Divisible modules over integral domains

Alberto Facchini

1. Introduction

The aim of this paper is to describe an equivalence between the full subcategory
of Mod-R whose objects are all the divisible modules over an integral domain R
and a suitable full subcategory of modules over the endomorphism ring E of a
fixed divisible module 9. This equivalence corresponds to the similar equivalences
for torsion divisible abelian groups due to Harrison [6] and for torsion h-divisible
modules over an integral domain due to Matlis {7}, [8] and [9].

Let R denote a commutative integral domain with 1 (not a field) and let d4
denote the divisible right R-medule defined by L. Fuchs in [3] (see § 2 for the exact
definition of dg). The module @, has interesting properties that are shown in [3],
in [4, § VI.3] and in §§ 2 and 3 of this paper. For instance, if E is the endomorphism
ring of dx and 9 is viewed as a left E-module 0, then End (z0)=~R and d=E/I
for a suitable projective principal left ideal I of E. Moreover, ¢ has flat and projec-
tive dimensions equal to one both as a right R-module and a left E-module, and
this implies that the class & of all right E-modules M such that Torf (M, §)=0
is the torsion-free class for a (non-hereditary) torsion theory (7, &) in Mod-E.
This torsion theory is generated by the cyclic right E-module Ext (z0z, R), and
a right E-module M is a torsion-free module in this torsion theory (we say that
M is I-torsion-free) if and only if the canonical homomorphism M Q@ [J~M @ pE=M
induced by the embedding /—E is a monomorphism. Dually, we say that a mo4ule
M is an I-divisible module if the canonical homomorphism M@ J-M is an
epimorphism, and that a right E-module Ny is I-reduced if it is cogenerated by the
right E-module ¢*=Homy (9, C), where C is the minimal injective cogenerator
in Mod-R. It is easy to show that a module M is I-divisible if and only if
Hom (M, N)=0 for every I-reduced E-module Ny.

Now define a right E-module M to be an I-cotorsion module if it is I-reduced
and Ext} (N, M)=0 for every I-divisible I-torsion-free right E-module N. The
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main result of this paper is the proof of the following theorem: the functors
Homyg (9, —): Mod-R—~Mod-E and — ® z9: Mod-E-~Mod-R induce an equiv-
alence between the full subcategory of Mod-R whose objects are the divisible
R-modules and the full subcategory of Mod-E whose objects are the I-cotorsion
E-modules. This generalizes the corresponding results of Harrison for torsion divis-
ible abelian groups [6] and of Matlis for torsion h-divisible R-modules ([7] and [9]).
In our equivalence the injective R-modules correspond to the I-reduced I-pure-
injective E-modules. Here I-pure-injective means injective relatively to the I-pure
exact sequences, that is, the sequences 0—M'—~M-—-M"-~0 of right E-modules
for which the sequence 0—-~M’Q z0-M & z0~M"® 00 is exact. (This extends
the corresponding result due to Warfield for Matlis’ equivalence between torsion
h-divisible modules and torsion-free cotorsion modules, see [4, Th. V.1.8].) Our
I-purity is a purity in the sense of Warfield [14].

Finally, we prove that I-cotorsion E-modules are exactly the right E-modules
of @¢*-dominant dimension =2, that is, the modules M for which there exists
an exact sequence 0—~M—~9**¥>9*Y with % and 9*' suitable direct products of
copies of §*.

For technical reasons (proof of Lemma 2.2) the way we define the R-module 9
is a little different from the way Fuchs defines it in [3] and [4]. The difference is
that our generators are the k-tuples (7y, ..., ) of non-zero elements r; of R, and
Fuchs’ generators are the k-tuples (ry, ...,7,) of non-zero and non-invertible ele-
ments r; of R. Fuchs’ results in [3] and [4] hold with this small modification as well.

2. The R-module J, and its endomorphism ring E

In this paper R will be an integral domain and we will assume that it is not a
field. We will denote the field of fractions of R by Q.

Let 9 be the right R-module generated by the set % of all k-tuples (ry, ..., 71)
of non-zero elements r; of R, for k=0, with defining relations

(7'1, e rk)rk = (rl, sees rk—l)’ k=1

The right R-module 9 is obviously divisible, that is, dr=@ for every r€R,
r+#0. The length of (r, ..., r,) is defined to be k, and the unique generator w=90
in ¢ of length 0 generates a submodule wR of 9 isomorphic to R [4, § V1.3]. Note
that for every x€9d there exists ré€R, 20, such that xréwR (possibly xr=0).

The fundamental property of 8 is the following one:

Proposition 2.1 [4, Lemma V1.3.2]. Let D be a divisible right R-module and a~ D.
Then there exists a homomorphism f: 8—~D with f(w)=a.
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Let 9, be the submodule of 9 generated by the elements of ¢ of length =n, so
that in particular d,=wR.

Lemma 2.2. Fix a nonnegative integer n and an element a of R, a#0 and a#1.
Then the correspondence 4 -0 defined by

0 if k=n
(1‘1 ves rk)ég‘—’{ N
v iy voos Frs Ly Tasts coos FI) =iy vvos Fus @y Tygns s P)@  if k>n
extends to an endomorphism of 0 whose kernel is 9, and whose image is a direct sum-
mand of 0.

Proof. 1t is easy to show that the defining relations of d are preserved by the
correspondence; for instance, when k=n+1, the relation (r, ..., 7)r=0y, -, F-1)
is preserved because [(ry, ..., Pu> L, Frs1) = (P1s ooy P» @ i) @l Fe= (1 ooy Py 1) —
1y ooos 1ps @a=(ry, ..., 7,)— (71, ..., #,)=0. Therefore the correspondence extends
to an endomorphism ¢ of ¢. Note that J,Cker ¢ because ¢{ry,...,r,)=0 for
every (ry, ..., r,). Inparticular ¢p=¢’on where n: d—~9/9, is the canonical projec-
tion and ¢’: 98/9,—~0 is a homomorphism.

Now consider the correspondence % -9/0, defined by

9, if k=n+l1
(r], cany rk)Eg — an if k = n‘l'l and r,,+1 # 1
N
(P1s ccos Tus Prg1s Trags s )40, if k=>n+1 and r,,=1,

where (rq, ..., 7, ﬁ:: s Puyas --o5 F) denotes the (k—1)-tuple in which 7,,, has been
deleted. The defining relations of 9 are preserved by this correspondence as well;
for instance, when k=n+2 and r,,,=1, the relation (ry, ..., r)r, =01, ..., Fp_1)
is preserved because [(r, ..., 7,, r,,/+\1 » B+ 0,0m=(r, ..., ) +0,==0,. Therefore this
correspondence also extends to a homomorphism v/: d—+9/9,.

