^X)\cong$ $\operatorname{Hom}_{R}(\partial, C)^{X} = \partial^{*X}$. By the remark immediately above Theorem 7.2, $\operatorname{Hom}_{R}(\partial, B)$ is an *I*-pure-injective *E*-module.

Conversely, if M_E is an *I*-reduced, *I*-pure-injective *E*-module, then $\eta_M: M \rightarrow \text{Hom}_R(\partial, M \otimes_E \partial)$ is an *I*-pure monomorphism (Theorem 7.2). Let *D* be an injective *R*-module containing $M \otimes \partial$, so that $\text{Hom}_R(\partial, M \otimes \partial) \leq \text{Hom}_R(\partial, D)$. The submodule $\text{Hom}_R(\partial, M \otimes \partial)$ is *I*-pure in $\text{Hom}_R(\partial, D)$, because $\text{Hom}_R(\partial, D)I = \{f \in \text{Hom}_R(\partial, D) | f(w) = 0\}$ by Theorem 2.4, so that $\text{Hom}_R(\partial, D)I \cap \text{Hom}_R(\partial, M \otimes \partial) = \{f \in \text{Hom}_R(\partial, M \otimes \partial) | f(w) = 0\} = \text{Hom}_R(\partial, M \otimes \partial)I$ by Theorem 2.4 again. Therefore *M* is isomorphic to an *I*-pure submodule of $\text{Hom}_R(\partial, D)$. Since *M* is *I*-pure-injective, *M* is isomorphic to a direct summand of $\text{Hom}_R(\partial, D)$. Then $M \otimes \partial$ is isomorphic to a direct summand of $\text{Hom}_R(\partial, D)$. This proves that $M \otimes \partial$ is an injective *R*-module.

Thus we have seen that the class we had denoted by \mathcal{I} in Theorem 4.3, i.e., the image of the functor $\operatorname{Hom}_{R}(\partial, -)$: Mod- $R \rightarrow \operatorname{Mod}-E$, is exactly the class \mathscr{C}_{E} of I-cotorsion E-modules. There is a further characterization of these modules: they are exactly the right E-modules of ∂^* -dominant dimension ≥ 2 , that is, the right *E*-modules *M* for which there exists an exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$ for suitable direct powers ∂^{*X} and ∂^{*Y} of the *E*-module ∂^* . In order to see this, note that if M is an *I*-cotorsion *E*-module, then there is an exact sequence of *R*-modules $0 \rightarrow M \otimes_{E} \partial \rightarrow$ $C^X \rightarrow C^Y$ because C is an injective cogenerator in Mod-R, so that by applying the left exact functor $\operatorname{Hom}_{R}(\partial, -)$ to this sequence one obtains an exact sequence $0 \rightarrow M \cong \operatorname{Hom}_{R}(\partial, M \otimes \partial) \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$. Conversely, if M has ∂^{*} -dominant dimension ≥ 2 , from the exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$ we obtain that M is cogenerated by ∂^* (i.e., it is *I*-reduced) and that there is an exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow N \rightarrow 0$ with $N \leq \partial^{*Y}$. If F is any I-divisible I-torsion-free E-module then the sequence $\operatorname{Hom}_{E}(F, N) \rightarrow \operatorname{Ext}_{E}^{1}(F, M) \rightarrow \operatorname{Ext}_{E}^{1}(F, \partial^{*X})$ is exact, $\operatorname{Hom}_{E}(F, N) = 0$ (because F is *I*-divisible and N is *I*-reduced), and $\operatorname{Ext}_{E}^{1}(F, \partial^{*X}) = 0$ (because $\partial^{*X} \cong \operatorname{Hom}_{R}(\partial, C^{X})$ is in \mathcal{I} , i.e., it is *I*-cotorsion). Therefore $\operatorname{Ext}_{F}^{1}(F, M) = 0$ and *M* is *I*-cotorsion.

References

- 1. BUESO, J. L. and TORRECILLAS, B., On the cotorsion hull in torsion theory, *Comm. Algebra* 13 (1985), 1627-1642.
- 2. FACCHINI, A., Relative injectivity and pure-injective modules over Prüfer rings, J. Algebra 110 (1987), 380-406.
- FUCHS, L., On divisible modules over domains, in: Abelian groups and modules, Proc. of the Udine Conference, CISM Courses and Lectures 287, Springer-Verlag, Wien-New York, 1984. 341-356.
- 4. FUCHS, L. and SALCE, L., Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics 96, Marcel Dekker, New York—Basel, 1985.

- GRUSON, L. and JENSEN, C. U., Dimensions cohomologiques reliées aux foncteurs <u>lim</u>⁽ⁱ⁾, Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin, Lecture Notes in Mathematics 867, Springer-Verlag, Berlin-Heidelberg-New York, 1981, 234-294.
- 6. HARRISON, D., Infinite abelian groups and homological methods, Ann. of Math. 69 (1959), 366-391.
- 7. MATLIS, E., Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964).
- 8. MATLIS, E., Torsion-free modules, Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicago—London, 1972.
- MATLIS, E., 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics 327, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- 10. PIERCE, R. S., Associative algebras, Graduate Texts in Mathematics 88, Springer-Verlag, New York—Heidelberg—Berlin, 1982.
- 11. POPESCU, N., Abelian categories with applications to rings and modules, Academic Press, London-New York, 1973.
- 12. STENSTRÖM, B., Pure submodules, Ark. Mat. 7 (1967), 159-171.
- 13. STENSTRÖM, B., Rings of quotients, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- 14. WARFIELD, R. B., Purity and algebraic compactness for modules, *Pacific J. Math.* 28 (1969), 699-719.

Received August 21, 1986

A. Facchini Universita' di Udine Istituto di Matematica Informatica e Sistemistica 33100 Udine Italy