The composed homomorphism Y¢: d—-9/8, is defined by Yo (ry, ..., 1) =09, if
k=nand Yoy, ..., n)=Y[(r1, s Tos L a1y s )= (P15 ooy Ty @, Frg1s o0 B A]=
(Frs ooos Pus s o F)+0, if k=>n, ie., Yo: 88/, is the canonical projection =.
Therefore n=yp=y ¢ n, hence y¢’ is the identity of 9/d,, so that ¢’ is injective
and 0=¢'(0/9,) ®ker ¥. Since ¢’ is injective, ker p=ker (¢’n)=ker n=49,. More-
over @(9)=¢’(0/0,) is a direct summand of 9.

Fix the following notations:

— E is the endomorphism ring End (9g) of the R-module dg;

— ¢ is a fixed R-endomorphism of d (i.e., ¢€E) with ker g=wR and ¢(9)
a direct summand ‘of 9 (it exists by Lemma 2.2);
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~— g is a fixed idempotent R-endomorphism of 8 (i.e., é£E and &*=¢) with
£(0)=¢);

— 1 is the left ideal {f¢E|f(w)=0} of E;

— J is the two sided ideal {f¢E|f(0)ct()} of E, where ¢(9) denotes the
torsion submodule of 9.

Since R is a commutative ring and dg is a faithful module, the ring R is a sub-
ring of the center Z(E) of E. In the next theorem we prove that R is equal to Z(E).

Theorem 2.3. The integral domain R is the center of E=End (dg).

Proof. 1t is sufficient to show that if f belongs to the center of E then there
exists 7€ R suchthat f(x)=xr forevery x€d. If fisin the center of E and ¢ denotes
the endomorphism defined before the statement of this theorem, then of(w)=
Jo(w)=f(0)=0, so that f(w)cker p=wR; hence there exists r¢ R with f(w)=wr.
If x€9, then there is a homomorphism g: d—+9 with g(w)=x by Proposition 2.1,
and f(x)=f(gW)=g(f(W))=g(wr)=g(W)r=xr. This concludes the proof of the
theorem.

If o: 00 isthe R-module homomorphism defined by a(ry, ..., r)=(F...;,) "
for k=1 and wa(w)=1, then ker« is the torsion submodule ¢(9) of 9. This is
easily seen, because t(d)Cker « since Q is torsion-free, and if x€ker a and réR,
r=0, is such that xré wR, xr=ws say, then O=a(xr)=a(ws)=a(w)s=s; therefore
xr=0 and x€#(9). In particular §/t(0)=Q.

If we apply the functor Homg (9, —) to the exact sequence 0--#(9)~0 —=> Q—0,
we obtain the exact sequence O0--J—E-Homg (9, Q)—~Exty (0, 1(d)). But
Homyg, (3, Q)=<Homy, (3/1(9), Q)=Homg (Q, @Q)=0 and Exty (9, #(9))=0 because
t(9) is a divisible R-module [4, Prop. V1.3.4]. Hence E/J=Q and J is an ideal of
E maximal among the two sided ideals of E.

Note that the left annihilator of ¢, I(¢)={g¢E[ge=0}, is E(1—¢). In fact,
(1—8)p=0 because £(d)=¢(d), so that E(l—e)ci(p). And if g€l{p), then
gp =0, ie., ker gD @(0)=¢(9); it follows that ge=0 and g=g—ge=g(1 —8)€ E(1 —¢).
The right annihilator of ¢, r(p)={g€FE|pg=0}, is O, because if ¢g=0, then
g(@)cker o=wR. Since g(9) is a divisible module, it must be the zero submodule
of wR, ie.,, g=0.

Theorem 2.4. If By is any right R-module and f: 6—~B is a homomorphism
such that f(w)=0, then there exists g: 0—~B such that f=go. In particular,
I={f¢E| f(w)=0} is the left principal ideal E¢ generated by ¢ and is a projective
ideal of E isomorphic to Es.

Proof. Since ker p=wR and ¢(d) is a direct summand of 9, there exists
¥: 0—+9/wR such that Yo is the canonical projection n: §-+d/wR (this had been
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also shown in the proof of Lemma 2.2). Since f: > B annihilates w, f can be written
as f=f'n forasuitable f': 8/wR—B induced by f. If g=f": 6B, then f=f"n=
fYo=gp. This proves the first assertion.

In particular, I={fcE|f(w)=0}c{gp|gc Homy (0, d)}=FE¢, so that I=FEg,
the other inclusion being trivial.

Finally, since . [{p)=E(1 —¢)=I(e), the ideal I=FE¢p=FEe is projective.

3. The E-modules ;9 and 95

Since E=End (dg), the module & can be viewed-as a left - E-module, and
R=End (zd) by Theorem 2.3. In this section we shall study the E-module ;9.

Lemma 3.1. The left E-module g0 is isomorphic to E/L

Proof. Consider the mapping E—~0 defined by f—f(w) for every fE€E. Obvi-
ously it is a left E-module homomorphism. It is surjective by proposition 2.1 and
its kernel is I.

Fuchs [4, Lemma VI.3.1] has proved that the projective dimension of 0,
proj.dim dg, is equal to one (this can also be shown by proving that the relations
(ry> ..o PQF—(ry5 ..., r—y) generate a free submodule H of the module F freely
generated by ¥); since dg is not flat (every flat R-module is torsion-free, and dx
is not torsion-free) and proj.dim g =flat.dim 9z, where flat.dim 9, is the flat
dimension of dg, it follows that flat.dim dz=proj.dim dz=1. This holds for the
module z9 too.

Corollary 3.2. flat.dim d=proj.dim z0=1.

Proof. By Lemma 3.1 and Theorem 2.4 proj.dim g@d=1. If proj.dim z0=<1,
then .9 is projective, so that I=E¢ is a direct summand of E, i.e., Ep=EB for
an idempotent PE¢E. Then wR= n{kerf|fe€Ep}=n {kerf|fCEf}=kerf is a
direct summand of the divisible module dg, contradiction, because wR is not divis-
ible. This proves that proj.dim z0=1. Moreover flat.dim gd=proj.dim z0=1,
and 9 is not flat, because 0 is finitely presented by Lemma 3.1 and Theorem 2.4
and every finitely presented flat module is projective [13, Cor.1.11.5]. Therefore
flat.dim gd=1.

By Corollary 3.2 TorE (—, g8)=Ext} (z0, —)=0 for n=2. In the sequel we
need the exact formulas for the functors Torf (—, z9) and Ext}, (g0, —) that are
calculated in the next corollary.

Corollary 3.3. If My is any right E-module, then Torf (M, 0)=(0:y¢)e, where
(0:50)={x€M|xp=0}.
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If gN is any left E-module, then Ext} (8, N)=<eN/oN.

Proof. Consider the exact sequence 0—-/-E-—0—0. By applying the functor
M®;—, we obtain that the sequence O—TorE (M, d)~M®I-MQ®E is exact.
Since I=Ep=Fe and M®  Ex=M, it follows that Torf (M, d) is isomorphic
to the kernel of the abelian group homomorphism Me—~M defined by xe—x¢
for every x¢M. It follows that Torf (M, 3)=(0:¢)¢. Similarly for Exty (9, N).

Note that since proj.dim dg=1, the torsion submodule ¢(dg) of 9y is iso-
morphic to a submodule of K®?, where K=0/R and K® is a direct sum of copies
of K. Namely, if My is any module with proj.dim Mz=1, fix a free resolution
0-R® - RM - M~0 of M (this is possible by [10, page 90, Ex. 3]) and apply the
functor — ® zK to this sequence. Then the sequence Tor}, (RY, K)—~Torg (M, K)—~
RMQK-RM®RK can be rewritten as 0—-t(M)—-K® K™ by [8, page 10].

Since proj.dim dg=1, it follows that Exty (9, —)=0 for n=2. Consider
Extk (3, R). Since Ext} (—, R) is a contravariant functor, every R-homomorphism
f:0 -0 induces an R-homomorphism Exty (£, R): Exty (9, R)~Ext} (9, R), so that
Exty (3, R) is a right E-module.

Theorem 3.4. The right E-module Exty (0, R) is isomorphic to €E/QE.

Proof. Let C be the image of the endomorphism 1—¢ of 9, so that ¢=¢(d)®
(1-8)(@)=¢ (@) @®C. Consider the exact sequence of R-modules

$:0- R 90CE- 90,

where a(r)=(wr, 0) for every réR and B(x, y)=@(x)+y for every (x,y)cd0®C.
Let S be the image of the extension § into Ext} (9, R). In order to prove the theo-
rem it is sufficient to show that ®: eE—~Ext} (3, R) defined by ®(gf)=Sf for
every f€E is a well defined surjective E-homomorphism with kernel ¢E.

If feE and gf=0, then f(d)ckere=C, so that it is possible to define a
homomorphism g: R®J—~9 ®C by setting g(r, x)=(wr, f(x)) for every (r, x)¢ RDJ.
If Z denotes the trivial extension, the diagram

Z:0>R >R -~ 00
I g A f
$:0~RE90CL 90
commutes. This shows that Sf is zero in Extk (9, R) and proves that @ is a well
defined homomorphism. of right E-modules.
Now we shall show that ® is surjective. Let

T:0> R 4290

be any extension and T its image into Ext} (8, R). Since Exty (9,9)=0 [4, Prop.
VI1.3.4], the R-homomorphism y*: Homg (4, d)~-Homg (R, 9) is surjective. Hence
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there exists y€Homg (4, 0) such that (y*())(D=w, that is, x(y(1))=w. Define
h: A~d®C by h(a)=(x(a),0) for every a€A. Then h(y(1))=(x(y(1)),0)=
(w, 0)=a(l), so that hy=o and the left-hand square in the diagram

T:0-R2 4 290
I Vh W\ f
S:0>R%90CE- 90

commutes; it follows that there exists an f€ E making the right-hand square com-
mute. Then Sf= T, and ® is surjective.

In order to prove that ker ®=¢kFE, fix an f€E, so that ¢f€cE. Then gfcker @
if and only if Sf=Z, i.., if and only if there exists a homomorphism g: R®d—~
0®C making the diagram

Z:0-R—~R®0 >~ 0~0

i Vg S

S:0-> R 9®CL-9~0
commute. This means that g(r, 0)=(wr, 0) and Bg(r, x)=f(x) for every réR and
x€9. Since the homomorphisms g: RGI—-ISC such that g(r, 0)=(wr, 0) for
every r€R are exactly of the form g(r, x)=(wr+h(x), I(x)) for suitable h: 99
and [/: 0—~C, it follows that gfcker ® if and only if there exists h: d—~9 and
I: 9—C such that f(x)=Bg (r, )= (wr+h(x), [(x))=@(wr+h(x))+1(x)=(ph+1)(x),
ie., f—ph=1 But C=(1 —g)(d)=Kker ¢, so that gfcker @ if and only if e(f—h)=0
for some h: 0—0, ie., ef=eph=qhE. This proves that ker ®=¢E.

We shall often need the right E-module Extj (9, R) in the sequel, and we shall
denote it by ¢°. Hence 9°=Exty (0, R)=¢E/pE as a right E-module. There are
other “‘presentations” of the module d°. For instance the right E-modules §° and
Ext} (9, E) are isomorphic right E-modules by Corollary 3.3. Moreover the functor
Homyg (z0, —) applied to the exact sequence of R-modules 0-~wR-~90—~d/wR—0
gives the exact sequence of right E-modules 0—E-Homyg (9, 8/wR)-~Exty, (9, wR)~
Exty (9, #). The last module is zero by [4, Prop. V1.3.4], so that the right E~-modules
0°=Exty (9, wR) and Homg (9, d/wR)/E are isomorphic.

Furthermore, the functor Homyg (z0z, —) applied to the exact sequence of
R-modules 0-R—~Q—~K-0 gives the exact sequence of right E-modules 0-
Homyg, (9, Q)—~Homg (9, K)~Exty (9, R)~Extk (9, Q). The last module is zero by
[4, Prop. V1.3.4], and the first module is Homg (9, Q)=Homyg (0/¢(9), Q)=Q by
the remarks after proposition 2.3. Therefore 9°=Homy (9, K)/Q as E-modules.

If we are only interested in the structure of 9° as an R-module, there is one
more “presentation” of §°: the functor Homg (—, R) applied to the exact sequence
0-+~H—~F—~3—~0 (where F is the R-module freely generated by % and H is the free
submodule of F generated by the relations) gives 0-~Hompg (F, R)—~Homy, (H, R)~



74 Alberto Facchini

Ext} (9, R)—~0, which is a presentation of 8° as a quotient of two R-modules
isomorphic to direct products of copies of R.

Corollary 3.5. flat.dim 9$=proj.dim d5=1.

Proof. Since r()=0, it follows that @E=E is projective, so that 9°=¢E/pE
has projective dimension =1. Hence 1=proj.dim §°=flat.dim 4°. It remains
to prove that sE/pE is not flat. But ¢+ @E¢ceE/@E is annihilated by ¢ (because
£p =) so that it belongs to (0:¢p)e==Tor?F (9°, 9) (Corollary 3.3). Thus Tory (8°, )=0
and ¢° is not flat.

Theorem 3.6. End (95)=R.

Proof. First of all observe that 9° is a torsion-free R-module, because if r€R
and r=0, the functor Homyg (9, —) applied to the exact sequence 0—~R—~ R—
R/rR—0 gives the exact sequence Homyg (9, R/rR)—~0°—0°. The first module is
zero because 9 is divisible and R/rR is torsion of bounded order. Hence the multi-
plication by r is an injective endomorphism of °, and 8° is a torsion-free R-module.

Since °=eE/pE=E[(9E+(1—€)E) is a cyclic E-module, it follows that
Endg (0°)22U[(pE+(1—e)E), where U is the subring {f€E|f(oE+(1—¢)E)C
9E+(1—¢)E} of E (for instance see [10, page 24]). Similarly, since d=E/Ep, the
ring Endg (9) is isomorphic to V/Ep, where V={gcE|Epg=Ep}. But Endg ()
is canonically isomorphic to R (Theorem 2.3), and thus V=R-+Eep.

Now we prove that U=R+¢@E+(1—¢)E. The inclusion UDR+¢E+(1—¢)E
is trivial. Conversely, if feU, that is, f¢E and f(9E+(1~&)E)C@E+(1—8)E,
then ¢fp€e(pE+(1—&)E)=¢E. Therefore efp=¢g for some g€E. In particular
Epg=EctfpcEp, that is, gc¢V=R+Ep. Hence g=r+hp for some réR and
heE, and sfpo=0g=q@+hp)=(+¢h)o. Then (¢f —r—oh)@=0, and since I(¢p)=
E(1—&)=I1(c) (§2), we have (¢f—r—o¢h)e=0, so that efe=re—phe=r—(1—g)r—
ohe¢ R+(1 —e)E+@E. Moreover fcU implies f(l—g)c@pE+(1—¢)E, so that
=0 -+ —e)fe+efec(pE+(1 —&) E)+(1 —e) E+(R+(1 —e) E+pE)=R+E+
(1—¢)E. This proves that U=R+@E+(1—¢)E.

It follows that

Endy (8°) = U/{@E+(1—¢)E) = (R+9E+(1—¢)E)[(9E+(1 —¢)E)
& R/(RA(pE+(1—8)E)),

i.e., every element of Endg (9°) is induced by the multiplication by an element of R.
But &° is a torsion-free R-module, so that Endg (0°)=R.
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4. The functors Homg (3, —) and — ® ;0

Consider the two functors Homg (z0g, —): Mod-R-Mod-E and — ® gdy:
Mod-E - Mod-R. Then Homg (z0z, —) 1is the right adjoint of ® 9y, for
each McMod-E there is a canonical E-module homomorphism

Mt M ~ Homg (3, M® :9)

defined by 5, (m)(x)=m®x for every mé M and x€0 (the unit of the adjunc-
tion), and for each A¢Mod-R there is a canonical R-module homomorphism
g4 Hompg (0, A)® g0 —~A defined by &,(f®x)=f(x) for every f¢ Hom, (3, A) and
x€0 (the counit of the adjunction).

Note that if M is any E-module, the R-module M ® 9 is divisible (because
Og is divisible and — ® zdg is right exact). Hence — ® g0 is a functor of Mod-E
into the full subcategory 95 of Mod-R whose objects are the divisible R-modules.

Theorem 4.1. Let Ay be a right R-module. Then &4: Homg (0, )Qg0—~A4 is
an isomorphism if and only if A is a divisible R-module.

Proof. If ¢, is an isomorphism and Fg-~Homg (9, A) is a surjective E-homo-
morphism of a free E-module F; onto Hompg (9, 4), then FQ 0 --Homg (9, A)®J
is a surjective R-homomorphism of the R-module F® ;0 onto Homy (9, A)Q0=A.
Hence A, homomorphic image of the divisible R-module F®gd, is divisible.

Conversely, suppose Ay divisible and apply the functor Hompg (9, )@y~ to
the exact sequence 0—E¢@—~E—~0-0, where the first homomorphism is the inclusion
and the second is defined by 1+—w (Theorem 2.4 and Lemma 3.1). The first homo-
morphism in the obtained sequence

Homygy (9, A)QgE@ — Homy (0, A) — Homg (8, A)@g0 —~ 0
is induced by the multiplication, so that its image is {g¢|gc Homy (9, 4)}, which is
equal to B={f|fcHomg (9, A), f(w)=0} by Theorem 2.4.

The homomorphism y: Homg (9, 4)~A defined by x(f)=f(w) for every
f€Homg (0, 4) is surjective by proposition 2.1 because A is divisible, and has B
as its kernel. Moreover the diagram ,

0+ B+~ Homy (9, A) ~ Homgz (7, A)®pd - 0
Il ] 7
0 - B -~ Homg (0, 4) X A 0
commutes, because x(f)=f(w)=¢e,(f@w) for every fcHomg (0, 4). It follows
that &, is an isomorphism.

If 2 denotes the full subcategory of Mod-R whose objects are the divisible
modules, the functor Homg (9, —): @ ~Mod-E is full and faithful by Theorem 4.1
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[11, prop. 5.2], so that @5 is equivalent to the full subcategory J; of Mod-E whose
objects are the E-modules isomorphic to Homg (9, 4) for some A¢Mod-R.

In the next sections we shall study and characterize the right E-modules iso-
morphic to Homg (9, 4) for some 4¢Mod-R. In order to do this we shall often
need the following result.

Proposition 4.2. For every R-module Ay, Torf (Homg (9, 4), z0)=0.

Proof. By Corollary 3.3 we must show that (0: ¢)s=0, where (0: @)=
{feHomy (0g, A)| fp=0}. Now fp=0 if and only if ¢(d)Ckerf. But ¢(@)=e(9).
Hence if f€(0: ¢), then &g(d)cCkerf, so that fe=0. This concludes the proof of
the proposition.

Theorem 4.3. Let S be the class of all right E-modules isomorphic to Homg (9, A)
Jor some right R-module A. Let O0—Lgy—~M_~Ng—~0 be a short exact sequence of
right E-modules.

() If L, Nc.F, then McJS.
Gi) If M, Nc.s, then LcJ.
(iii) If L, Mc.# and TorE (N, 9)=0, then NE.S.

Proof. In all of the three cases Torf (N, 3)=0 by proposition 4.2. Hence the
functor —®g0 applied to the sequence of the statement of the theorem gives the
exact sequence 0—»LQJ-MQR§F~>N®as-~0. The functor Homy (9, —) applied to
this sequence and the naturality of the transformation 5 give the commutative
diagram

0 L M N 0

e Vv Y N
0 - HOmR (3, L®Ea) bt HOmR (3, M® Ea) - HOmR (3, N® Ea) - 0.

The second row in this diagram is exact because Exty (9, L®0)=0 by [4,
Prop. VI.3.4]. Hence if two of the mappings #,, #3, 7y are isomorphisms, so is the
third. It remains to prove that for a module P, the mapping #p: P—Homg (9, PRJ)
is an isomorphism if and only if P€.#. But if P€.#, then the functors —® 0 and
Homg (9, —) give an equivalence 9—.#, so that #, is an isomorphism. And if
P=Homyg (9, PRJ), then P=Homy (9, A)¢# with A=PRJ.

The hypothesis Torf (N, 3)=0 in part (iii) of Theorem 4.3 cannot be eliminated
as the following example shows: set L=M=FE and let r be any non-zero and
non-invertible element of R. Since E=Homg (,) is a torsion-free R-module
(because @ is divisible), the multiplication by r gives an exact sequence 0—~E—~E—
E/Er—~0 of E-modules. In this sequence the first two modules are in £ and the
third E-module E/Er is torsion of bounded order as an R-module. But ExEr,
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otherwise » would be invertible in E, that is, 1=fr for some f¢E, contradiction,
because the multiplication by 7 is not an injective mapping d—~9. Hence E/Er£0
is not a torsion-free R-module, and in particular E/Er¢.# (every module in f is
torsion-free as an R-module).

5. The torsion theory (7, #) and its cotorsion theory

In this section S is an arbitrary associative ring with identity and I=S¢ is a
projective principal left ideal of S.

If My is any right S-module, the inclusion 7—S induces a homomorphism
MQsI~M, and we say that M is I-torsion-free if this mapping MQg—~M is
injective, and say that M is I-divisible if it is surjective. Note that the definition of
I-divisible module is obtained by dualizing the definition of I-torsion-free module.
Moreover M I-divisible simply means Mo=M.

Denote the class of all I-torsion-free right S-modules by Z.

Lemma 5.1. If S is an algebra over a commutative ring R, C is an injective cogen-
erator in Mod-R, (S/1)* is the right S-module Hompg (S/1,C), and M is a right
S-module, then

(i) M is I-torsion-free if and only if Tori (M, S/I)=0, if and only if
Exts (M, (S/I)*) = 0;

(ii) M is I-divisible if and only if M®(S/I)=0.

Proof. From the exact sequence 0—~I—~S—S/I-0 we obtain the exact sequence
0~Tor} (M, S/IN-MQsI+-M-~M®(S/I)~0. Hence M is I-torsion-free if and
only if Tor§ (M, S/I)=0, and M is I-divisible if and only if M ®(S/I)=0. More-
over Homy (Tor$ (M, S/I), C)=Exty (M, (S/I)*), so that Tor} (M, S/I)=0 if and
only if Ext (M, (S/I)*)=0.

Proposition 5.2. The class & is the torsion-free class for a torsion theory (7, F).

Proof. We must show that & is closed under submodules, products and exten-
sions |13, Prop. V1.2.2). Since I is projective, the flat dimension of S/I is =1, so
that Tor3 (—, S/I)=0. In particular the functor Tor3 (—, S/Z) is left exact. Hence
if Tor{ (M, S/I)=0, then Tor; (N, S/I)=0 for every submodule N of M. There-
fore & is closed under submodules. Moreover if N=M, Tors (N, S/I)=0 and
Tori (M/N, S/I)=0, then Tor5 (M, S/I)=0, that is, & is closed under extensions.
Finally, since I is a projective principal ideal, 7 is a finitely presented module, so
that if {M,|i€A}cF is a family of S-modules, [],(M,®1) and ([T, M,)®I
are canonically isomorphic [13, Lemma 1.13.2]. Then the mapping (][], M;)Q1I=
I (M, @1~ ][, M, is injective, and & is closed under products.
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In the statement of Proposition 5.2 the torsion class J consists of all right
S-modules T with Homg (T, M)=0 for all Mc%. Note that Ss is an I-torsion-
free module. Moreover the torsion theory (Z, #) is not hereditary in general.
Our torsion theory (7, %) generalizes the p-torsion theory of abelian groups,
where p is a prime. In fact, it is easy to see that for S=Z and I=pZ the I-torsion-
free, I-divisible and I-torsion modules are exactly the p-torsion-free, p-divisible and
p-torsion abelian groups respectively.

Proposition 5.3. Let ¢ be a generator of the projective principal left ideal I of S,
so that the left annihilator 1(¢) of @ is equal to S(1—¢) for an idempotent &€S.
Then the torsion theory (7, F) is generated by the right S-module €S/¢S.

Proof. In order to prove that the torsion theory (7, &) is generated by
&S/@S, we must prove that a right S-module F belongs to & if and only if
Homyg (eS/¢ S, F)=0.

Suppose Fc# and fix an feHomg (eS/pS, F). Set x=f(e+¢S)cF. Then
xe=fle+@S)e=f(e+9S)=x and xp=f(e+¢S)o=f(ep+¢S)=f(¢+¢S)=0.
Consider the element x®¢@¢F®I. Since x¢=0 and the mapping FQI—-F is
injective because Fc ., it follows that x®@=0. Apply the functor F® — to
the exact sequence 0-S(1—g)-»S—~I—0, where the first homomorphism is the
inclusion and the second homomorphism is defined by 1—¢. Then the sequence
0-F®sS(1—¢)~FRsS—~F®sI—~0 is exact because I is projective, hence flat.
The last sequence can be rewritten as 0—F(1—¢)~F—~F®s[~0 where the first
homomorphism is the inclusion and the second homomorphism maps x into xQg.
Since x®¢@=0, it follows that x€ F(1—¢), so that xe=0. In particular f(e+¢S)=
x=x¢=0 and f: &S/@S—F is the zero homomorphism. This proves that
Homyg (e5/¢ S, F)=0.

Conversely, suppose that Homg (¢S/¢S, F)=0. We must prove that F@I—~F
is injective. Since I=S¢, every element in F®I can be written as xQ@g, x€F.
Suppose x®¢ isin the kernel of F®I—F, ie., x¢=0. The mapping f: ¢S/oS—~F
defined by f(es+¢@S)=xes is a well defined homomorphism, because if es€@S,
then xes€xpS={0}. It follows that f must be zero, hence xe=0. Then xQ¢=
xQep=xe®¢@=0. This proves that Fe&F.

Our concept of I-divisibility differs from the concept of divisibility in [13, § VI.9],
because our I-torsion-free modules and I-divisible modules are both right S-modules.
Define a right S-module M to be I-reduced if it is cogenerated by (S/I)*, that
is, if it is isomorphic to a submodule of a direct product of copies of (S/I)*. Here
(S/I)*=Homy (S/I, C), where R is a commutative ring such that S is an R-algebra
and C is an injective cogenerator of Mod-R. Therefore My is I-reduced if and only
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if for every x€M, x#0, there exists 9.: M-~(S/I)* such that 9,.(x)=0. Since
Homs (M, (S/I)*)=Homg (M Qs(S/I), C)=Homg (M/MI, C), this happens if and
only if for every x€ M, x>0, xS is not contained in M/. Therefore a right S-module
M is I-reduced if and only if MI does not contain nonzero right S-submodules
of M.

Note that a module Ny is I-divisible if and only if Homg (N, M)=0 for every
I-reduced S-module M. In fact, Homg (N, M)=0 for every I-reduced S-module
Mg if and only if Homg (N, (S/I)*)=0. This happens if and only if N®(S/I)=0,
that is, if and only if N is I-divisible (Lemma 5.1 (ii)).

We conclude this section with a last definition. We say that a right S-module
M is an I-cotorsion module if it is I-reduced and Exti (N, M)=0 for every I-divis-
ible I-torsion-free right S-module N. I-cotorsion modules will be studied in § 7.

6. Purity

In this section S is an arbitrary (associative) ring with identity and I=S¢p
is a fixed projective principal left ideal of S. We say that a short exact sequence
0-+-M’-»M-~M"-0 of right S-modules is I-pure if one of the equivalent conditions
of next lemma holds.

Lemma 6.1. The following properties of a short exact sequence Q0—~M’—~M—~
M”—~0 of right S-modules are equivalent:

(a) The short exact sequence O--Homg (S/@S, M")—~Homg (S/pS, M)—
Homg (S/¢S, M ")—-0 is exact. '

(b) The short exact sequence 0-M’'QS/Sp—-MRS/So—-M"®S5/Sp—~0 is
exact.

(c) M"p=M’'nMo.

Under these equivalent conditions we shall also say that M’ is an I-pure sub-
module of M. The proof of this lemma is analogous to the proof of [14, Prop. 2 and 3].
- Our purity is a particular case of Warfield’s &-purity [14] with &={S/¢S, S}.
(See also [12].) It would also be possible to apply Gruson’s and Jensen’s idea devel-
oped in [5] to the study of I-purity: if 0=/{S, S/S¢} is viewed as a full subcategory
of S-Mod and D(S) is the category of additive functors of ¢ into the category of
abelian groups 74, then the functor M—~M®gs— of Mod-S into D(S) is the
left adjoint to the functor F~F(S) of D(S) into Mod-S and is an equivalence
of Mod-S onto a full subcategory of D(S); in this equivalence short exact sequences
of D(S) correspond to I-pure short exact sequences of Mod-S, and the injective
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objects in D(S') correspond to the I-pure-injective S-modules. See also [2]. We shall
not need this remark in the sequel.

Note that if M is an J-torsion-frec S-module, that is, M€ %, then a submodule
M’ of M is I-pure in M if and only if M/M’ is I-torsion-free. This can be seen
from the exact sequence Tor; (M, S/S¢)~Tors (M/M’, S/S¢)~M’®S/Sp~MQ
S/Sp, where Tors (M, S/Sp)=0 because MeZF (Lemma 5.1), so that M’®
S/Sp~M®S/S¢ is injective if and only if Tor$ (M/M’, S/S¢)=0.

The theory developed in [12] applies to our notion of I-purity. If & is the class
of I-pure short exact sequences of S-modules, then & is a flatly generated, proper
class [12, § 3], closed under direct limits and projectively closed [12, Prop. 3.1 and 2.2].
For every right S-module M” there is an I-pure exact sequence O0—~M’'—~M—~M"—~0
with M I-pure-projective (i.e., M &-projective). Moreover a module M is I-pure-
projective if and only if it is isomorphic to a direct summand of a direct sum of
copies of Ss and S/pS. These statements follow immediately from [12, Prop. 2.3].
I-pure-injective modules (that is, &-injectives) are characterized as the direct sum-
mands of direct products of copies of Homg (S, C) and Homyg (S/Se, C); here
R is any commutative ring such that S is an R-algebra, and C is an injective cogen-
erator in Mod-R [12, Prop. 3.3]. Finally, every module has a suitably defined /-pure-
injective envelope [12, Prop. 4.5], and I-pure-injective modules are directs summands
of every module which contains them as I-pure submodules.

7. The equivalences

Now we apply the theory developed in §§ 5 and 6 to the study of the functors
Homyg, (z0g, —): Mod-R—-Mod-E and — ® ;9z: Mod-E-~Mod-R introduced in § 4.

As in the first four sections R is an integral domain, 9z is the R-module of § 2,
E is its endomorphism ring End (dz), ¢ is an endomorphism of dz whose kernel
is wR and image is a direct summand of dg. The left ideal I=E¢p of E is a projective
principal ideal by Theorem 2.4, so that the theory developed in § 5 can be applied.
Let C be the minimal injective cogenerator in Mod-R and 8*=Homg (9, C). There
is a torsion theory (7, &) for Mod-E where the I-torsion-free class & consists of
the right E-modules M with Torf (M, 0)=0, or, equivalently, with Ext} (M, *)=0
(Lemmas 3.1 and 5.1). The class of I-divisible E-modules consists of the right E-mod-
ules M with M®z0=0. The torsion theory (J, %) is generated by the right
E-module §°=Ext} (9, R) (Proposition 5.3 and Theorem 3.4) and Ej is a torsion-
free E-module in the torsion theory (4, £).
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The I-reduced E-modules are the right E-modules cogenerated by 9*; and a
module Mg is I-reduced if and only if MI does not contain nonzero right E-sub-
modules of M.

Theorem 7.1. Let R be an integral domain and A a right R-module. Then
Homg (0, 4) is an I-cotorsion E-module.

Proof. Since C is an injective cogenerator in Mod-R, 4=C* for some set X,
so that Homg (9, A)y=Homy (9, C*)=(0*)*; hence Homg (9, 4) is cogenerated
by &%, that is, it is I-reduced.

Now let Ny be an I-divisible J-torsion-free E-module and let D be an injective
R-module containing A. Then the functor Homg (0, —) applied to the exact sequence
0-~A4-D--D/A—~0 gives an exact sequence 0-Homyg (3, 4)--Homy (3, D)~ P—~0
for a suitable E-submodule P of Homyg (9, D/A4). Apply the functor Homg (N, —) to
this sequence and obtain the exact sequence Homg (N, P)—~Ext} (N, Homg (9, 4))—~
Ext} (N, Homg, (9, D)). But

Homg (N, P) = Homg (N, Homg (9, D/A4)) = Homg (N®gd, D/4) = 0

because N® 9=0 since N is I-divisible. Moreover Torf (N,d)=0 (because N is
I-torsion-free) and D is injective, and thus

Ext} (N, Homg (9, D)) = Homy (Tors (N, d), D)= 0.
Therefore Exty (N, Homg (9, A))=0 and Homy (9, 4) is I-cotorsion.

Note that E/@E=((1 —¢)E®2E)/¢E=(1~¢) E®(eE/@E)=(1—&) E®O° (Theo-
rem 3.4), so that E/@E is projective relatively to an exact sequence of right E-mod-
ules if and only if ¢° is projective relatively to that exact sequence. It follows that
an exact sequence 0—-M’'->M-M"~0 of right E-modules is [-pure, that is,
M’ I=M"'nMI, if and only if 0-M’'QpP MR 0-M"Qrd~0 is exact, if and
only if 0~Homg (0°, M")—~Homy (6°, M)—~Hom, (0°, M ")—~0 is exact. Moreover,
if C is the minimal injective cogenerator in Mod-R and §* is the right E-module
Homyg (9, C) then 0~M’~M—~M"—~0 is I-pure if and only if 0—~Hom, (M”, 8*)—~
Hom, (M, 0*)-~Homg (M’, 8*)~0 is exact.

By the general theory developed in § 6, the I-pure-projective E-modules are
exactly the direct summands of direct sums of copies of E, and ¢°, and the I-pure-
injective E-modules are exactly the direct summands of direct products of copies of
Homg (E, C) and Homg (9, C)=0*.

Theorem 7.2. Let M be a right E-module and let n: M-~Homg (0, MQ z0)
be the canonical homomorphism. Then:

(a) ker my, is the largest E-submodule of M contained in M1I.

(b) The image of ny is an I-pure submodule of Homp (0, M ® ;).

(c) coker ny is an I-torsion-free I-divisible E-module.



82 Alberto Facchini

Proof. (a) Since 9=~E/I, the R-module M®. 0 is isomorphic to M/MI, so
that x¢M is in the kernel of 7, if and only if xe€ MI for every e<E, that is,
if and only if xECMI. In particular ker#, is an E-submodule of M contained
in MI. And if N is any E-submodule of M contained in MI, then xEcCMI for
every x€N, that is, x€keryq, for every x¢N. This proves that NcCker n.

(b) By Theorem 2.4 Hompy (9, M ® pd)I={ fce Homg, (9, M ® ;0)| f(w)=0}. There-
fore 5y (M)nHomy (8, M® z0)I= {11y (x)|x€ M, 13 (x)(W)=0}={nay (x)|xEM, xR@W
is the zero element of M®4}. Since the homomorphism 9—E/l, w—1+1I is an
isomorphism of E-modules (Lemma 3.1), it follows that M & d= M @ Ef1== M/MI, and
x®w=0 if and only if x€ MI. Hence 1y (M)nHomy (0, MQ ;) I={ny (x)Nxc MI}=
M (MI) =11 (M) 1.

(c) Suppose that n,, is injective (by Part (a) this happens if and only if M is
I-reduced). Under this hypothesis consider the exact sequence

0 -~ M — Homp (8, M@ d) — coker iy ~ 0,

This sequence is I-pure by Part (b) and Homy (9, MQ ;0) is I-torsion-free by Prop-
osition 4.2, Therefore coker ,, is I-torsion-free.

Now apply the functor —®;0 to the above I-pure exact sequence and obtain
the exact sequence 0—~M Q9 —Hompg (8, MQ ;9)® pd—coker 1, ® ;0 0. The homo-
morphism 7,,®9: M®0-Homg (3, M@ ;0)@0 is equal to &35, (Where ¢ is the
counit of the adjunction and e,4, is an isomorphism by Theorem 4.1) because if
x€EM and y€o then n,;®@I(xQy)=1.Qy, where f,6 Homg (0, MR 0) and f,.(z)=
xQ®z for every z€9. Therefore &yqs (M @I(Xx®Y))=8ygs(fx®V)=f(1)=xRy,
ie., MR (x®Y)=t315s(xQy) and Ny ®I=¢3;5,. Hence 1,,®9 is an isomorphism,
and the exactness of the above sequence gives (coker #,)® ;d=0, i.e., coker 1y is
I-divisible.

This proves Part (c) under the additional hypothesis that 1 is injective. In the
general case the naturality of n applied to the canonical projection w: M -~ M/ker 1y
gives the equality #ar/iery - 7=Hom (0, 7®9) - n5,. But 1QI: M9~ (M/ker 11,,)®9
is an isomorphism because

(M/ker 1) R0 == (M/ker 3, )Q(E/) == (M/ker np)/(M/ker )1
= M/(ker ny +MI) = M/MI = MQ(E/T) = M®4d.
Therefore Hom (9, ®®4d) is an isomorphism and
coker fy=xcoker (Hom (9, £®8) - 1y1) = coker (Nysjxery * ©)=COKET Nprjicrns

Now M/ker 4 is I-reduced by Part (a), so that coker #y,=COKer #y/ye,, 18 I-torsion-
free and [-divisible by the previous case.
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As a corollary to Theorem 7.2 it must be noted that every I-reduced E-module
is I-torsion-free. This holds because if M is I-reduced, then 4, is injective (Theo-
rem 7.2(a)) and Homg (9, M®J) is I-torsion-free (Proposition 4.2), so that M is
I-torsion-free too. Nevertheless this fact does not hold for an arbitrary ring S (take
S=Z, I=27Z and M any abelian group with 2M =0, so that M is I-reduced and
is not I-torsion-free).

Theorem 7.3. Let M be a right E-module. Then ny: M—~Homg (3, M@ 0) is
an isomorphism if and only if M is I-cotorsion.

Proof. If M=Homg (9, M®4J), M is I-cotorsion by Theorem 7.1. Conversely,
if M is I-cotorsion, the homomorphism #,, is injective by Theorem 7.2(a) and the
exact sequence 0—M —~Homg (0, M ® zd)-coker 7, ~0 splits because

Ext}, (coker 1y, M) = 0

(coker ny is I-torsion-free and I-divisible by Theorem 7.2(c)). Hence coker n, is
isomorphic to a submodule of Homy (9, M® ;0). But coker 1, is I-divisible, and
Homp (9, M® z9) is I-reduced. Therefore coker 7,,=0 and n is an isomorphism.

Theorem 7.3 has the following corollary: if M is any right E-module, every
E-homomorphism from M into an I-cotorsion module Ny can be uniquely factored
over ny: M—~Homg (9, M®:6). Hence Hompg (8, M® 0) is a sort of ‘‘I-cotorsion
completion” of M. The factorization of f: M—~N is f=(n3'- Homg (9, f®9)) - 1y
(this equality is given by the naturality of the transformation #). The uniqueness
of the factorization is proved as follows: if f=£, -ny=Ffs-nm, then (fi—1f2) - ny=0,
so that f, ~f;: Homp (9, M ® ;0)—~ N induces a mapping coker 1, —N. But coker 1,
is I-divisible (Theorem 7.2(c)) and N is I-reduced, so that this mapping is zero. Hence
Ji—/f>=0. This proves the corollary.

It must be remarked that our “I-cotorsion completion” Homg (9, —®g0) is
substantially different from the cotorsion hull in a hereditary torsion theory devel-
oped in [1], since our torsion theory (7, &) is not hereditary.

Theorem 7.4. If R is an integral domain and E=End (dg), the functors
Homg (9, —): Dg~%; and —®0: €p—~Dx give an equivalence between the full
subcategory 9Dy of divisible R-modules and the full subcategory €5 of Mod-E whose
objects are the I-cotorsion E-modules. In this equivalence injective R-modules cor-
respond to I-reduced I-pure-injective E-modules.

Proof. By Theorems 4.1 and 7.3 Hompg (9, —) and —® 0 give an equivalence
between the categories Dy and €. Let us prove that if By is an injective right R-mod-
ule then Homy (9, B) is an I-pure-injective E-module. If By is injective, then B
is isomorphic to a direct summand of C*, where C is a minimal injective cogenerator
in Mod-R. Then Homyp (9, B) is isomorphic to a direct summand in Homg (8, C¥)=
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Homg (9, C)*=0*X, By the remark immediately above Theorem 7.2, Homg (9, B)
is an I-pure-injective E-module.

Conversely, if My is an I-reduced, I-pure-injective E-module, then #,,: M~
Homyg (9, M® ;0) is an I-pure monomorphism (Theorem 7.2). Let D be an injective
R-module containing M®0, so that Homypg (9, M®0)=Homg (9, D). The sub-
module Homg (0, M®J) is I-pure in Homg (9, D), because Homg (4, D)I=
{fe Homg (9, D)| f(w)=0} by Theorem 2.4, so that Homg, (4, D) InHomg (9, M Q)=
{feHomy (9, M®0)| f(w)=0}=Homg (9, M®a4)I by Theorem 2.4 again. Therefore
M is isomorphic to an [-pure submodule of Homyg (9, D). Since M is I-pure-injec-
tive, M is isomorphic to a direct summand of Homg (d, D). Then M®9 is iso-
morphic to a direct summand of Homg (9, D)®d=D. This proves that M®d is
an injective R-module.

Thus we have seen that the class we had denoted by # in Theorem 4.3, i.e., the
image of the functor Hompg (4, —): Mod-R—-Mod-E, is exactly the class €, of
I-cotorsion E-modules. There is a further characterization of these modules: they
are exactly the right E-modules of 9*-dominant dimension =2, that is, the right
E-modules M for which there exists an exact sequence 0—~M —~9*X~0*Y for suitable
direct powers 0*X and 0*¥ of the E-module 9*. In order to see this, note that if M
isan I-cotorsion E-module, then there is an exact sequence of R-modules 0+MQ 0~
C*CY because C is an injective cogenerator in Mod-R, so that by applying the
left exact functor Homg (9, —) to this sequence one obtains an exact sequence
0—~M=<Homg (3, M®J)~9** +9**. Conversely, if M has 9*-dominant dimension
=2, from the exact sequence 0—~M —~9**~0*T we obtain that M is cogenerated
by 0* (i.e., it is I-reduced) and that there is an exact sequence 0—M—@**¥ ~N—0
with N=0*Y. If F is any I-divisible I-torsion-free E-module then the sequence
Homy (F, N)-Ext} (F, M)—~Ext}, (F, %) is exact, Homg(F, N)=0 (because F
is I-divisible and N is I-reduced), and Ext}, (F, 9**)=0 (because 0**=Homy, (9, C¥)
is in £, i.e., it is I-cotorsion). Therefore Ext} (F, M)=0 and M is I-cotorsion.
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